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Abstract—In genomics, a wide range of machine learning methodologies have been investigated to annotate biological sequences for

positions of interest such as transcription start sites, translation initiation sites, methylation sites, splice sites and promoter start sites. In

recent years, this area has been dominated by convolutional neural networks, which typically outperform previously-designed methods

as a result of automated scanning for influential sequence motifs. However, those architectures do not allow for the efficient processing

of the full genomic sequence. As an improvement, we introduce transformer architectures for whole genome sequence labeling tasks.

We show that these architectures, recently introduced for natural language processing, are better suited for processing and annotating

long DNA sequences. We apply existing networks and introduce an optimized method for the calculation of attention from input

nucleotides. To demonstrate this, we evaluate our architecture on several sequence labeling tasks, and find it to achieve state-of-the-art

performances when comparing it to specialized models for the annotation of transcription start sites, translation initiation sites and 4mC

methylation in E. coli.

Index Terms—Genomics, deep learning, transformer networks, sequence labeling

Ç

1 INTRODUCTION

IN the last 30 years, a major effort has been invested into
uncovering the relation between the genome and the bio-

logical processes it interacts with. A thorough understand-
ing of the influence of the DNA sequence is of importance
for the manipulation of biological systems, e.g., to facilitate
the forward engineering of biological pathways. In recent
years, machine learning methodologies play an increasingly
import role in the construction of predictive tools. These
tasks include the annotation of genomic positions of rele-
vance, such as transcription start sites, translation initiation
sites, methylation sites, splice sites and promoter start sites.
Early methods for labeling of the DNA sequence were
focused on the extraction of important features to train
supervised learning models, such as tree-based methods or
kernel methods. More recently, convolutional neural net-
works (CNNs) have been popular, initiated from the work
of Alipanahi et al. [1]. The popularity of the CNN can be
attributed to the automatic optimization of motifs or other
features of interest during the training phase.

The prokaryotic and eukaryotic genome is built from 107

and 1010 nucleotides. Given its size, only a small fragment
of the genome sequence is bound to determine the existence
of certain genomic sites. In order to create a feasible sample
input, only a short fragment of the genome sequence is used
to predict the occurrence of these sites. The boundaries of
this region with respect to the position of interest is denoted
as the receptive field. Due to the model architecture of

conventional machine learning and deep learning techni-
ques such as convolutional neural networks, where the
input is structured according to the relative distances
towards the output label, custom input samples are created
from the genome, in accordance to the selected receptive
field around each nucleotide position. However, input sam-
ples of neighboring positions are created from largely over-
lapping regions on the genome. When evaluating all
positions on the genome, the combined sequence length of
the input samples is several times larger than the length of
the original genome, and scales with the size of the recep-
tive field.

In practice, existing studies do not apply the full genome
for training or evaluation. This task is too resource-heavy
for a multitude of machine learning methodologies that
have not been created to handle millions of samples. Addi-
tionally, the majority of the annotation tasks represent a
positive and negative set that is heavily imbalanced, which
can hinder the success of learning approaches. For example,
the detection of transcription start sites (TSSs) has several
thousand times more negative than positive labels. In some
cases, the site of interest is constrained to a subset of posi-
tions. This is exemplified by the site at which translation of
the RNA is initiated, denoted as the Translation Initiation
Site (TISs), where valid positions can be delimited by three
nucleotides being either ATG, TTG or GTG [2]. For annota-
tion tasks that can not be constrained to a smaller set, the
negative set is sampled (e.g., prediction of TSS [3] [4] or
methylation [5]). In general, the size of the sampled negative
set is chosen to be of the same order of magnitude as the size
of the positive set, constituting only a fraction of the original
negative set size (0.01% for TSS in E. coli). However, given
the comparative sizes of the sampled and full negative set,
performance metrics are not guaranteed to correctly reflect
the models predictive capability. When considering the task
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for which the model is optimized, it is plausible that the
resulting performances generalize poorly when applying
the model on the full genome.

Transformer networks have recently been introduced in
natural language processing [6]. These architectures are based
on attention and outperform recurrent neural networks on
natural language sequence-to-sequence labeling benchmarks.
In 2019, Dai et al. [7] defined the transformer-XL, an extension
of the transformer unit for tasks constituting long sequences
through introduction of a recurrence mechanism, showing
promise towards evaluating the genome sequence. In this
study, we introduce a novel transformer-based model for
DNA sequence labeling tasks. The genome is processed as is,
where nucleotide inputs contribute to the prediction of multi-
ple outputs. The size of the receptive field does not influence
the amount of data processed, nor does it influence the
amount of parameters of the model. In contrast to recurrent
neural networks, which share these advantageous properties,
the transformer-XL architecture iterates the genome sequence
in segments ofmultiple nucleotides, offering superior process-
ing times. By applying amodel on the full genome, no compli-
cations arise that are linked to subsampling of the negative set.

