
SmartPatch: Verifying the Authenticity of the
Trigger-Event in the IoT Platform

Bin Yuan ,Member, IEEE, Yuhan Wu, Maogen Yang, Luyi Xing,Member, IEEE, Xuchang Wang,

Deqing Zou , and Hai Jin , Fellow, IEEE

Abstract—Emerging IoTclouds are playing amore important role in modern lives, enabling users/developers to program applications to

make better use of smart devices. However, preliminary research has shown IoTcloud vulnerabilities could expose IoTusers to security

risks. To better understand the problem, we studied the SmartThings cloud, one of themost popular IoTcloud platforms that support

user-defined device automation (SmartApps). Specifically, we found new vulnerabilities in SmartThings that allow attackers to fake

events to trigger the SmartApps to operate devices (e.g., open a lock). Exploiting such vulnerabilities, we successfully faked 7 different

types of events, which impact 138 (out of 187) SmartThings’ official open-sourced SmartApps. To defeat such attacks, we propose an

authenticity-verification-based scheme to deny fake events. Moreover, we designed a tool, SmartPatch, to help users secure their

SmartThings systems. In specific, SmartPatch automatically patches the vulnerable SmartApps and Device Handlers (input) and

outputs the flawless programs, which are ready for users to deploy in their SmartThings systems.We havemade SmartPatch publicly

available.With the help of SmartPatch, we patched all the vulnerable SmartThings’ official open-sourced programs (146 SmartApps

and 321 Device Handlers). Experiments have shown the compatibility, effectiveness, and efficiency of our proposed approach.

Index Terms—SmartThings platform, IoTsecurity, trigger-action, smart home

Ç

1 INTRODUCTION

EMERGING Internet of Things (IoT) cloud platforms have
offered beyond basic convenience functionalities like

device control and alert automations. For example, both
users or third-party developers are enabled to program the
IoT system to automatically and smartly control the IoT
devices. Prominent examples of such IoT platforms include

SmartThings [1], IFTTT [2], Zapier [3], and Microsoft Flow
[4]. Supporting such programmability is the trigger-action
based automation scheme. For example, an IFTTT user can
create an applet to enable an automation rule like: “If the
door is unlocked, send an alert message to my phone”.
Moreover, SmartThings allows users to install SmartApps
[5], [6], which take the events (e.g., device state changes,
sun rises and position changes)1 as inputs to trigger certain
actions like sending commands to devices or sending out
alert/notification messages.

While IoT platforms provide tangible benefits, the secu-
rity issues of them have become an important concern. Vul-
nerabilities in their communication protocols, access control,
privacy and side channel risks in these systems have been
studied [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25]. In this paper, we
focused on the authenticity of trigger-event in the trigger-
action based automation of IoT cloud platforms. Specifically,
we studied this problem in the SmartThings platform, which
is one of the most popular IoT platforms with its mobile app
having over 100million installs [26].

Favored by many software developers, SmartThings
platform is centered on the separation of intelligence from
devices, which makes it easier to create SmartApps that
interact with and across a wide range of devices. Specially, it
provides Device Handlers as the virtual representation of
physical devices, which parse protocol-specific status mes-
sages from real devices and turn them into trigger-events.
Then, the events will trigger the SmartApps that subscribe to
such events to execute certain actions as defined by the event
handler methods in the SmartApps. Further, SmartThings

� Bin Yuan is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System Lab,
Hubei Engineering Research Center on Big Data Security, School of Cyber
Science and Engineering, Huazhong University of Science and Technol-
ogy, Wuhan 430074, China, and also with the Shenzhen Huazhong Uni-
versity of Science and Technology Research Institute, Shenzhen 518057,
China. E-mail: yuanbin@hust.edu.cn.

� Yuhan Wu, Xuchang Wang, and Hai Jin are with the National Engineer-
ing Research Center for Big Data Technology and System, Services Com-
puting Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Sci-
ence and Technology, Wuhan 430074, China.
E-mail: {2363627402, 867924212}@qq.com, hjin@hust.edu.cn.

� Maogen Yang and Deqing Zou are with the National Engineering
Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Hubei Engineering Research Center on Big
Data Security, School of Cyber Science and Engineering, Huazhong Uni-
versity of Science and Technology, Wuhan 430074, China.
E-mail: 1282860473@qq.com, deqingzou@hust.edu.cn.

� Luyi Xing is with the School of Informatics, Computing, and Engineering,
Indiana University Bloomington, Bloomington, IN 47408 USA.
E-mail: luyixing@indiana.edu.

Manuscript received 11 Nov. 2020; revised 25 Feb. 2022; accepted 22 Mar. 2022.
Date of publication 25 Mar. 2022; date of current version 14 Mar. 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61902138, in part by the Key-Area Research and Devel-
opment Program of Guangdong Province under Grant 2019B010139001,
and in part by the Shenzhen Fundamental Research Program under Grant
JCYJ20170413114215614.
(Corresponding author: Deqing Zou.)
Digital Object Identifier no. 10.1109/TDSC.2022.3162312 1. We call these events trigger-events or simply events for short.

1656 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
mailto:yuanbin@hust.edu.cn
mailto:2363627402@qq.com
mailto:867924212@qq.com
mailto:hjin@hust.edu.cn
mailto:1282860473@qq.com
mailto:deqingzou@hust.edu.cn
mailto:luyixing@indiana.edu

allows users/developers to write their own SmartApps and
Device Handlers to enable user-specific automations.

Motivation. Despite the popularity of SmartThings, the
built-in features of SmartThings expose users to many secu-
rity risks [9], [11], [14], [15], [16], [17], [18], [19], [27], [28], [29].
Specifically, Yuan et al. [8] found that during the process of
delegating device access from the SmartThings cloud to the
Google Home cloud, device information (e.g., deviceId, etc.)
could be leaked to a malicious Google Home user (the
attacker). The leaked deviceId could then be exploited to send
fake events to the SmartThings cloud, enabling the attacker to
unlock the victim’s August Smart Lock. Moreover, Fernandes
et al. [11] illustrated that an unprivileged SmartApp could
spoof a fake device event for the carbon monoxide detector,
leading to false alarms. As we can see, the consequences of
such attacks are devastating, endangering both the security
and safety of users (e.g., allowing the attacker to break into
the victim’s home). Hence, it is crucial to pay attention to and
mitigate the event spoofing attack in IoT platforms in time.

In matter of fact, recent works have started to look into
the problem of event spoofing in IoT platforms. Fernandes
et al. [11] pointed out that the SmartThings platform does
not sufficiently protect events, enabling an attacker to steal
the door lock codes. However, unlike [11], we not only iden-
tified new vulnerabilities in SmartThings’ event manage-
ment, but also proposed a defense scheme. In specific, we
thoroughly studied the trigger-action programming pattern
of SmartThings and discovered new methods to fake trig-
ger-events (in addition to that presented in the previous
study [11]). Leveraging these vulnerabilities, we conducted
Proof of Concept (PoC) attacks and successfully faked seven
types of trigger-events, which can all mislead the Smar-
tApps to perform actions that they are not supposed to. We
further evaluated the impacts of such attacks and found out
that 138 (out of 187) SmartThings official open-sourced
SmartApps are affected. The consequences of such attacks
range from sending incorrect notification messages to
remotely unlocking the victim’s door.

To defend such attacks, we present a lightweight signa-
ture and verification based scheme to verify the integrity
and authenticity of the events received by the SmartApps.
Specifically, it generates a signature using the key field val-
ues (e.g., event name, event value, etc.) of the event during
the event generation phase in the Device Handler and veri-
fies the signature before the handler methods within Smar-
tApps are triggered.

To make the proposed scheme compatible with Smart-
Things platform and easy to be deployed by the users to
secure their IoT systems, we developed a tool, Smart-

Patch, to automatically patch the vulnerable SmartApps
and Device Handlers by adding the codes for event signa-
ture generation in the Device Handlers and the codes for
event verification in the SmartApps. To be more specific,
SmartPatch takes the vulnerable SmartApps and Device
Handlers as input, generates and analyzes the abstract syn-
tax trees (AST) of their source codes to locate the flawed
codes, patches them with codes for signature and verifica-
tion, and finally outputs the patched and flawless Smar-
tApps and Device Handlers, which are ready for users to
deploy in their IoT systems. We have made the tool publicly
available [30]. SmartThings users can use SmartPatch to

patch the (potential) vulnerable SmartApps and Device
Handlers (e.g., those developed by themselves or from the
official/third-party market) and deploy the patched ones in
their systems for secure IoT automations.

To evaluate our proposed scheme, we considered three
types of attacks, which are event forge attack, event mimic
attack and event replay attack (see Section 3.3).2 Results
show that our proposed scheme can successfully defend
against all these 3 attacks with negligible overheads. To
evaluate the feasibility of SmartPatch, we targeted the
SmartApps and Device Handlers that are made publicly
available by SmartThings. Results show that SmartPatch
was able to automatically patch 146 (out of 187) SmartApps
and 321 (out of 338) Device Handlers successfully. The aver-
age processing time with AST analysis is 308.20 ms for the
SmartApps and 254.85 ms for the Device Handlers, which is
negligible in practice.

With the emergence of trigger-action-based IoT device
control automation, little know is, however, whether such
automation introduces new risks. As far as we know, we
are the first to conduct in-depth and systematic research on
the trigger-action IoT platform, from the perspectives of the
trigger-event generation, propagation, authentication, and
consumption. Our new understanding of the trigger-action
based IoT platforms and the proposed defense will lead to
better protection of today’s IoT applications and provide
valuable insights towards securing future IoT systems. We
summarize the contributions of this paper as follows:

� We discovered new methods to fake trigger-events
in SmartThings, and conducted PoC attacks to suc-
cessfully fake seven types of trigger-events.

� To defend against such attacks, we proposed an
event authenticity verification mechanism, which is
compatible and can be deployed without modifica-
tion to the design of SmartThings platform.

� We developed a tool, SmartPatch, to help users
easily patch their vulnerable SmartApps and Device
Handlers to secure their IoT automations in Smart-
Things platform.

� We conducted extensive tests to analyze the impacts
of our newly discovered vulnerabilities and to evalu-
ate our proposed defense scheme. Results have
shown both the severity and prevalence of newly
discovered vulnerabilities and the effectiveness and
efficiency of our proposed defense scheme.

The rest of the paper is organized as follows. We present
the related work and introduce the background of Smart-
Things platform in Section 2. We describe the threat model,
new identified vulnerabilities and PoC (Proof of Concept)
attacks in Section 3.3. Section 4 presents the defense against
event spoofing attacks. In Section 5, we elaborate on the
design and implementation of SmartPatch, a tool we built
to help users to automatically patch their vulnerable Smar-
tApps and Device Handlers. Performance evaluation is
presented in Section 6. We discuss the limitations of our pro-
posal in Section 7. Finally, we conclude this paper in Section 8.

2. All the PoC attacks and evaluation experiments were conducted
with our testing SmartThings account and devices, without interfering
other users’ normal functionalities in the SmartThings platform.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1657

2 RELATED WORK AND BACKGROUND

In this section, we elaborate on the background of the IoT
security and the SmartThings platform, as well as the exist-
ing problems and some solutions.

2.1 Related Work

IoT Security.As the research on the security of the Internet of
Things becomes more and more in-depth, there are a lot of
detailed analyses on the security of the Internet of Things in
various aspects such as devices, platforms and other aspects
[31], [32], [33], [34], [35].

Many security flaws in the IoT devices have been dis-
cussed extensively in prior studies [36], [37], [38], [39], [40],
[41]. Yu et al. [42] proposed that IoT devices may become
the entry points into critical infrastructures and can be
exploited to leak sensitive information. Kumar et al. [33]
conducted a large-scale empirical analysis of physical IoT
devices, including their vulnerabilities to the given attacks.

On the IoT platform level, access control [43], [44] and
privacy issues [45], [46], [47], [48], [49] play an important
role in the security of platforms. Fernandes et al. [10] discov-
ered that OAuth tokens could be misused to arbitrarily
manipulate users’ devices and data for Trigger-Action IoT
Platforms. Then, they introduced DTAP that can overcome
practical challenges. Lee et al. [50] found that devices tend
to suffer from over-privileged applications due to the
coarse-grained access control, and the lack of resource isola-
tion makes Denial-of-Service attacks possible. Therefore,
they proposed FACT, which realizes a safe and efficient
connection between applications and IoT devices.

In other aspects, Ronen et al. [51] described a new type of
attack on IoT devices, which exploited their ad hoc network-
ing capabilities via the Zigbee wireless protocol and verified
this infection with the popular Philips Hue smart lamps.
Zhou et al. [12] conducted in-depth research on five widely-
used platforms and discovered a series of attacks against
smart home platforms. And as more and more security
problems are discovered [52], [53], [54], [55], [56], [57], [58],
[59], [60], [61], a variety of solutions have emerged [62], [63],
[64], [65], [66], [67], such as restricting the network access of
devices and using a novel digital forensic framework. Dif-
ferent from these works, we concentrate on the SmartThings
platform and aim to deal with fake events.

SmartThings Platform. Closest to our work is a study by
Fernandes et al. [11], which systematically analyzed the
SmartThings platform from five aspects and discovered sig-
nificant overprivilege flaws. Moreover, they found that the
SmartThings platform did not verify the authenticity of the
event and pointed out the SmartApps can spoof physical
device events as well as location-related events, which may
lead to the possible serious consequences, such as opening
the door without permission.

Tian et al. [17] presented a user-centric and semantic-
based authorization design called SmartAuth. It tries to tell
users the difference between the function execution of the
IoT APPs and the actual behavior, so as to help users make
better decisions and avoid excessive authorization. SOTE-
RIA [27] automatically extracts the state model of applica-
tions and adopts the model check for property violations to
find security errors. Unfortunately, it is a pity that they are

mainly concerned with the control of permissions on the
platform but did not pay much attention to the solutions of
fake events.

Jia et al. [16] proposed ContexloT, which provides a con-
text-based permission system and automatically patches
SmartApps to provide rich contextual information at run-
time, and finally achieve the goal of helping users perform
effective access control. But sometimes malicious logic is
not so easy to distinguish and in comparison, SmartPatch
not only takes users out of the verification process but also
accurately guarantees the authenticity of the event.

HoMonit [9] also tries to fix the misbehaving programs
problem in SmartThings. However, HoMonit focuses on a
different problem of SmartThings, which is to detect the
abnormal behaviors of SmartApps from encrypted wireless
traffic. Specifically, HoMonit first extracts the Deterministic
Finite Automatons (DFA) of the SmartApps from the source
codes and texts embedded in the descriptions and user
interfaces of the SmartApps. The extracted DFAs represent
the normal behaviors of the SmartApps. Then, HoMonit col-
lects the Zigbee and Z-wave traffic between the IoT devices
and the SmartThings Hub, and leverages wireless side-
channel analysis to infer the state transition of the actual
DFAs. At last, HoMonit applies the DFA matching algo-
rithm to compare the actual DFA (inferred from the wireless
traffic) and the DFA extracted from the texts of the Smar-
tApp. If the DFA matching fails, HoMonit would send out
alert messages to inform the owner that a misbehaving
SmartApp is detected. We summarize the differences
between HoMonit and our work as follows.

First of all, because the goal of the HoMonit is to detect the
misbehaving SmartApps, HoMonit is not able to stop the
malicious/abnormal operations to the victim devices, while
our proposed solution can stop such operations and avoid
actual damages. For example, if the attacker managed to
unlock the victim’s smart door when the victim is not home,
HoMonit can only send alerts to the victim that the door is
unlocked unexpectedly, while SmartPatch can patch the vul-
nerable programs and prevent the door from being unlocked
by the attacker. Second, HoMonit can only deal with the par-
tial devices, which are connected to the SmartThings plat-
form through the SmartThings hub via Zigbee protocol or Z-
wave protocol, because the detection is based on the analysis
of the Zigbee/Z-wave wireless traffics. However, there are
many other devices connected to the SmartThings without
generating such traffics. For example, the LIFX devices con-
nect to SmartThings through the LIFX cloud and Philips
HUE devices connect to the SmartThings through the Ether-
net network. HoMonit would fail to detect the misbehaving
SmartApps that operate such devices. By contrast, how the
device is connected to the SmartThings is irrelevant to our
proposed scheme. That is, our proposal can deal with all
kinds of devices. At last, some events might have the same
wireless fingerprints, such as the switch.on event and the
switch.off event of the same switch. This would introduce
false negative to HoMonit. For example, when the normal/
expected behavior is to turn off a device, the attack can turn
on the device with a malicious SmartApp without being
noticed by HoMonit. This problem does not exist in our
scheme because the signature of a switch.on event would be
different from the signature of the switch.off event.

1658 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

In addition, it’s worth noting that there are some other
security risks such as cross-App interference threats, which
were detected when IoT applications that follow the princi-
ple of least privilege interplay [68]. To address different
issues, researchers have also proposed various solutions.
IOTGUARD [15] described behaviors with the help of
directed graphs and analyzed whether there were abnor-
malities to prevent security risks caused by the interactions
among devices. SAINT [14] converted the source code into
intermediate representations to identify potential threats
about data leaks. Ding et al. [28] adopted a framework called
IoTMon, which can discover any possible physical interac-
tions in the IoT environment and identify high-risk chains
of interactions between applications. Compared to these
previous works, which mainly focused on the security risks
due to different interactions, we aim to defeat the event
spoofing attacks.

Spoofing Attacks in Other Services. Spoofing attacks are not
new to the information systems. In this subsection, we sum-
marize the previous works that focused on the similar vul-
nerability in other services.

Voice assistant is another typical cloud service that is vul-
nerable to spoofing attacks (e.g., hidden/inaudible com-
mand attacks). Zhang et al. [69] proposed DolphinAttack for
speech recognition systems such as Siri, Google Now, which
is a completely inaudible attack by modulating voice com-
mands on ultrasonic carriers. This kind of attack can acti-
vate Siri to initiate a FaceTime call on iPhone and even
manipulate the navigation system in an Audi automobile,
which will lead to great security risks. Meanwhile, a defense
method using Supported Vector Machine is proposed to
deal with the attack. They also studied the feasibility of the
attack and the boundary of inaudibility on its basis in their
sequent work [70]. Further, Roy et al. [71] used multiple
speakers and striped segments of the voice signal across
them to expand the distance of inaudible attacks and find
indelible non-linear traces to resist them. SurfingAttack [72]
takes advantage of the solid materials to enable attackers to
interact with the voice-controlled device in multiple rounds
over a longer distance. In addition, Yuan et al. [73] leveraged
an open-source ASR system Kaldi [74] to embed voice com-
mands into music, which would be even harder to detect.
To prevent spoofing attacks, Meng et al. proposed WSVA
[75], which checks the consistency between the voice signal
and its corresponding mouth movement to distinguish
whether it is a spoofed one. Moreover, Watchdog [76] uses
a two-step lightweight detecting algorithm to resist inaudi-
ble attacks. In addition, it is feasible to identify speakers
with the help of millimeter-wave (mmWave) radar, which
can capture both vocal cord vibration and lip motion as
multimodal biometric technology [77].

With the proliferation of biometric authentication tech-
nology (e.g., face, fingerprint), they would also encounter
spoofing attacks. In response to this growing threat, many
hardware-based approaches (e.g., capture features with
the help of sensors), or software-based approaches (e.g.,
extract features by CNN) are used to detect these spoofing
attacks and reduce privacy risks and security issues [78],
[79], [80], [81].

Note that spoofing attacks, in a more general matter, also
threaten more traditional services like remote data storage

[82] and networking applications, such as ARP forgery
attacks [83], [84] and IP spoofing attacks [85], [86]. GPS
spoofing attacks are also common and harmful [87], [88].

2.2 Background

In this paper, we focus on the SmartThings, which is a pop-
ular smart home platform. SmartThings provides develop-
ers with a powerful development framework that enables
the abstraction of physical devices and flexible automations.

As we can see in Fig. 1, the SmartThings platform con-
sists of 4 major components: the hub, the cloud backend, the
user management console and the companion smartphone
app. The hub is an IoT gateway that connects the end devi-
ces (e.g., smart lights, sensors and smart locks) to the Smart-
Things cloud. SmartThings runs the Device Handlers and
the SmartApps in its cloud backend with a sandboxed envi-
ronment. The sandbox is an implementation of a Groovy
source code transformation that only allows whitelisted
method calls to succeed in the Device Handlers and Smar-
tApps [89]. The Device Handlers are the virtual representa-
tions of end devices, which turn the messages generated in
the end devices and passed by the hub (e.g., the door is
unlocked and the switch is toggled) into trigger-events. The
SmartApps are the automation rules that subscribe to events
and define the actions to perform when receiving the sub-
scribed events. Both the user management console and the
companion smartphone app can be used by the users to
manage their smart home systems, such as checking the sta-
tus of devices and installing/removing SmartApps. In addi-
tion, users can upload/develop and install their own
SmartApps and Device Handlers through the user manage-
ment console to define more customized IoT automations.

Listing 1 shows the (demo) code snippet of a switch
Device Handler. SmartThings adopts a capability sys-
tem to describe the capabilities that the end devices support
[90]. A Device Handler needs to declare its supported
capabilities and define the functions for each command

defined in the capabilities. Hence, the declaration of
capability “switch” indicates that its corresponding
physical device supports the switch capability with on and
off commands.3 As we can form Listing 1, after changing the
status of the device through method controlDevice(),
the on() and off() command methods both call the API
sendEvent() [92] to generate an event to indicate the

Fig. 1. SmartThings architecture overview.

3. Different capacities come with different commands. For example,
the capability lock is defined with the lock and unlock com-
mands [91].

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1659

status change of the underlying device. Meanwhile, the API
parse() [93] is responsible for handling raw device mes-
sages and typically turns such messages into events by call-
ing the API createEvent() [94].

Listing 1. A (Demo) Switch Device Handler

Listing 2. A SmartApp That Controls the Lock Accord-
ing to a Switch

To specify automation rules, a SmartApp needs to first ask
the users to choose the trigger-device (generating trigger-
events) and the action-device (being controlled by the Smar-
tApp), which is coded in the preferences section of the
SmartApp, as shown in Listing 2. Then, the SmartApp has to
subscribe to certain trigger-events (lines 19 - 20 of Listing 2)
by calling the API subscribe() [95] to specify the trigger-
device, trigger-event and the event handler method. At last,
the SmartApp defines the event handler methods that are
called upon receiving of the corresponding trigger-event and
calls the command methods (e.g., lock() and unlock())
defined in the Device Handler of the action-device (e.g., the
lock1 in Listing 2).

To link the devices selected in the SmartApps and their
Device Handlers, the deviceId [96], the unique system

identifier for a device, is used. To be more specific, when
users select the trigger-devices and action-devices in the
SmartApp, the deviceIds of these devices are recorded by
the event subsystem. When a Device Handler generates a
trigger-event, the corresponding physical device’s devi-

ceId is included in the event object and passes to the event
subsystem, which then passes the trigger-event to the Smar-
tApps accordingly.

It should be noted that SmartThings also supports loca-
tion events (e.g.,mode event, position event, sunset event, sun-
rise event, sunsetTime event and sunriseTime event) [97] other
than the device events (a.k.a., events generated due to status
changes of the devices). The location events are typically
generated by the system due to users’ operations and circa-
dian rhythms. For example, when the user changes the
mode (e.g., Home and Night) [98] of her home manually, a
mode event will be generated. When the sun rises, the sun-
rise event and the sunriseTime event will be generated
automatically by the system. Moreover, both the device
events and location events can be subscribed by the Smar-
tApps to trigger the execution of the corresponding event
handlers.

3 NEW VULNERABILITIES AND ATTACKS

In this section, we present the new vulnerabilities that we
discovered in the SmartThings’ event management (e.g.,
new exploitable APIs to spoof events) and the exploitation
of these vulnerabilities (e.g., how to abuse such APIs) with
respect to the threat model that we considered.

3.1 Threat Model

Despite the exploitability of the APIs for event spoofing,
which we will elaborate on in Section 3.1, there are 2 natural
questions for an attacker to successfully conduct such
attacks in the real world SmartThings system, which are Q1:
how to obtain the deviceId, which is needed for spoofing
device events? and Q2: how to install the malicious/attack-
ing SmartApps and Device Handlers, which generate the
spoofed events, in the victim’s SmartThings system?

For Q1, previous studies have pointed out deviceId

could be disclosed to the attacker through colluding Smar-
tApp, exploiting WebService SmartApps remotely [11] and
cross-cloud IoT device delegation [8]. For Q2, attackers can
upload the malicious SmartApp and Device Handler online
(e.g., online user community) and mislead the victim users
(who may not be technical-savvy or security experts) to
install such malicious programs in their systems. Moreover,
in the scenario where the owner (the victim) grants access
right to her SmartThings system to another user (the
attacker) temporarily by inviting the attacker as a member
[99],4 the attacker would obtain the permission to replace
the victim’s SmartApps and Device Handlers with mali-
cious ones without being notified by the victim.