We define for the first time a transformer architecture for
DNA sequence labeling by building upon recent innova-
tions in the field of natural language processing. Second, we
substantiate and implement adaptations to the model that
make it better suited to extract information from nucleotide
sequences, an extension that proves to drastically improve
the predictive capabilities of the model. Third, a benchmark
is performed with recent studies for three different annota-
tion tasks: transcription start sites, translation initiation sites
and methylation sites. We prove that the novel transformer
network attains state-of-the-art performances, while retain-
ing fast training times.

2 RELATED WORK

Studies exploring data methods for statistical inference based
solely on the nucleotide sequence go back as far as 1983, with
Harr et al. [8] publishingmathematical formulas on the creation
of a consensus sequence for TSSs in E. coli. Stormo [9] describes
over fifteen mathematical approaches in relation to processing
DNA sequences between 1983 and 2000, ranging from: algo-
rithms designed to identify consensus sequences [10], [11],
tuneweightmatrices [12] and rank alignments [13], [14].

With the increased knowledge in the field of molecular
biology and the failing attempts to create robust correlations
between the DNA sequence and properties of interest,
efforts towards feature engineering were made, extracting
physical, chemical and biological meaning that could show
relatedness towards the biological process. Several impor-
tant descriptors of sequences include, but are not limited to:
the GC-content, bendability [15], flexibility [16] and free
energy [17]. Recently, Nikam et al. published Seq2Feature,
an online tool that can extract up to 252 protein and 41
DNA sequence-based descriptors [18].

The rise of novel machine learning methodologies, such
as Random Forests and support vector machines, have
resulted in many applications for the creation of tools to
annotate the prokaryotic genome. Liu et al. propose stacked
networks that apply Random Forests [19] for two-step

sigma factor prediction in E. coli. Support vector machines
are applied by Manavalan et al. to predict phage virion pro-
teins present in the bacterial genome [20]. Further examples
of the application of support vector machines include the
work of: Goel et al. [21], who propose an improved method
for splice site prediction in Eukaryotes; and, Wang et al.
[22], who introduce the detection of s70 promoters using
evolutionary driven image creation.

Successful gains in the field of machine learning and
genome annotation can be attributed to the use of deep learn-
ing methods. In 1992, Horton et al. [23] published the use of
the first perceptron neural network, applied for promoter site
prediction in a sequence library originating from E. coli. How-
ever, the popular application of deep learning started with
CNNs, initially designed for networks specializing in image
recognition. These incorporate the optimization (extraction)
of relevant features from the nucleotide sequence during the
training phase of the model. Automatic training of position
weight matrices has achieved state-of-the-art results for the
prediction of regions with high DNA-protein affinity [1] in
eukaryotes. As of today, several studies have been applying
CNNs for prokaryotes. These include models for the annota-
tion of methylation sites [24], origin of replication sites [25],
[26], recombination spots [27],[28], TSSs [4].

Recurrent neural network architectures have not been
applied on the full genome due to their long processing times,
but can be used to process individual samples of decreased
lengths featuring expression and/or nucleotide sequence
data. In combination with convolutional layers, they have
been to used to detect TISs [2] for E. coli. More applications of
recurrent neural networks exist for Eukaryotes, such as
miRNA target prediction [29] and, combined with convolu-
tional layers, the annotation of methylation states [30], [31]
and detection of protein binding sites on RNA [32].

The only type of machine learning method that has been
successfully applied on the full genomic sequence are hid-
den Markov models. However, due to the limited capacity
of a hidden Markov model, this method is nowadays rarely
used for new studies. Some applications for prokaryotes
include the detection of genes in E. coli [33] and the recogni-
tion of repetitive DNA sequences [34].

3 TRANSFORMER NETWORK

Here we describe our transformer network for DNA
sequence labeling. In Section 3.1, we adapt the transformer
architecture of Dai et al. [7] to DNA sequences. Unlike the
natural language processing tasks for which the trans-
former-XL architecture was first described, the annotation
of DNA sequences is not an autoregressive task. Addition-
ally, only a few input and output classes exist, resulting in
the models being less complex. To better extract features
from the nucleotide sequence, an adaptation to the calcula-
tion of attention is described in Section 3.2.

In this paper, we adopt the annotation of normal lower-
case letters for parameters (e.g., l), bold lowercase letters for
vectors (e.g., q) and uppercase letters for matrices (e.g.,H).

3.1 Basic Model

In essence, the annotation of DNA is a sequence labeling
task that has correspondences to natural language
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processing. Representing a DNA sequence of length p as
ðx1; x2; . . . ; xpÞ, where xi 2 fA;C; T;Gg, the tasks described
in this paper are binary classification problems, with each
position xi having a corresponding label yi 2 f0; 1g. A posi-
tive label denotes the occurrence of an event at that position.