Threat Model. Therefore, in this paper, we consider the
attacker is a malicious SmartThings user (e.g., a program
developer or an Airbnb guest with malicious intentions)
that makes full use of his power to obtain the useful

4. This could happen in real world where an Airbnb host delegates
access control over her smart home system to an Airbnb guest [8].

1660 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

information and permission to install attacking SmartApps
and Device Handlers in the victim’s SmartThings system.
We assume the attacker could manage to obtain the devi-

ceIds of the victim’s devices, read the logs of the victim’s
SmartThings system and to install attacking programs in
the victim’s SmartThings system using the various ways
discussed above. We also assume that the attacker might be
aware of our verification based defense (see Section 4) and
conduct more complex attacks, such as replay attack (see
Section 3.3), to bypass the defense. In addition, we assume
the communications between the devices and hub, the hub
and the SmartThings cloud and the internal communication
of the SmartThings cloud are secured. That is, the attacker
cannot intercept such communications to obtain any useful
data. The attacker’s goal is to spoof events to trigger the vic-
tim’s benign SmartApps to perform actions that benefit the
attacker, such as opening the victim’s door that the attacker
has no access to.

It is also worth mentioning that an attacker could per-
form other attacks. For example, the attacker could use the
attacking SmartApp to send arbitrary control commands to
the victim’s devices directly. However, this type of attack
would require the owner/victim’s explicit authorization,
because SmartApps can only operate the devices that are
authorized to it by the owner/victim manually. Hence, to
make the attacking stealthier, in this paper, we only con-
sider the event spoofing attacks which can operate the vic-
tim’s devices maliciously even without the victim’s explicit
authorization.

3.2 Event Spoof Through API Abusing

As shown in the Appendix A of the supplementary file of
this paper, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2022.3162312, SmartThings defines the event
object with many fields including name, value, deviceId,
etc. [100]. When SmartApps and Device Handlers call cer-
tain APIs, event instances will be generated internally by
the SmartThings platform and passed to SmartApp event
handlers that have subscribed to those events [100]. Note
that, the event fields can be set with different values accord-
ing to the event type. For example, the deviceId field has
to be set to the identifier of an end device in the device
events, while it can be set to null in the location events.

SmartThings exposes multiple APIs that can be called by
the SmartApp and Device Handler to generate events. Pre-
vious works have pointed out using a malicious SmartApp
can spoof location events and device events by calling the
sendLocationEvent() API [8], [11]. To thoroughly ana-
lyze the security implications of such event generation
APIs, we manually checked all the related APIs to test
whether they are exploitable for event spoofing.

Specifically, to get a full list of event related APIs, we
searched for APIs whose name contains the string “event”.
We ended up with getting 5 APIs, which include 3 APIs
exposed to SmartApp (e.g., sendEvent(), sendLocatio-
nEvent(), and sendNotificationEvent()) and 2 APIs
exposed to Device Handler (e.g., sendEvent() and crea-

teEvent()). Then, we excluded the sendLocationE-

vent() API (for it has already been studied in previous
studies [8], [11]) and the sendNotificationEvent() API

(for it is used to display messages rather than generating
events [101]). Then, we wrote testing SmartApps and
Device Handlers to call the remaining 3 APIs and found
that all of them are exploitable to spoof events.

We summarize the new APIs and the events that they can
spoof in Table 1. We now elaborate on how to exploit/abuse
these APIs for event spoofing.

Listing 3. Code Snippet of a Fake Device Event

Spoof Device Event. The key to spoofing a device event is
to set the deviceId field of the event to the identifier of the
victim device (a.k.a., the device that does not generate the
event, but the SmartThings event subsystem believes the
spoofed event is generated by it). Recall that, device events
can be generated by the Device Handlers of the end devices
through calling the sendEvent() API or the createE-

vent() API. Further, each Device Handler is associated
with a device object instance [102]. When generating the
device event instance, the SmartThings platform would set
the deviceId field of the event to the device’s identifier
obtained from the device instance (e.g., device.id).

TABLE 1
Newly Discovered Exploitable APIs

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1661

http://doi.ieeecomputersociety.org/10.1109/TDSC.2022.3162312
http://doi.ieeecomputersociety.org/10.1109/TDSC.2022.3162312

Therefore, to spoof a device event, we have to overwrite
the identifier of the device object instance with the devi-

ceId of the victim device (as shown in lines 5 - 7 and lines
20 - 21 of Listing 3). It is also worth mentioning that the
isStateChange field needs to be set to true, in order to
trigger the SmartThings platform to generate and pass the
event [103].

Spoof Mode Event. Unlike the device event, the mode event
is not associated with devices. Therefore, the deviceId

field of the mode event is usually discarded (e.g., set to null
by default) by the SmartThings platform. Hence, it is not
necessary to overwrite the identifier of the Device Handler
to spoof mode events. Instead, the name field has to be set to
“mode” to indicate the event type, and the value field needs
to be set to a proper value (e.g., supported modes in the
SmartThings platform). As shown in Listing 4, both the
createEvent() API and the sendEvent() API can be
abused in the Device Handlers to spoof mode events.

Listing 4. Code Snippet of a Fake Mode Event in Device
Handler

Listing 5.Code Snippet of a FakeMode Event in SmartApp

Furthermore, certain SmartApps (e.g., Service Manager
SmartApps [104]) may need to add external devices5 into

the SmartThings system and to generate events for these
devices by calling the sendEvent() API. However, we
found that the sendEvent()API exposed to the SmartApp
is also exploitable for spoofing mode events.6 Similar to that
of Device Handler, to spoof mode event within a SmartApp,
the name filed and value filed need to be set to proper val-
ues (as shown in lines 17 - 18 of Listing 5).

Spoof Other Events. Similar to the mode event, the other 5
types of events (e.g., position event, sunrise event, sunset
event, sunriseTime event and sunsetTime event) can also be
spoofed through calling sendEvent() in the SmartApp
and calling sendEvent() or createEvent() in the
Device Handler with the event fields being set to proper val-
ues. Please refer to Appendix B of the supplementary file of
this paper, available online, for the PoC exploitation codes.

3.3 Event Spoof Attacks

Following the threat model (Section 3.1), we consider the
attackers would abuse the exploitable APIs (Section 3.2) to
conduct the following three types of attacks.

Event Forge Attack. We define the event forge attack as the
normal attack where an attacker simply abuses the APIs
with attacking SmartApps or Device Handlers as discussed
in Section 3.2. The forge attacks are the easiest type of attack
we considered, since the attacker just needs to feed the APIs
with the target parameters.

Recall that, we assume the attack might be aware of our
defense mechanism. Therefore, we also consider two
advanced attacks (see below) where the attacker tries to add
more parameters in the APIs to bypass our verification.

Event Mimic Attack. In the case where an attacker is
aware of the verification-based defense mechanism pro-
posed in this paper (see Section 4.2.1), the attacker may
attempt to bypass the verification by adding a signature
to the original event object. We call this attack the event
mimic attack. That is, in an event mimic attack, the
attacker mimics the behaviors of a patched secure Device
Handler (see Section 5), using the key fields of the event to
generate a signature and adding it to the original event
object. Then, the fake event object with the signature is
sent to the SmartThings cloud platform instead of the orig-
inal event object in the hope that such an event could pass
the signature verification and further trigger the victim’s
benign SmartApps to operate devices that the attacker is
not entitled to access.

Event Replay Attack. In more rare cases, the attacker
(such as an Airbnb guest who has been invited as a mem-
ber to the owner’s SmartThings system [8], [99]) might be
able to access the log of the victim’s SmartThings system.
Therefore, the attacker could obtain the full body of a real
event in the log subsystem, including both the values of
the event fields and the signature. Leveraging such infor-
mation, the attacker could feed such value into the APIs
discussed above to replay the event. Without careful
design in the defense, such an event would pass the signa-
ture verification process and trigger the device actions
desired by the attacker.

5. SmartThings supports users to authorize their IoT devices of
another platform to SmartThings, so that the user can use SmartThings
as a unique control console to manage all her IoT devices from different
vendors, such as user’s LIFX bulbs being delegated to SmartThings
through OAuth [105].

6. Note that the sendEvent() API exposed to the SmartApp [106]
and the sendEvent() API exposed to the Device Handler [92] are two
different APIs.

1662 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

4 USABILITY PRESERVING DEFENSE

In this section, we present the defense scheme against event
spoof attacks in SmartThings.

4.1 High Level Idea

Root Cause. It should be noted that it is not the faulty codes
wrote by the developers, if there were any, that introduce the
vulnerabilities discussed in Section 3.3. The developers just
program the SmartApps and Device Handlers as instructed
by SmartThings (e.g., calling APIs to generate events and
operate devices). The fundamental problem is that Smart-
Things lacks an understanding of the security implication of
trigger-events’ authenticity and provides no authenticity
verification APIs to the developers. Hence, even if the devel-
opers understood the security risks, they would not be able
to defeat the event spoofing attacks on their own.

A straight forward way to defend against the event spoof
attacks in SmartThings is to restrict the use of the exploitable
APIs (listed in Table 1). However, these APIs are needed for
implementing the functionalities desired by the users and
have been widely used in the SmartApps and Device Han-
dlers. To restrict the use of the APIs would significantly
reduce the usability of the system. Such a change might even
require fundamental re-design and re-deployment of the
system and programs, which could take a long time even if it
was possible to be carried out in the real world system.

Therefore, we present a usability preserved defense,
which can minimize the impact on the SmartThings frame-
work and the users. To this end, we propose the event
authenticity verification based defense against event spoof
attacks in SmartThings. That is, before calling the event han-
dler method, the SmartApp verifies the authenticity of the
trigger-events. Only the events that pass the verification
would trigger the actions defined in the event handler meth-
ods. To defend against all the three types of attacks (see Sec-
tion 3.3), we summarize the principles for the authenticity
verification as follows.

� P1: Verifiable signature. The event should contain a
signature that could be used as the proof of non-
forged event.

� P2: One-time trigger. In a benign environment, each
event would only trigger the corresponding event
handler methods once. Therefore, we need to check
whether a new received event has already been proc-
essed by the SmartApp, thus to, for example, defend
against event replay attacks.

� P3: Accordant event attribute. IoT systems constantly
interact with the physical world. Therefore, the
attributes of the events should be in accordance with
the physical world. For example, the SmartThings
system only generates a sunrise event during the
sunrise time of the user’s physical location. There-
fore, we also check the accordance of the event attrib-
utes for authenticity verification.

4.2 Event Authenticity Verification

In this section, we elaborate on the authenticity verification
with respect to the different types of events and the different
types of attacks. Specifically, the principles P1 and P2 are

used for device events verification, while principles P3 and
P2 for the location events.

4.2.1 Device Events: Signature Based Verification

Lifecycle of a Device Event in SmartThings. As discussed in
Section 2.2 and shown in Fig. 2, the typical process of a
device event is as follows. First, the state of the end device
changes due to its interaction with the physical world (such
as, temperature increases or user operates the device physi-
cally). Then, the device sends a message to the SmartThings
hub to report the state change (➀). The hub then forwards
the message to the device’s Device Handler, which runs in
the SmartThings cloud (➁). Upon receiving the message,
the Device Handler calls the APIs (such as createEvent

()) and leads the SmartThings system to generate and
propagate a device event (➂). The event is then passed to
the SmartApps that subscribe to it (➃). The SmartApp then
calls the command methods of the action-device defined in
the SmartApp’s event handler method (➄). Then, the Device
Handler of the action-device generates and sends command
(s) to the hub (➅). At last, the hub passes the command(s) to
the action-device for execution (➆).

To defend against device event spoofing attacks, we pro-
pose a signature based verification scheme to check the
integrity of the device event. As shown in Fig. 2, the key
idea is 1) to add a signature into the event structure body
when calling APIs to generate the event in the Device Han-
dler (➂), and 2) to verify the correctness of the signature
(contained in the received event) before calling the event
handler method in the SmartApp (➃). As aforementioned,
the three most important fields of a device event are the
deviceId, the event name and the event value. Therefore,
we use all these three fields to generate the signature and

Fig. 2. Signature and verification of device events.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1663

store the signature in the data field of the event. Hence, the
event signature will also be propagated to the SmartApps
that subscribe to the event along with all the other event
fields like the event name and the event value. As a result,
we can verify the correctness of the event signature later in
the SmartApps.

Defend against device event forge attack (with principle P1).
Recall that, in the event forge attack, the attacker simply
abuses the APIs to generate a normal event which does NOT
contain a signature. Therefore, forged device events would
fail to pass the verification. As a result, device event forge
attacks can be easily prevented by our proposed scheme.

Defend against device event mimic attack (with principle P1).
As discussed in Section 3.1, the attacker might be able to
obtain the correct fields (e.g., the deviceId, the event
name and the event value) and use these fields to generate
a valid signature based on these event fields. To prevent the
mimic attacks, we need to include an extra secret into the
signature which the attacker cannot obtain. Hence, we let
the Device Handler generates the data ID0, which is a
UUID [107], [108] for the device, and stores the ID0 in its
private persistent storage [109]. When generating the signa-
ture, the Device Handler sends the ID0 to the Sign module
(see Fig. 2) along with other fields (line 5 of Listing 6).

Including an ID0 for each device, the device event mimic
attacks can be prevented because of the following reasons.
First, the ID0 is safely stored in the benign Device Handler’s
storage in the SmartThings cloud, which is not accessible to
the attacker. Second, the plaintext of ID0 is not contained in
the event body. Hence, the attacker can’t obtain it from the
system log. At last, we provide safe management on the
ID0. To be more specific, the Sign module maintains a map-
ping between the ID0 and deviceId. Upon receiving a
new deviceId, the Signmodule adds a new item recording
the deviceId and the corresponding ID0 in the sign
request. Upon receiving a sign request with a known devi-

ceId, it checks whether the request contains a correct ID0,
and discards the sign requests with incorrect ID0. Hence,
our proposal can also prevent device event mimic attacks.

Defend against device event replay attack (with principle P2).
Moreover, an attacker could obtain the complete structure
of a valid device event (including the valid signature) from
the SmartThings logging system and replay the event to
mislead the benign SmartApps. Replay attacks are not new
to SmartThings system. They have been seen in the smart
city systems [110] and automatic speaker verification sys-
tems [111]. Timestamp and time to live (TTL), which indi-
cates when the object is created and the period for which
the object is valid, based defense against replay attack is
commonly used [10]. However, even under non-adversary
circumstances, the device events in SmartThings could be
delayed. For example, when the hub goes offline because of
an Internet outage, the events would be queued at the hub
and sent to the SmartThings cloud when the internet is
restored [112]. Hence, it is impractical to set a TTL value
that could both deny the replayed events and accept the
delayed valid events.

To tackle this problem, we present a unique defense
against device event replay attack in SmartThings based on
the fact that an identical device event would trigger the
event handler method(s) defined in the subscribing

SmartApp(s) only once (principle P2). Particularly, similar
to the ID0 for each device, we generate an identification for
each event handler method (ID_handler) and store it in
the SmartApp’s persistent private storage [109]. We also cre-
ate an identification for each device event (ID_event) and
store it in the Authenticity Verification Module when generat-
ing the signature for the event. Upon receiving a device
event, the Verify module first checks whether the event con-
tains a valid ID_event. An invalid ID_event indicates a
tampered or out-of-date event. Then, the Verify module
determines whether the event is replayed by checking
whether there is an entity of ID_event: ID_handler, the
presence of which indicates the event has already triggered
the execution of the event handler method.

Note that, the Verifymodule adds and stores the entity of
ID_event: ID_handler after successful verification.
Also, to avoid storage explosion, the Verify module would
delete the ID_events and the corresponding entities regu-
larly. For instance, it could only store the information of
events from the last 24 hours. An event that is delayed more
than 24 hours is rarely seen and it is reasonable to discard
such events.

As a result, to defend against all the three device event
spoofing attacks above, the SmartApp sends the event
name, event value, device identification, event identifica-
tion, event handler method identification and the event sig-
nature (as shown in line 5 of Listing 7) to the Verify module
for device event authenticity verification.

It should be noted that SmartApps usually respond to
events and perform related actions, but in rare cases, the
SmartApps may generate device events, too. For example,
Service Manager SmartApps [113] are designed to manage
devices that connect through the internet (cloud) or the
user’s local network: the Service Manager SmartApp makes
the connection with the device, handling the input and out-
put interactions, and the Device Handler parsesmessages. In
specific, Service Manager SmartApps [104] will add child
devices through addChildDevice() [114] and send device
events using child.sendEvent() [106]. Since the events
generated by the Service Manager SmartApps can also be
forged, these events also need to be signed. Therefore, we
add a getSignature()method in all the Device Handlers.
The Service Manager SmartApp calls the getSignature()
to pass the event type and event value to its child device, which
will interact with the Authenticity Verification Module to
obtain a valid signature. At last, the signature is returned to
the SmartApp and is added into the structure of the device
event. As a result, the device events generated by Service
Manager SmartApps can also be protected.

4.2.2 Location Events: Attribute Based Verification

Lifecycle of a Location Event in SmartThings. As discussed in
Section 2.2 and shown in Fig. 3, unlike the device events,
location events are usually generated by the SmartThings
system due to user’s operations from the mobile app or cir-
cadian rhythms (➀). For example, the SmartThings system
generates a position event when the user changes the loca-
tion of her smart home in the settings of the SmartThings
mobile app. Thereafter, the process of a location event is
similar to that of a device event. In specific, the location

1664 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

event is propagated to the SmartApps that subscribe to it
(➁). The SmartApp then calls the command methods of the
action-device defined in the SmartApp’s event handler
method (➂), which is followed by the Device Handler of the
action-device generating and sending command(s) to the
hub (➃). At last, the hub passes the command(s) to the
action-device for execution (➄).

The core idea of defending against location event spoof-
ing attacks is the same as that of device event spoofing
attacks, which is to verify the authenticity of the events
before calling the event handler methods (step ➂ of Fig. 3).
However, since the location events are generated by the
SmartThings internally, we could not add an event signa-
ture into the event structure from the outside. Instead, we
propose attribute based verification built on our observation
of the SmartThings and the rules in the physical world, to
defend against location event spoofing attacks.

Defend against mode event and position event spoofing attacks
(with principle P3).We observed that the displayName field
of a spoofed mode (or position) event is always either “mode”
(or “position”) or the Device Handler’s name of the child
device, even if the attacker explicitly specifies its value to
some other string when spoofing the event. Meanwhile, the
displayName field of a real and validmode (or position) event
is always the name of the user’s location. As a result, we can
identify the spoofedmode events and position events by check-
ing the values of the displayName contained in these events.

Note that, a spoofed mode event and/or position event
will be identified no matter how the attacker spoofs the
event (e.g., event forging or event replaying). As a result,
such verification can defend against event forge attack,
event mimic attack and event replay attack.

Defend against sunset event and sunrise event spoofing attacks
(with principles P3 and P2). The sunset (or sunrise) event is

automatically generated by the SmartThings system at the
sunset (or sunrise) for the user’s location. The time of a sun-
set (or sunrise) for a specific location is a ground truth, ruled
by the physical world.

Hence, to defend against sunset and sunrise events forge
and mimic attacks, we first use the getSunriseAndSun-

set() API [115] to get the local sunset time and sunrise
time (the ground truth time). Then, by comparing the arriv-
ing time of a sunset event (or sunrise event) with the ground
truth time, we could identify the spoofed events and deny
such events (principle P3). As to the sunset and sunrise
events replay attack, we simply check whether the event
happens more than once in a short period of time after the
sunset or sunrise (principle P2).

Note that, a real and valid sunset event (or sunrise event)
might be passed to the subscribing SmartApps at the time
that is later than the actual sunset (or sunrise) time due to
the normal delays in the SmartThings system. Therefore, we
add an offset [115], [116] to the ground truth time to tolerate
such benign delays. In our current implementation, the off-
set is set to be 10 minutes. However, it can be easily adjusted
according to the users’ requirements.

Defend against sunsetTime event and sunriseTime event spoof-
ing attacks (with principles P3 and P2). The sunsetTime event
and sunriseTime event indicate the time of next sunset and
sunrise for the user’s location, respectively. These two events
are generated either around the sunset or sunrise or after the
position has been changed by the user. Therefore, defense
against the sunsetTime and sunriseTime event spoofing attacks
is similar to that of the sunset and sunrise event. Event forge
andmimic attacks can be defended by comparing the arriving
time of the events with the ground truth time (principle P3).
To get the ground truth time, the getSunriseAndSunset

()API is used again.We also record the time of the latest posi-
tion as another ground truth time. Denying the replayed sun-
setTime and sunriseTime events is also accomplished by
checking whether the event happens more than once in a
short period of time (principle P2). Offset is also introduced to
the ground truth time for tolerating the benign event delays.

4.3 Deployment and Discussion

To enable event signature and verification, we patch the
SmartApps and Device Handlers with security hardening
codes, as shown in Listings 6 and 7 (We will present the
automatic patching tool, SmartPatch, in Section 5). How-
ever, due to the limitations posed by the SmartThings, in
our current design and implementation, we also used an
external Authenticity Verification Module, which is deployed
in our testing server.

To be more specific, SmartThings cloud platform only
allows the SmartApps and Device Handlers to use the clas-
ses, methods and data types in the specified whitelist [89],
which does NOT include themethods for signature and veri-
fication, such as java.security.Signature.sign()

and java.security.Signature.verify(). Therefore,
we deploy the Authenticity Verification Module, which imple-
ments the functionalities of signature generation and verifi-
cation, in a separate web server. The SmartApps and Device
Handlers are patched with codes to send/receive HTTP
requests/responses to/from the server to obtain the event
signature and the result of signature verification.

Fig. 3. Verification of location events.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1665

In particular, as shown in line 5 and lines 8 - 16 of Listing
6, the Device Handler sends sign requests, which contain
the core data of an event (as discussed in Section 4.2.1), to
the server. Upon receiving the sign request, the Authenticity
Verification Module checks its data and returns the generated
signature to the Device Handler if the request passes the
check. Then, the Device Handler puts the received signature
into the event and calls the APIs for event generation (line
22 of Listing 6). Similarly, as shown in line 5 and lines 9 - 17,
the SmartApp sends sign requests, which contain the event
signature among other critical data, to the server. The
Authenticity Verification Module verifies the signature and
sends back the verification result to the SmartApp. The
SmartApp ends the execution of the event method handler
(s) if the event fails to pass the verification (line 18 - 20 of
Listing 7).

Note that, the use of a separate server in our current
deployment can be eliminated by SmartThings to add the
sign-and-verify related methods to the whitelist. We treat
our current deployment, which can provide immediate pro-
tection to the SmartThings users’ smart home systems, as a
first step and temporary solution before the SmartThings
makes the changes. Besides, even if SmartThings doesn’t
change the whitelist, our proposed solution can be easily
deployed by the users, working with their current smart
home systems compatibly and interactively.

5 AUTOMATED PATCHING

In this section, we will elaborate on how to automatically
patch the SmartApps and Device Handlers with security
hardening codes to enable event signature and verification.

5.1 Overview

To identify the usage of vulnerable APIs and add codes for
security enhancement are quite challenging for users, most
of which might not be security experts or even technical-
savvy. Therefore, it is important to help users to automati-
cally patch their SmartApps and Device Handlers.

Architecture. To this end, we built SmartPatch that
includes 3 core components: a Source Code Analyzer, a Code
Patcher and a Code Templates Database, as outlined in Fig. 4.
More specifically, SmartPatch takes the vulnerable
SmartApps and Device Handlers as input, analyzes their
source codes (e.g., locating the vulnerable APIs), automati-
cally patches them and outputs the security-enhanced
SmartApps and Device Handlers. With the help of
SmartPatch, even an IoT newbie user can easily patch
their IoT programs and strengthen their smart home sys-
tems in SmartThings. We have made the tool publicly
available [30].

5.2 Examples of Patched Programs

In this section, we use two examples to illustrate how Smar-
tApps and Device Handlers are patched with SmartPatch.
We call the SmartApps and Device Handlers before patch-
ing original SmartApps and original Device Handlers, while
the ones after patching the patched SmartApps and patched
Device Handlers.

Example 1: Patched Device Handler. As aforementioned,
Device Handlers could use the sendEvent() API to pass
parameters to the SmartThings system for event generation.
As shown in lines 18 - 19 of Listing 6, the original Device
Handler calls sendEvent()with the event name (“switch”)
and event value (“on”) parameters to generate a switch.on
device event. To patch the Device Handler, we need to add a
device event signature into the event structure and register
the device’s ID0 in theAuthenticity VerificationModule.

As we can see from Listing 6, the key parameters of the
event (e.g., “switch” and “on”) are extracted from the origi-
nal Device Handler (line 19). These key parameters are then
used to generate the device signature (line 5) and reused as
parameters in the patched Device Handler’s call to the sen-
dEvent() API (line 22). The call to this API in the original
Device Handler is commented out (line 19). Also, the codes
for sending sign request to and receiving event signature
from the Authenticity Verification Module, as mentioned in
Section 4.2.1, is added into the patched Device Handler
(lines 1 - 16).