The model processes the genome in sequential segments
of l nucleotides. During training, a non-linear transforma-
tion function E is optimized that maps the input classes
fA;C; T;Gg to a vector embedding hh of length dmodel. For
nucleotide xi on the genome:

hh ¼ EðxiÞ; xi 2 fA; T;C;Gg; (1)

where hh 2 Rdmodel .
The inputs at each segment are processed through k

layers. Within each layer, multi-head attention is calculated
for each hidden state hh using the collection of hidden states
within each segment, represented as rows in the matrix
H 2 Rl�dmodel .

Next, for each hidden state of hh, the output of the multi-
head attention step (MultiHead) is summed with the input,
i.e., a residual connection. The final mathematical step
within each layer is layer normalization [35]. The operations
for hidden states hh in layer t at position n in segment s are
performed in parallel:

hhðs;tþ1;nÞ ¼ LayerNormðhhðs;t;nÞ þMultiHeadðHðs;tÞÞÞ;

or,

Hðs;tþ1Þ ¼ LayerNormðHðs;tÞ þMultiHeadðHðs;tÞÞÞ;

where t 2 ½0; k½ and n 2 ½1; l�.
After a forward pass through k layers, a final linear com-

bination reduces the dimension of the output hidden state
(dmodel) to the amount of output classes. In this study, only
binary classification is performed. A softmax layer is
applied before obtaining the prediction value ŷi for nucleo-
tide xi.

3.1.1 Multi-Head Attention

The core functionality of the transformer network is the
attention head. The attention head evaluates the hidden
states in H with one another to obtain an output score zz.
The superscript denoting the layer and segment of the fol-
lowing equations are dropped as identical operations are
performed at each layer and segment.

The query (qq), key (kk) and value (vv) vectors are calculated
from the hidden state hh:

qqðnÞ; kkðnÞ; vvðnÞ ¼ hhðnÞWq; hhðnÞWk; hhðnÞWv;

where Wq;Wk;Wv 2 Rdhead�dmodel and qq; kk; vv 2 Rdhead . The qq
and kk vectors are used to obtain a score between two hidden
states, expressing their relevance with one another in regard
to the information represented by vv.

For each hidden state at position n of the segment, the
attention score zz is calculated by evaluation of its vector qq
with the kk and vv vectors derived from the other hidden
states in the segment:

zzðnÞ ¼ softmax
Xl
i¼1

qqðnÞ � kkðiÞffiffiffiffiffiffiffiffiffiffi
dhead

p
 !

� vvðiÞ:

The softmax function is used to rescale the weights assigned
to the vectors vv to sum to 1. Division by the square root of
dhead is applied to stabilize gradients [6].

The calculation of attention within the attention head is
performed in parallel for all hidden states inH:

Q;K; V ¼ HWq>; HWk>; HWv>

Z ¼ AttentionðHÞ ¼ softmaxð QK>ffiffiffiffiffiffiffiffiffiffi
dhead

p ÞV;

whereQ;K; V 2 Rl�dhead and Z 2 Rl�dhead . Here, the softmax
function is applied to every row of QK>.

To increase the capacity of the model, the input is proc-
essed by multiple attention heads (nhead) present within
each layer, each featuring a unique set of weight matrices
Wq;Wk;Wv – optimized during training. Having multiple
sets of Wv, Wq and Wk allows the model to extract multiple
types of information from the hidden states.

The output of the multi-head attention unit is obtained
by concatenation of all Z matrices along the second dimen-
sion and multiplication by Wm. This creates an output with
dimensions equal toH:

MultiHeadðHÞ ¼ ColConcatðZð1ÞðHÞ; . . . ; ZðnheadÞðHÞÞWm;

whereWm 2 Rnheaddhead�dmodel .
Next to the information content of the input, positional

information of the hidden states is relevant towards the cal-
culation of attention. Unlike the majority of other machine
learning methods in the field (e.g., linear regression, convo-
lutional/recurrent neural networks), the architecture of the
model does not inherently incorporate the relative position-
ing of the inputs. Positional information is added by intro-
duction of a bias related to the vector representation and
relative distance of the evaluated hidden states [7].

3.1.2 Recurrence

To process the full genome sequence, a recurrence mecha-
nism is applied, as described by Dai et al. [7]. This allows for
the processing of a single input (i.e., the genome) in sequen-
tial segments of length l. In contrast with calculation of the
attention heads described in the previous section, only
upstream hidden states are used to calculate the output of
hh. In each layer, hidden states ½hhðnþ1Þ; . . . ; hhðlÞ� are masked
when processing zzðnÞ, n 2 ½1; l�.