Listing 6. Code Snippet of a Patched Device Handler
(Generating Signature for Device Event)

Example 2: Patched SmartApp. As shown in Listing 7, the
original SmartApp tries to unlock the lock1 (line 23) upon
receiving the trigger-device-event. The codes for device event
verification are added (lines 2 - 21) to patch the SmartApp.
More specifically, the verify request is sent out first (lines 2 -
17). Then, the patched SmartApp checks the result of the veri-
fication, blocking the execution of the following actions if a
“false” verification result is received (lines 18 - 20).

For clarity, we only show the core added codes in the
above 2 examples. For the patched SmartApps and Device
Handlers to be executable in the users’ real-world smart

Fig. 4. SmartPatch architecture.

1666 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

home systems, some supporting codes are also added, such
as the codes to generate and store the ID0, the URL of the
external server, and the ID_handler. Please refer to the
GitHub page of SmartPatch [30] for the complete patched
SmartApps and Device Handlers.

Listing 7. Code Snippet of a Patched SmartApp (Verify-
ing Device Event)

5.3 Implementation of SmartPatch

We provide implementation details of SmartPatch in this
section; its full source code is released online [30]. To patch
a SmartApp or a Device Handler, there are 2 major phases
in patching SmartApps and Device Handlers automatically.
The first phase is to locate the relevant method calls (e.g.,
the vulnerable APIs calls, event handler method calls and
subscription calls, etc.) in the source codes, which is accom-
plished by the Source Code Analyzer. The second phase is to
replace the vulnerable APIs calls with security hardening
codes, which is done by the Code Patcher.

The Source Code Analyzer (Analyzer for short). We
inspected the API documentation of SmartThings [117], and
identifies two categories of APIs/methods that are relevant
to our defense: 1) the method calls that generate events,
including sendEvent(), createEvent(), and parse()

in the Device Handlers and .sendEvent() in the Smar-
tApps; 2) the method calls that process events, including
subscribe(), install(), eventhandler() and ini-

tialize() in the SmartApps and install() in the
Device Handlers.

To strengthen the SmartApps and Device Handlers, we
have to locate both of the categories of APIs/methods, which
are called the target methods. To this end, the Analyzer takes
the source codes of the SmartApps and Device Handlers as
input and generates an abstract syntax tree (AST) for each
SmartApp and Device Handler. Then, the Analyzer visits the
AST to obtain the information of the target methods, such as
the line numbers of the start line and end line of the method.
Analyzer also extracts the arguments of the target methods
with the help of AST analyses. At last, the Analyzer generates
a Configurationfile for each SmartApp andDeviceHandler

to store the key metadata (e.g., the line number of the start
line, the line number of the end line, arguments, etc.) of the
target methods existing in the SmartApp (or the Device
Handler).

It should be mentioned that the Analyzer fails to generate
AST for some SmartApps and Device Handlers. This is
because the SmartApps and Device Handlers are actually
instances of abstract executor classes [89], whose complete
source codes are not available to us. Therefore, for example,
when a Device Handler of a Zigbee device uses the Zigbee
related package and methods [118], whose codes are explic-
itly listed in the Device Handler’s source code, the Analyzer
would fail to generate the AST because of unable to resolve
class physicalgraph.zigbee.zcl.DataType. To tackle this prob-
lem, we use regular expressions to search for the strings of
the target methods in the source code of this type of Smar-
tApps and Device Handlers. Once the target methods are
located, we use the same method discussed above to obtain
and store the other metadata of the target methods.

The Code Templates Database and the Code Patcher (Patcher
for short). As discussed in Section 5.2, we have to add vari-
ous codes when patching the SmartApps and Device Han-
dlers. Some of the codes are the same in different
SmartApps or Device Handlers, such as the codes to deter-
mine whether to continue the execution of the event handler
method (lines 18 - 21 of Listing 7) and the codes to generate
the ID0, ID_handler, and ID_event. We call these codes
static codes. For efficiency, all the static codes are pre-
defined and stored in the Code Templates Database, and are
reused in the runtime when the Patcher patches the Smar-
tApps and Device Handlers. Meanwhile, some codes to be
added can only be generated in the runtime, such as the
replacement code of vulnerable API calls (line 22 of Listing
6) based on the metadata of the target methods. We call
these codes the dynamic codes. Therefore, the Patcher takes
the source code and the Configuration file of a SmartApp
(or a Device Handler) and the Code Templates Database as
input, adds both the necessary static codes and dynamic
codes into the source code of the original SmartApp (or
Device Handler), and outputs the security-enhanced Smar-
tApp (or Device Handler).

6 EVALUATION

In this section, we measure the impacts of the spoofed
events and evaluate the performance of our proposed
defense from the aspects of security benefits, practicality and
efficiency.

6.1 Impacts of Spoofed Events

We inspected all the 187 SmartApps open-sourced by
SmartThings [6] to investigate how each SmartApp is
affected by the event spoofing attacks. Mainly, we looked
into the trigger-event(s) that each SmartApp subscribes to
and the action(s) that each SmartApp executes upon receiv-
ing the trigger-event(s). In particular, we counted the num-
ber of SmartApps that subscribe to each type of the events
and summarized the (representative) corresponding conse-
quences (e.g., the actions of the SmartApps being affected).
The results are shown in Table 2.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1667

Prevalence of Vulnerable SmartApps. Of all the 187 Smar-
tApps we inspected, 138 (over 73%) SmartApps are vulnera-
ble to event spoofing attacks. Only a small number of
SmartApps are not affected by the attack, because these
SmartApps do not subscribe to any event. To be more spe-
cific, 127 (out of 138) vulnerable SmartApps subscribe to
device events and are vulnerable to device event spoofing
attacks. Meanwhile, 28 SmartApps are vulnerable to loca-
tion event spoofing attacks. Besides, there are 8 other Smar-
tApps that do not subscribe to events but are also the
victims of event spoofing attacks: these 8 SmartApps gener-
ate (their child) device events, which could be spoofed by
the attacker.

Scope of the Impact. As discussed in Section 3.1, the goal of
event spoofing attacks is to mislead the victim’s benign
SmartApps to perform actions that benefit the attacks.
Therefore, the consequences of the attacks actually depend
on the actions defined in the vulnerable SmartApps.
According to our investigation result, the consequences are
devastating, ranging from sending incorrect alerts [119] to
unauthorized device access, such as controlling the victim’s
smart locks [120] and cameras [121].

6.2 Performance Evaluation

In this section, we evaluate the performance of our pro-
posed approach in terms of security benefit, practicality and
efficiency.

6.2.1 Security Benefit

In this section, we elaborate on how our proposal defends
against the event spoofing attacks, thus to provide security
benefits to the SmartThings users’ smart home systems.

Defending Against Device Event Spoofing Attacks. Our pro-
posed defense can defend against all the three device event
spoofing attacks. As shown in Fig. 5, the device event forge

attack was identified and stopped by the Authenticity Verifi-
cation Module because there is no signature in the event.
Fig. 6 illustrates a device event mimic attack was blocked
because the event contains an incorrect pair of ID0 and
deviceId. Also, as shown in Fig. 7, a device event replay
attackwas stopped because the Authenticity Verification Mod-
ule found out the identical event has already been processed
by the same event handler method.

Defending Against Location Event Spoofing Attacks. Our
proposed defense can also defend against all the location
event spoofing attacks. As shown in Figs. 8 and 9, a mode
event spoof attack and a position event spoof attack were
stopped because of the incorrect value of displayName.
We illustrate how sunrise event spoof attack and sunset event
spoof attack are stopped in Fig. 10: the sunrise event didn’t
happen at (or near) sunrise time. Similarly, as shown in
Fig. 11, sunriseTime event spoof attack and sunsetTime event
spoof attack can be successfully defended because they hap-
pen at a wrong time.

6.2.2 Practicality

In this section, we evaluate the practicality of our proposal
in two aspects: 1) can the patched SmartApps and Device
Handlers work compatibly within the SmartThings system?
and 2) can SmartPatch patch all the SmartApps and
Device Handlers automatically?

Secured and Compatible Device Event Processing With
Patched SmartApps and Device Handlers. It is critical for the
patched programs to work compatibly, interactively and
correctly with the SmartThings users’ smart home systems.
To show that, we present the execution results of the
patched SmartApp named “The Big Switch”, which is pro-
vided by SmartThings for users to “turns on, off and dim a col-
lection of lights based on the state of a specific switch” [122].

We first patched the “The Big Switch” SmartApp and the
Device Handler of a switch with SmartPatch and installed
the patched programs in our testing SmartThings system.
We configured the SmartApp to turn on/off the lights in the
kitchen, living room and bedroom according to the switch.
The execution results are shown in Fig. 12. In specific, as
discussed in Section 4.2.1, the processing of device event is
protected by signing the event at generation and verifying
the signature at triggering actions. Fig. 12a presents how the
Authenticity Verification Module provides such protection
and returns a result of successful verification. Meanwhile,
as shown in Fig. 12b, the patched SmartApp receives a
switch.off event, sends out the sign request, and receives a
successful event verification result from the Authenticity
Verification Module. As a result, the SmartApp executes the

TABLE 2
The Number of SmartApps Impacted by Faked Events

and the Corresponding Consequences

Event type # of SmartApps Actions of SmartApps

device 127 - Controlling devices including locks,
cameras and switches- Sending alert
messages

mode 22 - Changing the states of the devices
such as lights and speakers

position 3 - Changing the mode - Controlling devices
such as lights

sunrise sunset 3 - Changing the mode - Changing the states
of sensors

sunriseTime
sunsetTime

3 - Changing the mode - Controlling devices
such as dimmers

Of all the SmartApps affected by the attacks, 12 of them subscribe to both
mode event and device event, 2 of them subscribe to device event, position
event, sunriseTime event and sunsetTime event at the same time, 1 of them
subscribes to position event, sunriseTime event and sunsetTime event at
the same time, and 3 of them subscribe to device event, sunrise event and
sunset event simultaneously.

Fig. 5. Stop the device event forge attack.

Fig. 6. Stop the device event mimic attack.

Fig. 7. Stop the device event replay attack.

1668 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

actions, for example, to turn off the light in the bedroom (as
shown in Fig. 12c).

Feasibility of Automated Patching. Of equal importance is
the ability to automatically patch as many programs as pos-
sible. To evaluate the feasibility of SmartPatch, we down-
loaded all the SmartThings open-sourced SmartApps and
Device Handlers [6], and used SmartPatch to patch them.
The result shows that SmartPatch can automatically patch
all of the vulnerable SmartApps and Device Handlers, as
shown in Table 3.

To be more specific, since we aim to defend against event
spoofing attacks in this paper, only the SmartApps that sub-
scribe to events and Device Handlers that generates events
with the exploitable APIs (as listed in Table 1) are vulnera-
ble. We find out that 41 (out of 187) SmartApps and 17 (out
of 338) Device Handlers are not vulnerable. Therefore, these
programs don’t need to be patched. All the other vulnerable
(146) SmartApps and (321) Device Handlers can be success-
fully patched with SmartPatch. Further, as we discussed
in Section 5.3, AST analysis and string matching are used in
the Source Code Analyzer. The result shows that 132 (out of
146) SmartApps and 125 (out of 321) Device Handlers are
patched with AST analysis, while 14 (out of 146) SmartApps
and 196 (out of 321) Device Handlers are patched with
string matching.

6.2.3 Efficiency

In this section, we evaluate the efficiency of our proposed
approach by measuring the runtime overheads in event
processing and the time for automated patching.

Runtime Overheads in Event Processing. The runtime over-
heads are introduced by the event signature generation in the
patched Device Handlers and the event verification in the
patched SmartApps. To measure such overheads, we record
the time from theDeviceHandler sending out the sign request
to the verification result being received by the SmartApp.

As shown in Fig. 13, the runtime overheads are negligi-
ble. Most of the performance penalties are less than 900 ms.
The first run of a patched SmartApp and Device Handler
introduces a bit more latency (around 1000 ms), because the
identifications of the entities (e.g., ID0, ID_handler) need
to be generated and stored only in the first run.

It should be noted that the latency we presented in
Fig. 13 also includes the network delay between the Smart-
Things cloud (where the SmartApps and Device Handlers
are running) and our testing server that hosts the Authentic-
ity Verification Module. Hence, the performance overheads
can be further reduced if the server is placed within the
SmartThings cloud or SmartThings allows SmartApps and
Device Handlers to use the methods for signature and veri-
fication (as discussed in Section 4.3).