In order to extend the receptive field of information
available past one segment, hidden states of the previous
segment s� 1 are accessible for the calculation of hhðs;tþ1Þ.
The segment length l denotes the span of hidden states used
to calculate attention. Therefore, Hðs;t;nÞ, representing the
collection of hidden states used for the calculation of multi-
head attention at position n in layer tþ 1 of segment s, con-
sists of l hidden states spanning over segment s and s� 1:

Hðs;t;nÞ ¼ ½SGðhhðs�1;t;nþ1Þ . . . hhðs�1;t;lÞÞ hhðs;t;1Þ . . . hhðs;t;nÞ�:

SG denotes the stop-gradient, signifying that during
training, no weight updates of the model are performed
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based on the partial derivatives of given hidden states with
the loss. This alleviates training times, as full backpropaga-
tion through intermediary values would require the model
to retain the hidden states from as many segments as there
are layers present in the model, a process that quickly
becomes unfeasible for a model with a large segment length
or high amount of layers. Fig. 1 gives an illustration of the
model architecture adopting the recurrence mechanism.

3.2 Extension: Convolution Over Q,K and V

Important differences exist between the input sequence of
the genome and typical natural language processing tasks.
The genome constitutes a very long sentence, showing low
contextual complexity at input level. Indeed, only four
input classes exist. Attention is calculated based on the indi-
vidual hidden states hh. For example, in the first layer, hid-
den states of the segment solely contain information on the
nucleotide classes. In previous studies, meaningful sites
and regions of interest on the genome are specified by (sets
of) motifs from neighboring nucleotides.

To expand the information contained in qq, kk and vv to rep-
resent k-mers rather than single nucleotides, a 1D-convolu-
tional layer is implemented that convolves over the qq, kk and
vv vectors derived from neighboring hidden states, present
as adjoining rows in Q, K and V . The length of the motif, k-
mer or kernel is denoted by dconv.

To ensure that the dimensions of qq, kk and vv remain identi-
cal after the convolutional step, as many sets of weight ker-
nels are trained as dhead. Furthermore, through padding, the
size of the first dimension of the matrices Q,K and V can be
kept constant. Applied on qq we get:

qconv;ðnÞc ¼
Xdconv
i¼1

Xdhead
j¼1

q
ðfðn;iÞÞ
j W conv;q

i;j;c ;

fðn; iÞ ¼ n� dconv
2

� �
þ i;

where c 2 ½1; dhead� and W conv;q 2 Rdhead�dconv�dhead . W conv;q is
the tensor of weights used to convolve qq. Applied on the Q
matrix the operation is represented as:

Qconv
n ¼

Xdconv
i¼1

Xdhead
j¼1

Qfðn;iÞ;jW
conv;q
i;j :

A unique set of weights is optimized to calculate Qconv,
Kconv and V conv for each layer. To reduce the total amount of
parameter weights of the model, identical weights are used
to convolve Q, K and V for all attention heads in the multi-
head attention module. Fig. 2 gives a visualization of the
intermediate results and mathematical steps performed to
calculate attention within the attention head of the extended
model.

4 EXPERIMENTS AND ANALYSIS

4.1 Experimental Setup

To highlight the applicability of the new model architecture
for genomeannotation tasks, it has been evaluated onmultiple
prediction problems in E. coli. All tasks have been previously
studied both with and without deep learning techniques.
These are the annotation of Translation Start Sites (TSSs), spe-
cifically linked to promoter sites for the transcription factor
s70, the Translation Initiation Sites (TISs) and N4-methylcyto-
sine sites. The genome was labeled using the RegulonDB [36]
database for TSSs, Ensembl [37] for TISs and MethSMRT [38]
for the 4mC-methylations. These data sets contain the posi-
tively labeled positions on the genome,with all other positions
being negative.

For every prediction task, the full genome is labeled at
single nucleotide resolution, resulting in a total sample size
of several millions. A high imbalance exists between the
positive and negative set, the former generally being over
four orders of magnitudes smaller than the latter. An over-
view of the data sets and the resulting sample sizes when
labeling the genome are given in Table 1.

It can be important to include information located down-
stream of the position of interest to the model, as it is rele-
vant for the prediction of the site. For all three prediction
problems, the nucleotide sequence up to 20 nucleotides
downstream of the labeled position is regarded as relevant.
In order to make this information accessible to predict the
label at position n, the labels can be shifted downstream. In
accordance with the downstream bound taken by recent
studies for the annotation of all three annotation tasks [2],
[4], [5], labels have been shifted downstream by 20 nucleoti-
des, placing them at position +20 from their respective
nucleotide site.

The receptive field of the model is defined as the nucleo-
tide region that is linked indirectly, through calculation of
attention in previous layers, to the output. As the span of
hidden states used to calculate attention is equal to the seg-
ment length l, the receptive field has a nucleotide coverage
that is equal to the multiplication of the amount of layers
with the segment length (k� l). After shifting the labels
downstream, the range of the nucleotide sequence within
the receptive field of the model at position i is delimited as
�i� k� lþ 20; iþ 20�.

Fig. 1. Illustration of the connectivity of intermediary values of the trans-
former architecture. The full genome is processed in sequential seg-
ments s with length l. First, the input nucleotides are transformed into a
vector embedding hhð0;:Þ, after which they are processed by k consecutive
residual blocks (hhð0;:Þ ! . . . ! hhðk;:Þ). The output probability is obtained
by sending the final hidden state through a set of fully-connected layers.
For the calculation at each residual block, the last l hidden states of the
previous layer are applied. For example, hhð1;lÞ is calculated based on the
hidden states fhhð0;1Þ; . . . ; hhð0;lÞg. Intermediary hidden states from the pre-
vious segment (s� 1) are made accessible for the calculation of the hid-
den states in segment s.
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As the model sequentially iterates the genome, the train-
ing, test and validation set are created by splitting the
genome at three positions that constitute 70% (4,131,280–
2,738,785), 20% (2,738,785–3,667,115) and 10% (3,667,115–
4,131,280), respectively. An identical split was performed for
each of the prediction tasks. Split positions given are those
from the RefSeq database and, therefore, include both the
sense and antisense sequence within given ranges. The model
is optimized using the cross-entropy loss and Adam step

update algorithm. Surprisingly, weighing of the loss in order
to account for the imbalance in class distributions did not
have an effect on the performances, and was therefore not
done. Model training is stopped when a minimum loss on
the validation set is reached. All performance metrics listed
are obtained on the test set. Models were trained and evalu-
ated using a single GeForce GTX 1080 Ti and programmed
using PyTorch [39].

Hyperparameter tuningwas performed using random grid
search. To better handle the sheer amount of hyperparameters,
models were optimized using a reduced training set (30%) for
all three problems.Hyperparameter setswere evaluated based
on the minimum loss on the validation set. Due to the limited
amount of input and output classes, it quickly became obvious
that the required vector size of the hidden states (dmodel) was
much smaller (32) as compared to the one used for natural lan-
guage processing tasks (512). Similar observations were made
to the overall complexity of the model, reflected by e.g., the
amount of layers and attention heads. Given a minimal capac-
ity, the model returned stable performances, with more com-
plex models only increasing processing times. The final
hyperparameter set results in a model size that is as minimal
as possible, without negatively inhibiting the performances.
This set proved to work well on all annotation tasks. As such,
only a single model architecture has been used to evaluate all
three annotation tasks. Relevant model parameters and opti-
mization parameters are listed in Table 2.

The Area Under the Receiver Operating Characteristics
Curve (ROC AUC) is the metric selected to evaluate the
model performance. This measure is commonly used for
binary classification and is independent of the relative sizes
of the positive and negative sets.

4.2 Improvement by Convolution Over Q, K and V

The use of nucleotide embeddings as inputs to the trans-
former network is an important difference with natural lan-
guage processing, where nucleotides, featuring only four
input classes, feature lower contextual complexity than
words. Essentially, the equivalent for words are motifs or k-
mers present within the DNA sequence. These are of impor-
tance towards the biological process of the prediction task
due to their affinity towards the domains of related proteins.

In order to investigate ways to improve the model, the
reduction of the input and output resolution of the model
was first investigated. The use of k-mers as inputs increases
the information content of the input embeddings and can
facilitate the detection of relevant motifs. The use of k-mers
results in a higher amount of input classes (i.e., 4k) and
speeds up processing time as the sequence length is divided

Fig. 2. An overview of mathematical operations performed by the atten-
tion head to calculate attention zz for each hidden state hh. Operations to
calculate attention are performed in parallel for l hidden states (H ! Z).
The query qq, kk and vv vectors are obtained through multiplication of H
with the model weight matrices Wq, Wk and Wv, resulting in the Q, K
and V matrix. A single convolutional layer applied on Q, K and V , using
as many kernels as dhead, results in the transformation of the individual qq,
kk and vv vector representations of each input to be derived from the qq kk
and vv vectors of dconv bordering nucleotides. Attention Z is thereafter cal-
culated. Through padding, dimensions of Q, K and V are kept constant
before and after the convolutional layer. Matrix dimensions are given
along the edges of the matrices. The schema is kept simple for better
understanding and does not include the relative position encodings
added to the Q and K matrix, nor does it incorporate the recurrence
mechanism.

TABLE 1
Overview of the Data Set Properties Uzsed in This Study

Dataset source Positive labels Negative labels Annotation

RegulonDB [36] 1,694 (0.02%) 9,281,610 (99.98%) TSS
Ensembl [37] 4,376 (0.05%) 9,278,928 (99.95%) TIS
MethSMRT [38] 5,534 (0.06%) 9,277,770 (99.94%) 4mC

From left to right: the name of the database, positive labels, negative labels and
annotation task performed (TSS: s70 Transcription Start Site; TIS: translation
Initiation Site; 4mC: 4mC methylation sites). All data sets are derived from E.
coliMG1655 (accession: NC_000913.3, size: 9,283,304 nucleotides).