Time for Automated Patching With SmartPatch. It is also
important that SmartPatch could automatically patch the
programs fast, so that the users can use SmartPatch to
enhance the security of their SmartThings smart home sys-
tems conveniently. To measure the time needed for patching

Fig. 8. Stopmode event spoofing attack.

Fig. 9. Stop the position event spoofing attack.

Fig. 10. Stop the sunrise event spoofing attack.

Fig. 11. Stop the sunriseTime event spoofing attack.

Fig. 12. The successful execution of patched programs.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1669

vulnerable programs, we recorded the time that Smart-

Patch used to patch 132 SmartApps and 125 Device Han-
dlers [6] with AST analysis.

As shown in Fig. 14, the patching times for most (over
94%) SmartApps are less than 900 ms and the average time
to patch the SmartApp is 308.20 ms. Also, the times to patch
most (over 95%) of the Device Handlers are less than 900 ms
and the average time of the Device Handler is 254.85 ms.
The longest time used for automated patching is 5867 ms.
This is because the corresponding SmartApp (“Spruce
Scheduler” [123]) contains more than 100 functions, which
is very rare. Hence, we believe it is effective enough to auto-
matically patch SmartApps and Device Handlers in real
world.

7 DISCUSSION AND LIMITATIONS

First of all, in order not to affect the normal functionalities of
the SmartThings cloud platform, we adopt an external
server to host the Authenticity Verification Module. In our cur-
rent implementation, the URL of the hosted service is
exposed in the source codes of the patched programs.
Therefore, an attacker can conduct DDoS attacks to the
server to disrupt the verification process. However, Smart-
Things, as the service provider, can fix this problem easily,
for example, to provide internal closed-source APIs that
implement the event verification.

Second, under the current stage, a powerful attacker who
has the permission to install malicious programs in the vic-
tim’s SmartThings account and is also aware of our defense
mechanism could bypass the proposed verification, by
replacing the patched secure programs with unpatched
insecure ones. However, once SmartThings adopts our pro-
posal, the unpatched programs (installed by the attacker)
will not be able to pass the verification and thus fail to con-
duct a successful attack.

Third, the time that SmartPatch needs to patch a Smar-
tApp or Device Handler relies on the size of the codes.
More codes indicate longer patching time. However, Smar-
tApps and Device Handlers are usually very simple, with
hundreds of lines of codes. Hence, we believe SmartPatch
is efficient enough for real-world use.

Fourth, our approach can only strengthen the SmartApps
and Device Handlers whose source codes are available to
the users. However, the developers of the closed source
SmartApps and Device Handlers can also leverage Smart-

Patch to patch the programs before publishing them.
Lastly, there are many other trigger-action IoT platforms,

such as IFTTT, Zapier, and Microsoft Flow. Previous
researches have shown that vulnerabilities similar to those
identified in this work also exist in other IoT platforms [10],
[54]. To solve such problems, Bastys et al. [54] proposed to
disable the access to sensitive actions via JavaScript in the
filter codes wrote by the attacker, while Fernandes et al. [10]
presented a clean slate design that requires modification to
the IoT platform (e.g., IFTTT) and all the connected third-
party trigger/action services. Comparing to these solutions,
which would take a long time for real world deployment by
the related vendors, our solution requires no such modifica-
tion and can provide immediate protection to the end users.
It should be noted that, due to the differences of the design
and implementation details of all these IoT platforms, our
tool, SmartPatch , can only automatically patch the vul-
nerable programs in SmartThings. However, our proposed
authenticity verification based defense can provide valuable
insights in solving the problems in other IoT platforms.

8 CONCLUSION

In this paper, we focus on the event spoofing attack and its
defense in SmartThings, which is one of the most popular
IoT platforms. Through systematical analyses, we identified
new attacks to spoof events that would mislead the benign
SmartApp to execute actions at the attacker’s desire. We
also present a usability preserved defense based on event
verification. We build a tool SmartPatch to help users to
automatically patch their vulnerable SmartApps and Device
Handlers. Extensive experiments have shown the effective-
ness, efficiency and practicality of our proposal. Our new
findings and understanding will provide better protection
for today’s IoT applications and shed light on designing
more secure IoT systems in the future.Fig. 13. The runtime overheads (latency) of patched programs.

Fig. 14. Time used for automated patching with ASTanalysis.

TABLE 3
The Number of SmartApps and Device Handlers Dealed

With Different Processing Methods

of SmartApps # of Device Handlers

Patched with AST ananlysis 132 125
Patchedwith stringmatching 14 196
Unpatched 41 17
Total 187 338

1670 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

REFERENCES

[1] Samsung SmartThings. Add a little smartness to your things.
Accessed: Jun. 2019. [Online]. Available: https://www.
smartthings.com/

[2] IFTTT: Every thing works better together. Accessed: Jun. 2019.
[Online]. Available: https://ifttt.com/

[3] Zapier: The easiest way to automate your work. Accessed: Jun.
2019. [Online]. Available: https://zapier.com/

[4] Microsoft Flow. Accessed: Jun. 2019. [Online]. Available:
https://flow.microsoft.com/en-us/

[5] SmartApp. Accessed: Jun. 2019. [Online]. Available: https://
github.com/SmartThingsCommunity/SmartThingsPublic

[6] SmartThings Git. Accessed: Jun. 2019. [Online]. Available:
https://github.com/SmartThingsCommunity/SmartThings
Public

[7] Y. Jia et al., “Burglars’ IoT paradise: Understanding and mitigat-
ing security risks of general messaging protocols on IoT clouds,”
in Proc. 41st IEEE Symp. Secur. Privacy, 2020, pp. 465–481.

[8] B. Yuan et al., “Shattered chain of trust: Understanding security
risks in cross-cloud IoT access delegation,” in Proc. 29th USENIX
Secur. Symp., 2020, pp. 1183–1200.

[9] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“HoMonit: Monitoring smart home apps from encrypted traffic,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018,
pp. 1074–1088.

[10] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
action integrity for trigger-action IoT platforms,” in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2018, pp. 1–16.

[11] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in Proc. 37th IEEE Symp.
Secur. Privacy, 2016, pp. 636–654.

[12] W. Zhou et al., “Discovering and understanding the security haz-
ards in the interactions between IoT devices, mobile apps, and
clouds on smart home platforms,” in Proc. 28th USENIX Secur.
Symp., 2019, pp. 1133–1150.

[13] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action IoT platforms,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 1439–1453.

[14] Z. B. Celik et al., “Sensitive information tracking in commodity
IoT,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 1687–1704.

[15] Z. B. Celik, G. Tan, and P. D. McDaniel , “IoTGuard: Dynamic
enforcement of security and safety policy in commodity IoT,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[16] Y. J. Jia et al., “ContexIoT: Towards providing contextual integ-
rity to appified IoT platforms,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2017, pp. 1–15.

[17] Y. Tian et al., “SmartAuth: User-centered authorization for
the Internet of Things,” in Proc. 26th USENIX Secur. Symp., 2017,
pp. 361–378.

[18] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and log-
ging in the Internet of Things,” in Proc. 25th Annu. Netw. Distrib.
Syst. Symp., 2018, pp. 1–15.

[19] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “FlowFence: Practical data protection for emerg-
ing IoT application frameworks,” in Proc. 25th USENIX Secur.
Symp., 2016, pp. 531–548.

[20] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Control-
ling flows in IoT apps,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2018, pp. 1102–1119.

[21] A. Birgisson, J. G. Politz, �U. Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Proc. 21st Annu.
Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1–16.

[22] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust man-
agement,” in Proc. IEEE Symp. Secur. Privacy, 1996, pp. 164–173.

[23] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-
based trust-management framework,” in Proc. IEEE Symp. Secur.
Privacy, 2002, pp. 114–130.

[24] K. E. Seamons et al., “Requirements for policy languages for trust
negotiation,” in Proc. 3rd Int. Workshop Policies Distrib. Syst.
Netw., 2002, pp. 68–79.

[25] M. P. Andersen et al., “WAVE: A decentralized authorization
framework with transitive delegation,” in Proc. 28th USENIX
Secur. Symp., 2019, pp. 1375–1392.

[26] Installs of SmartThings App. Accessed: Jun. 2019. [Online].
Available: https://play.google.com/store/apps/details?id¼com.
samsung.android.oneconnect

[27] Z. B. Celik, P. D. McDaniel, and G. Tan, “SOTERIA: Automated
IoT safety and security analysis,” in Proc. USENIX Annu. Tech.
Conf., 2018, pp. 147–158.

[28] W. Ding and H. Hu, “On the safety of IoT device physical inter-
action control,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 832–846.

[29] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. M.
Colbert, and P. D. McDaniel , “IotSan: Fortifying the safety of IoT
systems,” in Proc. 14th Int. Conf. Emerg. Netw. Experiments Tech-
nol., 2018, pp. 191–203.

[30] SmartPatch. Accessed: Aug. 2020. [Online]. Available: https://
github.com/IoT-Security-Tool/SmartPatch

[31] S. Manandhar, K. Moran, K. Kafle, R. Tang, D. Poshyvanyk, and
A. Nadkarni, “Towards a natural perspective of smart homes for
practical security and safety analyses,” in Proc. IEEE Symp. Secur.
Privacy, 2020, pp. 482–499.

[32] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK:
Security evaluation of home-based IoT deployments,” in Proc.
IEEE Symp. Secur. Privacy, 2019, pp. 1362–1380.

[33] D. Kumar et al., “All things considered: An analysis of IoT devi-
ces on home networks,” in Proc. 28th USENIX Secur. Symp.,
2019, pp. 1169–1185.

[34] X. Feng et al., “Understanding and securing device vulnerabil-
ities through automated bug report analysis,” in Proc. 28th USE-
NIX Secur. Symp., 2019, pp. 887–903.

[35] H. Wen, Q. A. Chen, and Z. Lin, “Plug-N-Pwned: Comprehen-
sive vulnerability analysis of OBD-II dongles as a new over-the-
air attack surface in automotive IoT,” in Proc. 29th USENIX Secur.
Symp., 2020, pp. 949–965.

[36] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the
mirror: Evaluating IoT device security through mobile com-
panion apps,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 1151–1167.

[37] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting
of vulnerable BLE IoT devices with static UUIDs from mobile
apps,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 1469–1483.

[38] H. M. Moghaddam et al., “Watching you watch: The tracking
ecosystem of over-the-top TV streaming devices,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 131–147.

[39] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thSense: A context-
aware sensor-based attack detector for smart devices,” in Proc.
26th USENIX Secur. Symp., 2017, pp. 397–414.

[40] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-level signatures for smart home devices,” in Proc. 27th
Annu. Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–18.

[41] Q. Qi, X. Chen, C. Zhong, and Z. Zhang, “Physical layer security
for massive access in cellular Internet of Things,” Sci. China Inf.
Sci., vol. 63, no. 2, 2020, Art. no. 121301.

[42] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the Internet-of-Things,” in Proc. 14th ACM Workshop
Hot Top. Netw., 2015, pp. 5:1–5:7.

[43] R. Schuster, V. Shmatikov, and E. Tromer, “Situational access
control in the Internet of Things,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2018, pp. 1056–1073.

[44] W. He et al., “Rethinking access control and authentication for
the home Internet of Things (IoT),” in Proc. 27th USENIX Secur.
Symp., 2018, pp. 255–272.

[45] N. J. Apthorpe, S. Varghese, and N. Feamster, “Evaluating the
contextual integrity of privacy regulation: Parents’ IoT toy pri-
vacy norms versus COPPA,” in Proc. 28th USENIX Secur. Symp.,
2019, pp. 123–140.

[46] P. E. Naeini, Y. Agarwal, L. F. Cranor, and H. Hibshi, “Ask the
experts: What should be on an IoT privacy and security label?”
in Proc. IEEE Symp. Secur. Privacy, 2020, pp. 447–464.

[47] E. Zeng and F. Roesner, “Understanding and improving security
and privacy in multi-user smart homes: A design exploration
and in-home user study,” in Proc. 28th USENIX Secur. Symp.,
2019, pp. 159–176.

[48] H. Yu, J. Lim, K. Kim, and S. Lee, “Pinto: Enabling video privacy
for commodity IoT cameras,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., 2018, pp. 1089–1101.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1671

https://www.smartthings.com/
https://www.smartthings.com/
https://ifttt.com/
https://zapier.com/
https://flow.microsoft.com/en-us/
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect
https://github.com/IoT-Security-Tool/SmartPatch
https://github.com/IoT-Security-Tool/SmartPatch

[49] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian,
“Dangerous skills: Understanding and mitigating security risks
of voice-controlled third-party functions on virtual personal
assistant systems,” in Proc. IEEE Symp. Secur. Privacy, 2019,
pp. 1381–1396.

[50] S. Lee et al., “FACT: Functionality-centric access control system
for IoT programming frameworks,” in Proc. 22nd ACM Symp.
Access Control Models Technol., 2017, pp. 43–54.

[51] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT
goes nuclear: Creating a Zigbee chain reaction,” IEEE Secur. Pri-
vacy, vol. 16, no. 1, pp. 54–62, Jan./Feb. 2018.

[52] P. Morgner, C. Mai, N. Koschate-Fischer, F. Freiling, and Z. Ben-
enson, “Security update labels: Establishing economic incentives
for security patching of IoT consumer products,” in Proc. IEEE
Symp. Secur. Privacy, 2020, pp. 429–446.

[53] M. Xu et al., “Dominance as a new trusted computing primitive
for the Internet of Things,” in Proc. IEEE Symp. Secur. Privacy,
2019, pp. 1415–1430.

[54] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Control-
ling flows in IoT apps,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2018, pp. 1102–1119.

[55] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-throughput greybox fuzzing of IoT firmware
via augmented process emulation,” in Proc. 28th USENIX Secur.
Symp., 2019, pp. 1099–1114.

[56] B. Huang, A. A. C�ardenas, and R. Baldick, “Not everything
is dark and gloomy: Power grid protections against IoT
demand attacks,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 1115–1132.

[57] S. Kumar, Y. Hu, M. P. Andersen, R. A. Popa, and D. E.
Culler, “JEDI: Many-to-many end-to-end encryption and key
delegation for IoT,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 1519–1536.

[58] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT botnet of high
wattage devices can disrupt the power grid,” in Proc. 27th USE-
NIX Secur. Symp., 2018, pp. 15–32.

[59] D. Kumar et al., “Skill squatting attacks on Amazon Alexa,” in
Proc. 27th USENIX Secur. Symp., 2018, pp. 33–47.

[60] X. Feng, Q. Li, H. Wang, and L. Sun, “Acquisitional rule-based
engine for discovering Internet-of-Thing devices,” in Proc. 27th
USENIX Secur. Symp., 2018, pp. 327–341.

[61] J. Chen et al., “IoTFuzzer: Discovering memory corruptions in
IoT through app-based fuzzing,” in Proc. 25th Annu. Netw. Dis-
trib. Syst. Secur. Symp., 2018, pp. 1–15.

[62] I. Zavalyshyn, N. O. Duarte, and N. Santos, “HomePad: A pri-
vacy-aware smart hub for home environments,” in Proc. IEEE/
ACM Symp. Edge Comput., 2018, pp. 58–73.

[63] M. Mohsin, Z. Anwar, F. Zaman, and E. Al-Shaer, “IoTChecker:
A data-driven framework for security analytics of Internet of
Things configurations,” Comput. Secur., vol. 70, pp. 199–223, 2017.

[64] S. Demetriou et al., “HanGuard: SDN-driven protection of smart
home WiFi devices from malicious mobile apps,” in Proc. 10th
ACM Conf. Secur. Privacy Wireless Mobile Netw., 2017, pp. 122–133.

[65] S. Li, D. Zhai, P. Du, and T. Han, “Energy-efficient task offload-
ing, load balancing, and resource allocation in mobile edge com-
puting enabled IoT networks,” Sci. China Inf. Sci., vol. 62, no. 2,
pp. 29 307:1–29 307:3, 2019.

[66] R. Trimananda, A. Younis, B. Wang, B. Xu, B. Demsky, and G. H.
Xu, “Vigilia: Securing smart home edge computing,” in Proc.
IEEE/ACM Symp. Edge Comput., 2018, pp. 74–89.

[67] L. Babun, A.K. Sikder, A.Acar, andA. S. Uluagac, “A digital foren-
sics framework for smart settings: poster,” in Proc. 12th Conf. Secur.
PrivacyWirelessMobile Networks, 2019, pp. 332–333.

[68] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats
in smart homes: Categorization, detection and handling,” in Proc.
50th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks, 2020,
pp. 411–423.

[69] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu,
“DolphinAttack: Inaudible voice commands,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Secur., 2017, pp. 103–117.

[70] C. Yan, G. Zhang, X. Ji, T. Zhang, T. Zhang, and W. Xu, “The fea-
sibility of injecting inaudible voice commands to voice assis-
tants,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 3,
pp. 1108–1124, May/Jun. 2021.

[71] N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury, “Inaudible
voice commands: The long-range attack and defense,” in Proc. 15th
USENIXSymp. Netw. Syst. Des. Implementation, 2018, pp. 547–560.

[72] Q. Yan, K. Liu, Q. Zhou, H. Guo, and N. Zhang, “SurfingAttack:
Interactive hidden attack on voice assistants using ultrasonic
guided waves,” in Proc. 27th Annu. Netw. Distrib. Syst. Secur.
Symp., 2020, pp. 1–18.

[73] X. Yuan et al., “CommanderSong: A systematic approach for
practical adversarial voice recognition,” in Proc. 27th USENIX
Secur. Symp., 2018, pp. 49–64.

[74] Kaldi. Accessed: Jun. 2019. [Online]. Available: http://kaldi-asr.
org

[75] Y. Meng, H. Zhu, J. Li, J. Li, and Y. Liu, “Liveness detection for
voice user interface via wireless signals in IoT environment,” IEEE
Trans. Dependable Secure Comput., vol. 18, no. 6, pp. 2996–3011,
Nov./Dec. 2021.

[76] J. Mao, S. Zhu, X. Dai, Q. Lin, and J. Liu, “Watchdog: Detecting
ultrasonic-based inaudible voice attacks to smart home systems,”
IEEE Internet Things J., vol. 7, no. 9, pp. 8025–8035, Sep. 2020.

[77] Y. Dong and Y.-D. Yao, “Secure mmWave-radar-based speaker
verification for IoT smart home,” IEEE Internet Things J., vol. 8,
no. 5, pp. 3500–3511, Mar. 2021.

[78] T. Chugh and A. K. Jain, “Fingerprint spoof detector general-
ization,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 42–55,
2021.

[79] T. Chugh, K. Cao, and A. K. Jain, “Fingerprint spoof buster: Use
of minutiae-centered patches,” IEEE Trans. Inf. Forensics Security,
vol. 13, no. 9, pp. 2190–2202, Sep. 2018.

[80] Y. Jia, J. Zhang, S. Shan, and X. Chen, “Single-side domain gener-
alization for face anti-spoofing,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 8481–8490.

[81] Z. Wang et al., “Deep spatial gradient and temporal depth learn-
ing for face anti-spoofing,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 5041–5050.

[82] G. Xu, Y. Yang, C. Yan, and Y. Gan, “A probabilistic verification
algorithm against spoofing attacks on remote data storage,” Int.
J. High Perform. Comput. Netw., vol. 9, no. 3, pp. 218–229, 2016.

[83] V. K. Tchendji, F. Mvah, C. T. Djam�egni, and Y. F. Yankam,
“E2BaSeP: Efficient bayes based security protocol against ARP
spoofing attacks in SDN architectures,” J. Hardw. Syst. Secur., vol. 5,
no. 1, pp. 58–74, 2021.

[84] S. Hijazi and M. S. Obaidat, “Address resolution protocol spoof-
ing attacks and security approaches: A survey,” Secur. Privacy,
vol. 2, no. 1, 2019, Art. no. e49.

[85] C. Zhang et al. “Towards a SDN-based integrated architecture
for mitigating IP spoofing attack,” IEEE Access, vol. 6,
pp. 22 764–22 777, 2018.

[86] A. Rengarajan, R. Sugumar, and C. Jayakumar, “Secure verifica-
tion technique for defending IP spoofing attacks,” Int. Arab J. Inf.
Technol., vol. 13, no. 2, pp. 302–309, 2016.

[87] J. Xie, A. P. S. Meliopoulos, and G. J. Cokkinides, “PMU-based
line differential protection under GPS spoofing attack,” in Proc.
54th Hawaii Int. Conf. Syst. Sci., 2021, pp. 1–9.

[88] J. Xie and A. P. S. Meliopoulos, “Sensitive detection of
GPS spoofing attack in phasor measurement units via quasi-
dynamic state estimation,” Computer, vol. 53, no. 5, pp. 63–72,
2020.

[89] Smartthings: How it works. Accessed: Jun. 2019. [Online].
Available: https://docs.smartthings.com/en/latest/getting-started
/groovy-for-smartthings.html?#how-it-works

[90] Capabilities reference. Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/capabilities-reference.
html

[91] The Lock Capacity. Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/capabilities-reference.
html#lock

[92] API sendevent() of device handler. Accessed: Jun. 2019. [Online].
Available: https://docs.smartthings.com/en/latest/ref-docs/
device-handler-ref.html#sendevent

[93] API parse(). Accessed: Jun. 2019. [Online]. Available: https://
docs.smartthings.com/en/latest/ref-docs/device-handler-ref.
html#parse

[94] API CreateEvent(). Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/ref-docs/device-
handler-ref.html#createevent

[95] API subscribe(). Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/ref-docs/smartapp-
ref.html?highlight¼subscribe#subscribe

[96] API getid(). Accessed: Jun. 2019. [Online]. Available: https://
docs.smartthings.com/en/latest/ref-docs/device-ref.html#getid

1672 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

http://kaldi-asr.org
http://kaldi-asr.org
https://docs.smartthings.com/en/latest/getting-started/groovy-for-smartthings.html?#how-it-works
https://docs.smartthings.com/en/latest/getting-started/groovy-for-smartthings.html?#how-it-works
https://docs.smartthings.com/en/latest/capabilities-reference.html
https://docs.smartthings.com/en/latest/capabilities-reference.html
https://docs.smartthings.com/en/latest/capabilities-reference.html#lock
https://docs.smartthings.com/en/latest/capabilities-reference.html#lock
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#sendevent
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#sendevent
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#parse
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#parse
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#parse
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#createevent
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html#createevent
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=subscribe#subscribe
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=subscribe#subscribe
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=subscribe#subscribe
https://docs.smartthings.com/en/latest/ref-docs/device-ref.html#getid
https://docs.smartthings.com/en/latest/ref-docs/device-ref.html#getid

[97] Subscribe to location events. Accessed: Jun. 2019. [Online]. Avail-
able: https://docs.smartthings.com/en/latest/smartapp-
developers-guide/simple-event-handler-smartapps.html?
highlight¼location#subscribe-to-location-events

[98] Modes. Accessed: Jun. 2019. [Online]. Available: https://docs.
smartthings.com/en/latest/smartapp-developers-guide/modes.
html

[99] Invite a member to smartthings. Accessed: Jun. 2019. [Online].
Available: https://support.smartthings.com/hc/en-us/articles/
115002085066-How-can-I-invite-members-in-the-SmartThings-app-

[100] Event. Accessed: Aug. 2020. [Online]. Available: https://
docs.smartthings.com/en/latest/ref-docs/event-ref.html?
highlight¼event#event

[101] API sendnotificationevent(). Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.
html?highlight¼sendnotificationevent#sendnotificationevent

[102] Device. Accessed: Jun. 2019. [Online]. Available: https://docs.
smartthings.com/en/latest/ref-docs/device-handler-ref.html#
device

[103] Parse events and attributes. Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/device-type-developers-
guide/parse.html#parse-events-and-attributes

[104] Building the service manager. Accessed: Jun. 2019. [Online].
Available: https://docs.smartthings.com/en/latest/cloud-and-
lan-connected-device-types-developers-guide/building-cloud-
connected-device-types/building-the-service-manager.html

[105] How to connect LIFX light bulbs. Accessed: Jun. 2019. [Online].
Available: https://support.smartthings.com/hc/en-us/articles/
205956530-How-to-connect-LIFX-light-bulbs

[106] API sendevent() of smartapp. Accessed: Jun. 2019. [Online]. Avail-
able: https://docs.smartthings.com/en/latest/ref-docs/smartapp-
ref.html?highlight¼sendevent#sendevent

[107] A universally unique identifier (UUID) URN namespace.
Accessed: Jun. 2019. [Online]. Available: https://tools.ietf.org/
html/rfc4122

[108] Uses of class Java.Util.UUID. Accessed: Jun. 2019. [Online].
Available: https://docs.oracle.com/javase/8/docs/api/java/
util/class-use/UUID.html

[109] Storing data with state. Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/smartapp-developers-
guide/state.html?highlight¼storage

[110] A. A. Elsaeidy, N. Jagannath, A. G. Sanchis, A. Jamalipour, and
K. S. Munasinghe, “Replay attack detection in smart cities using
deep learning,” IEEE Access, vol. 8, pp. 137 825–137 837, 2020.