TABLE 2
Overview of the Hyperparameters that Define

the Model Architecture

Hyperparameter symbol value Hyperparameter symbol value

layers k 6 segment length l 512
dim. head dhead 6 dim. model dmodel 32
heads in layer nhead 6 conv. kernel size dconv 7
learning rate lr 0.0002 batch size bs 10

A single set of hyperparameters was selected to train a single model that
showed to work well on all prediction tasks.
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by the k-mer size, albeit at the cost of a decreased output
resolution of the model predictions.

The reduced performances resulting from applying k-
mer inputs underline the disadvantages of this approach.
First, different unique sets of k-mers can be used to repre-
sent the DNA sequence, determined by the position where
splits are performed. Therefore, motifs of relevance to the
prediction problem can be represented by multiple sets of
input classes. Given the low amount of positive samples of
the investigated prediction problems, all possible input
class combinations that are of importance are more likely to
be only present in either the training, validation or test set.
Therefore, higher values of k quickly results in the overfit-
ting of the model on the training set.

The high similarity between the k-mers with largely equal
sequences (e.g., AAAAAA and AAAAAT) can be mapped
through the embedding of the input classes, obtained by
Equation 1. Embedding representations for each input class
can either be optimized during training or before. In case of
the optimization during training, embeddings are in func-
tion of the prediction problem (i.e., loss on the labeling), an
option less suited for a setting with a small positive set and
high amounts of input classes. For the unsupervised setting,
vector embedding can be mapped to the input classes using
plethora of prokaryotic genomes. This has been done using
the word2vec methodology for all classes present in a 3-mer
or 6-mer setting, resulting in a slight improvement of the
model performances, albeit lower than the performance of
themodel trained at single-nucleotide resolution [40].

Alternatively, the use of a convolutional layer in the
attention heads of the neural network has been investigated.
Theoretically, the implementation of a convolutional layer
extends the the information embedded in kk, qq and vv to be
derived from dconv neighboring hidden states, without
changing the input/output resolution of the model.

This extra step increases the contextual complexity
within the attention heads without extending training times
substantially, albeit at an increase of the number of model
weights. An overview of the mathematical steps performed
in the adjusted attention head is shown in Fig. 2. To

evaluate, performances were compared for different sizes of
dconv for the prediction of TSSs, TISs and methylation sites.

Application of the transformer network with no convolu-
tional layer results in a ROCAUC of 0.919, 0.996 and 0.951 for
the annotation of TSSs, TISs and 4mC methylation sites,
respectively. Addition of the convolutional layer improves
these performances, where dconv ¼ 7 gives the best results for
all three annotation tasks. The increased performance score is
most notable for the annotation of TSSs, showing an improve-
ment from 0.919 to 0.977, where the difference with a perfect
score is almost divided by four. Performances are given in
Table 3. Additionally, the total amount of model parameters
and average durations to iterate over one epoch are given.

The loss curves on the TSS prediction task for all model
types are given in Fig. 3, and show a stable convergence of
the loss for both the training and validation set for dconv <
7. In contrast, for dconv > 7, the loss curve on the validation
set shows a stronger similarity to a hyperbolic, a pattern
that clearly demonstrates overfitting of the model to the
training set due to the increased amount of parameter
weights in the model.

Importantly, the capacity of the model can be increased
through selection of the total number of layers k, the
amount and dimension of the attention heads nhead and
dhead and the dimension of the hidden states dmodel. Nonethe-
less, during hyperparameter tuning, increasing the capacity
of the model did not further improve the performance on
the test set. The addition of the convolutional layer is thus a
necessary enhancement of the model in this setting.

4.3 Selection of lmem

The parameter lmem denotes the amount of last-most hidden
states of the previous segment (s� 1) stored in memory,
thereby delimiting the amount of hidden states made acces-
sible for the calculation of attention in layer s. Traditionally,
lmem is set to l during training time, ensuring the calculation
of attention at each position in segment s to have access to l
hidden states (as stored in Hðn;t;sÞ) [7]. As lmem determines
the shapes ofH,K and V , it is a major factor influencing the
memory requirement and processing time of the model.

In order to reduce training times to enable the applicabil-
ity of the framework for larger genomes, data from several
models (dconv ¼ 7) for the annotation of s70 TSSs was

TABLE 3
Comparison Between the Performance of the Transformer

Model With Different Kernel Sizes of the Convolutional Layer on
the Test Sets of the Genome Annotation

Task dconv Epoch time (s) Model weights ROC AUC

TSS 0 337.5 185,346 0.919
TSS 3 364.8 241,218 0.966
TSS 7 371.0 314,946 0.972
TSS 11 379.2 388,674 0.970
TSS 15 383.8 462,402 0.973
TIS 0 337.5 185,346 0.996
TIS 7 371.0 314,946 0.998
4mC 0 337.5 185,346 0.951
4mC 7 371.0 314,946 0.985

dconv ¼ 0 constitutes the transformer network with no convolutional step. For
all settings, dconv ¼ 7 results in the best performances. For the annotation of
s70 Transcription Start Sites (TSSs), the performances for all evaluated dconv
are given, similar to those given in Fig. 3. Performances are evaluated using
the Area Under the Receiver Operating Characteristics Curve (ROC AUC).
For each setting, the total amount of model weights and time (in seconds) to
iterate one epoch during training is given.

Fig. 3. The smoothed loss on the training and validation set of the s70

TSS data set for different values of dconv. In line with the loss curve of the
validation set, the best performance on the test set was obtained for
dconv ¼ 7. It can be observed that higher values of dconv quickly results in
overfitting of the model while lower values result in convergence of both
the training and validation set at a higher loss.
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collected for different values of lmem during training
(denoted by ltrainmem). Additionally, as the segment length l is
not tied to the model weights and can be altered after train-
ing, performance metrics for different segment lengths of
the model for the annotation of the test set (ltest) were also
obtained. ltestmem is always set equal to ltest.

The processing time to iterate the genome is reduced by
halve for ltrainmem ¼ 0. Fig. 4 shows the loss on the training and
validation set in function of time for the different values of
ltrainmem. Interestingly, after training of 75 epochs, lower losses
on the training set are obtained for lower values of ltrainmem. No
backpropagation is performed through the hidden states of
the previous segment (see Section 3.1.2), even though the
above elements contribute to the loss during training. The
inability to properly update the weights of the model in
function of hidden states from previous segments are a
likely cause for the slower convergence of the training loss
for ltrainmem > 0. Therefore, processing times are reduced both
by the reduction of epoch time and the fewer epochs
required until a minimum on the validation loss is obtained.

Table 4 shows the ROC AUC performances and training
times for the annotation of s70 TSSs. Models trained for
ltrainmem ¼ 0 are not penalized in their performance on the test
set. In contrast, for all values of ltestmem, higher performances as
compared to the traditional setting (ltrainmem ¼ 512) are obtained.
The strong variation of hidden states applied to calculate
attention for hhn, ranging between 1 to 512 and dependent on
the position of n within s, does not negatively influence the
performance. The discussed variation might in fact contrib-
ute to regularization of the model weights, given the more
stable results of themodel on varying values of ltest.

The receptive field of the models predictions for ltrainmem ¼
512 spans 3,072 nucleotides (l� k), a region multiple times
larger than the circa 80 nucleotides window used in previ-
ous studies [4][3][41]. Reduction of ltest can offer insights
into the DNA region relevant towards the prediction task.
This is illustrated by the performances of the model for
ltest equal to 64 and 512, where the reduction of the recep-
tive field to 384 nucleotides does not negatively influence
performances (for ltrainmem = 0), revealing the excluded region
to be of no importance towards the identification of a TSS.
Overall, given the influence of the segment lengths on
both the training time and performance, a closer look into
the behavior of the model for varying values of l and lmem

should be made for the genome annotation tasks. In this
study, the model parameters ltrain ¼ 512, ltrainmem ¼ 0 and
ltest ¼ ltestmem ¼ 512 proved to work best for all three annota-
tion tasks.

4.4 Benchmarking

As a final step, the proposed transformer model
(dconv ¼ 7; ltrainmem ¼ 0) has been evaluated with the studies
reporting state-of-the-art performances on all three annota-
tion tasks. For each setting, the same annotations have been
applied to train and evaluate all models, meaning that the
positive set between these studies is identical. Differences
exist between the negative sets, as our method processes the
full genome. This is in contrast to the use of a subsampled
negative set by recent studies [3], [4], [19], [22], [41], [41],
[42]. In the majority of studies, custom sampling methods
are used, where the samples of the negative set is not pub-
licly available [3], [4], [5], [41], [42]. As the transformer
architecture iterates the genome sequentially, the creation of
a training, test and validation set have are obtained by slic-
ing the genome at three points. This results in neighboring
nucleotides being grouped in the same set, which might
introduce a bias. However, it was made sure that the rela-
tive frequencies of the input and output classes were identi-
cal for all sets. No bias was detected, as the performances of
the transformer model proved to be robust after training
and evaluating the model using various sets.

Uniquely, the transformer model processes the full nega-
tive set for training and evaluation purposes. Several met-
rics used to represent the performance are directly
influenced by the (relative) sizes of the negative and posi-
tive sets. These include the accuracy and Area Under the
Precision-Recall Curve (PR AUC). Furthermore, the sensi-
tivity (recall), specificity, precision andMatthew Correlation
Coefficient are all metrics that depend on the threshold used
to group the model output probabilities into positive and
negative predictions. This threshold can be selected to maxi-
mize any metric, such as the accuracy, recall or precision.

Fig. 5 shows the effect of subsampling the negative set on
the performance metrics and the selection of the optimal
threshold to delineate the positive from the negative predic-
tions. In the first setting, 1500 instances are sampled from
the positive and negative output distributions, representing
the models ability to categorize both classes. The ROC AUC

Fig. 4. The smoothed loss on the training and validation set of the s70

TSS data set for different values of ltrainmem. The losses are given w.r.t. train-
ing times. All settings were trained for 75 epochs. While increased values
of lmem strongly influence the convergence time of the loss for both the
training and validation set, it does not alter the minimum loss on the vali-
dation set.