[111] S.-H. Yoon, M.-S. Koh, J.-H. Park, and H.-J. Yu, “A new replay
attack against automatic speaker verification systems,” IEEE
Access, vol. 8, pp. 36 080–36 088, 2020.

[112] SmartThings: What happens when the internet to the Hub goes
out?. Accessed: Jun. 2019. [Online]. Available: https://docs.
smartthings.com/en/latest/sept-2015-faq.html?
highlight¼offline#samsung-smartthings-hub-faq

[113] Service manager design pattern. Accessed: Jun. 2019. [Online].
Available: https://docs.smartthings.com/en/latest/cloud-and-
lan-connected-device-types-developers-guide/understanding-
the-service-manage-device-handler-design-pattern.html

[114] API addchilddevice() of smartapp. Accessed: Jun. 2019.
[Online]. Available: https://docs.smartthings.com/en/latest/
ref-docs/smartapp-ref.html?highlight¼addChildDevice#add
childdevice

[115] API getsunriseandsunset(). Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.
html?highlight¼getSunriseAndSunset#getsunriseandsunset

[116] API timeoffset(). Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/ref-docs/smartapp-
ref.html?highlight¼getSunriseAndSunset#timeoffset

[117] API documentation. Accessed: Jun. 2019. [Online]. Available:
https://docs.smartthings.com/en/latest/ref-docs/reference.html

[118] Zigbee-accessory-dimmer. Accessed: Jun. 2019. [Online]. Available:
https://github.com/SmartThingsCommunity/SmartThingsPublic/
blob/master/devicetypes/smartthings/zigbee-accessory-dimmer.
src/zigbee-accessory-dimmer.groovy

[119] Door knocker. Accessed: Jun. 2019. [Online]. Available: https://
github.com/SmartThingsCommunity/SmartThingsPublic/blob/
master/smartapps/imbrianj/door-knocker.src/door-knocker.
groovy

[120] Unlock it when I arrive. Accessed: Jun. 2019. [Online]. Available:
https://github.com/SmartThingsCommunity/SmartThingsPublic/
blob/master/smartapps/smartthings/unlock-it-when-i-arrive.src/
unlock-it-when-i-arrive.groovy

[121] Photo burst when.... Accessed: Jun. 2019. [Online]. Available:
https://github.com/SmartThingsCommunity/SmartThingsPublic/
blob/master/smartapps/smartthings/photo-burst-when.src/
photo-burst-when.groovy

[122] The big switch. Accessed: Jun. 2019. [Online]. Available: https://
github.com/SmartThingsCommunity/SmartThingsPublic/
blob/master/smartapps/smartthings/the-big-switch.src/the-
big-switch.groovy

[123] Spruce-scheduler. Accessed: Jun. 2019. [Online]. Available: https://
github.com/SmartThingsCommunity/SmartThingsPublic/blob/
master/smartapps/plaidsystems/spruce-scheduler.src/spruce-
scheduler.groovy

Bin Yuan (Member, IEEE) received the BS and
PhD degrees in computer science and technology
from theHuazhongUniversity of Science and Tech-
nology (HUST), Wuhan, China, in 2013 and 2018,
respectively. He is an associate professor with the
Huazhong University of Science and Technology,
Wuhan, China. His research interests include soft-
ware-definednetwork security, network function vir-
tualization, cloud security, privacy, and IoTsecurity.
He has published several technical papers in top
conferences/journals, such as USENIX Security,

CCS, the IEEE Transactions on Services Computing, IEEE Transactions
on Network and Service Management, IEEE Transactions on Network Sci-
ence and Engineering, IEEE Internet of Things Journal, Journal and Future
GenerationComputer Systems.

Yuhan Wu received the BS degree in software
engineering from Hunan University, Changsha,
China, in 2019. She is currently working toward
the master’s degree at the Huazhong University
of Science and Technology (HUST), Wuhan,
China. Her research interests include cloud secu-
rity, privacy, and IoTsecurity.

MaogenYang received theBSdegree in computer
science and technology fromAnhui Normal Univer-
sity, Wuhu, China, in 2020. He is currently working
toward the master’s degree at the Huazhong Uni-
versity of Science and Technology (HUST),
Wuhan, China. His research interests include cloud
security, privacy, and IoTsecurity.

Luyi Xing (Member, IEEE) received the PhD
degree from Indiana University Bloomington, Bloo-
mington, Indiana, in 2017. He is currently an assis-
tant professor of computer science with Indiana
University Bloomington. He served on the Techni-
cal ProgramCommittee of ACMCCS (2017–2020)
and NDSS (2019–2021). He worked with Amazon.
com, Inc. between 2015 and 2018. He published
17 papers at security conferences IEEE S&P, Use-
nix Security, ACM CCS, and NDSS. He published
three papers at Black Hat. His research interests

include security and privacy on IoT, mobile systems, and cloud platforms
and services. His research broadly involves protocol design and analysis,
program analysis, formal verification,machine learning, and NLP.

YUAN ETAL.: SMARTPATCH: VERIFYING THE AUTHENTICITYOF THE TRIGGER-EVENT IN THE IOT PLATFORM 1673

https://docs.smartthings.com/en/latest/smartapp-developers-guide/simple-event-handler-smartapps.html?highlight=location#subscribe-to-location-events
https://docs.smartthings.com/en/latest/smartapp-developers-guide/simple-event-handler-smartapps.html?highlight=location#subscribe-to-location-events
https://docs.smartthings.com/en/latest/smartapp-developers-guide/simple-event-handler-smartapps.html?highlight=location#subscribe-to-location-events
https://docs.smartthings.com/en/latest/smartapp-developers-guide/simple-event-handler-smartapps.html?highlight=location#subscribe-to-location-events
https://docs.smartthings.com/en/latest/smartapp-developers-guide/modes.html
https://docs.smartthings.com/en/latest/smartapp-developers-guide/modes.html
https://docs.smartthings.com/en/latest/smartapp-developers-guide/modes.html
https://support.smartthings.com/hc/en-us/articles/115002085066-How-can-I-invite-members-in-the-SmartThings-app-
https://support.smartthings.com/hc/en-us/articles/115002085066-How-can-I-invite-members-in-the-SmartThings-app-
https://docs.smartthings.com/en/latest/ref-docs/event-ref.html?highlight=event#event
https://docs.smartthings.com/en/latest/ref-docs/event-ref.html?highlight=event#event
https://docs.smartthings.com/en/latest/ref-docs/event-ref.html?highlight=event#event
https://docs.smartthings.com/en/latest/ref-docs/event-ref.html?highlight=event#event
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=sendnotificationevent#sendnotificationevent
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=sendnotificationevent#sendnotificationevent
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=sendnotificationevent#sendnotificationevent
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html# �device
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html# �device
https://docs.smartthings.com/en/latest/ref-docs/device-handler-ref.html# �device
https://docs.smartthings.com/en/latest/device-type-developers-guide/parse.html#parse-events-and-attributes
https://docs.smartthings.com/en/latest/device-type-developers-guide/parse.html#parse-events-and-attributes
https://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/building-cloud-connected-device-types/building-the-service-manager.html
https://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/building-cloud-connected-device-types/building-the-service-manager.html
https://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/building-cloud-connected-device-types/building-the-service-manager.html
https://support.smartthings.com/hc/en-us/articles/205956530-How-to-connect-LIFX-light-bulbs
https://support.smartthings.com/hc/en-us/articles/205956530-How-to-connect-LIFX-light-bulbs
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=sendevent#sendevent
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=sendevent#sendevent
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=sendevent#sendevent
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://docs.oracle.com/javase/8/docs/api/java/util/class-use/UUID.html
https://docs.oracle.com/javase/8/docs/api/java/util/class-use/UUID.html
https://docs.smartthings.com/en/latest/smartapp-developers-guide/state.html?highlight=storage
https://docs.smartthings.com/en/latest/smartapp-developers-guide/state.html?highlight=storage
https://docs.smartthings.com/en/latest/smartapp-developers-guide/state.html?highlight=storage
https://docs.smartthings.com/en/latest/sept-2015-faq.html?highlight=offline#samsung-smartthings-hub-faq
https://docs.smartthings.com/en/latest/sept-2015-faq.html?highlight=offline#samsung-smartthings-hub-faq
https://docs.smartthings.com/en/latest/sept-2015-faq.html?highlight=offline#samsung-smartthings-hub-faq
https://docs.smartthings.com/en/latest/sept-2015-faq.html?highlight=offline#samsung-smartthings-hub-faq
https://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/understanding-the-service-manage-device-handler-design-pattern.html
https://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/understanding-the-service-manage-device-handler-design-pattern.html
https://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/understanding-the-service-manage-device-handler-design-pattern.html
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=addChildDevice#addchilddevice
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=addChildDevice#addchilddevice
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=addChildDevice#addchilddevice
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=addChildDevice#addchilddevice
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=getSunriseAndSunset#getsunriseandsunset
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=getSunriseAndSunset#getsunriseandsunset
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=getSunriseAndSunset#getsunriseandsunset
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=getSunriseAndSunset#timeoffset
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=getSunriseAndSunset#timeoffset
https://docs.smartthings.com/en/latest/ref-docs/smartapp-ref.html?highlight=getSunriseAndSunset#timeoffset
https://docs.smartthings.com/en/latest/ref-docs/reference.html
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/zigbee-accessory-dimmer.src/zigbee-accessory-dimmer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/zigbee-accessory-dimmer.src/zigbee-accessory-dimmer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/zigbee-accessory-dimmer.src/zigbee-accessory-dimmer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/imbrianj/door-knocker.src/door-knocker.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/imbrianj/door-knocker.src/door-knocker.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/imbrianj/door-knocker.src/door-knocker.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/imbrianj/door-knocker.src/door-knocker.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/unlock-it-when-i-arrive.src/unlock-it-when-i-arrive.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/unlock-it-when-i-arrive.src/unlock-it-when-i-arrive.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/unlock-it-when-i-arrive.src/unlock-it-when-i-arrive.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/photo-burst-when.src/photo-burst-when.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/photo-burst-when.src/photo-burst-when.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/photo-burst-when.src/photo-burst-when.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/the-big-switch.src/the-big-switch.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/the-big-switch.src/the-big-switch.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/the-big-switch.src/the-big-switch.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/the-big-switch.src/the-big-switch.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/plaidsystems/spruce-scheduler.src/spruce-scheduler.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/plaidsystems/spruce-scheduler.src/spruce-scheduler.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/plaidsystems/spruce-scheduler.src/spruce-scheduler.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/plaidsystems/spruce-scheduler.src/spruce-scheduler.groovy

Xuchang Wang received the BS degree in infor-
mation security from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2020. He is currently working toward the under-
graduate degree at the Huazhong University of
Science and Technology, Wuhan, China. His
research interests include network security, cloud
security, and IoTsecurity.

Deqing Zou received the PhD degree from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2004. He is a professor
of computer science with HUST. His main research
interests include system security, trusted comput-
ing, virtualization, and cloud security. He has been
the leader of one “863” project of China and three
National Natural Science Foundation of China
(NSFC) projects, and core member of several
important national projects, such as National 973
Basic Research Program of China. He has applied

almost 20 patents, published two books (one is entitled “Xen virtualization
Technologies” and the other is entitled “Trusted Computing Technologies
and Principles”) and more than 50 High-quality papers, including papers
published by the IEEE Transactions on Dependable and Secure Comput-
ing, IEEE Symposium on Reliable Distributed Systems and so on. He has
always served as a reviewer for several prestigious Journals, such as the
IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, IEEE Transactions on Dependable and Secure Com-
puting, IEEE Transactions on Cloud Computing, and so on. He is on the
editorial boards of four international journals, and has served as PC chair/
PCmember of more than 40 international conferences.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China, in 1994. He is aCheungKung scholars chair
professor of computer science and engineering
with HUST. In 1996, he was awarded a German
Academic Exchange Service fellowship to visit the
Technical University of Chemnitz in Germany. He
worked with the University of Hong Kong between
1998 and 2000, and as a visiting scholar with the
University of Southern California between 1999

and 2000. He was awarded Excellent Youth Award from the National Sci-
ence Foundation of China in 2001. He is the chief scientist of ChinaGrid,
the largest grid computing project in China, and the chief scientists of
National 973 Basic Research ProgramProject of Virtualization Technology
of Computing System, and Cloud Security. He is a fellow of the CCF, and a
member of the ACM. He has co-authored 22 books and published more
than 700 research papers. His research interests include computer archi-
tecture, virtualization technology, cluster computing and cloud computing,
peer-to-peer computing, network storage, and network security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1674 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