TABLE 4
Performances, Given as Area Under the Receiver Operating

Characteristics Curve (ROC AUC), of the Transformer Model on
the Test Set for the Prediction of s70 Transcription Start Sites

(TSS) Using Different Values of ltrainmem and ltest

Task ltrainmem Epoch ltest ¼ ltestmem

time (s) 8 32 64 512

ROC AUC
TSS 0 371.2 0.664 0.957 0.977 0.977
TSS 1 384.2 0.638 0.945 0.968 0.969
TSS 32 415.5 0.611 0.940 0.969 0.971
TSS 128 482.6 0.593 0.907 0.963 0.973
TSS 512 728.7 0.570 0.883 0.954 0.972

For each setting, ltrain ¼ 512 and ltest ¼ ltestmem. The time (in seconds) to iterate
one epoch during training is also given.
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and PR AUC are both 0.983. The optimal threshold returns a
precision and recall of 0.94 and 0.93, respectively. Evaluat-
ing the performance of the model for an increased negative
set size with 9,000,000 instances, sampled from the same
distribution, reveals two problems: the PR AUC perfor-
mance measure is decreased to 0.25 as a direct result of false
positives, and the use of the threshold selected from the first
set-up does not properly balance the trade-off between false
negatives and false positives. Specifically, the accuracy, pre-
cision and recall equal to 0.933, 0.0046 and 0.93, as com-
pared to 0.999, 0.713 and 0.136 for a threshold optimized for
the accuracy on the second setting.

The ROC AUC metric is independent to the relative sizes
of the positive and negative set. Scores in Table 5 list the
ROC AUC scores of recent studies claiming state-of-the-art
performances. For CNNs, the model architectures have
been implemented as described in each study to attain the
ROC AUC performance metrics. As such, performances
have been obtained from these models using exactly the
same positive, negative, training, validation and test set
used to obtain performances on the transformer model.

The ROC AUC of 0.977, 0.998 and 0.985 for the annota-
tion of s70 TSSs, TISs and 4mC methylation sites represent a
substantial improvement of the performances obtained by
previous studies. In essence, the improvement of the ROC
AUC is substantial as it more than halves the area above the
curve (0.949 ! 0.977, 0.995 ! 0.998 and 0.960 ! 0.985). The
score for the model implemented in accordance to the work

of Khanal et al. [5] shows a strong variation with the
reported score (0.652/0.960). It was not possible to pinpoint
the cause for this discrepancy, but it could be related to the
increased size of the negative set. As the transformer model
outperforms either, this was not investigated further.

With the exception of the CNN model for 4mC methyla-
tion, the amount of model weights is in line with previous
neural networks developed. A single architecture for the
transformer model (dconv ¼ 7; ltrainmem ¼ 0) was trained to per-
form all three annotation tasks, proving the robustness of
the novel framework for genome annotation tasks. Imple-
mentation of the convolutional layer within the attention
heads proved to be required to achieve state-of-the-art
results using the proposed attention networks.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel framework for full
genome annotation tasks by applying the transformer-XL net-
work architecture. To extend the calculation of attention
beyond hidden states derived from the nucleotides inputs, of
which only four input classes exist, a convolutional layer over
Q, K and V was added. As an effect, calculation of relevance
(QK>) and linear combination with V processes information
to be derived from multiple neighboring hidden states. An
improvement in predictive performance was obtained, which
indicates that the technique enhances the detection of nucleo-
tidemotifs that are relevant to the prediction task.

The efficacy of the transformer network was demonstrated
on three different tasks in E. coli: the annotation of transcrip-
tion start sites, transcription initiation sites and 4mCmethyla-
tion sites. In recent studies applying machine learning
techniques for genomeannotation tasks, the lack of an existing
benchmark data set and the existence of custom negative sets
hinders the straightforward and clear comparison of existing
methodologies. In a balanced setting, the sampled negative
set constitutes only a fraction of the negative samples within
the genome (e.g., 0.02%–0.1% for TSSs). Therefore, sampling
of the negative set makes the trained model susceptible to

Fig. 5. Illustration of varying model performance characteristics as an
effect of different sample sizes. The distributions of the outputs and pre-
cision recall-curves are given. (a) An equal positive and negative sample
size of 1500 gives an optimal accuracy of 0.936. The coinciding thresh-
old selected to optimize accuracy (gray striped line) gives a precision of
0.94 and recall of 0.93. (b) Given the same distribution characteristics
but with negative sample size of 9,000,000, performance of the PR AUC
is drastically reduced (0.25) as a result of false positives. Moreover, the
threshold selected to optimize accuracy is adjusted (green full line). The
resulting accuracy, precision and recall for the new setting are 0.999,
0.711 and 0.136. Using of the threshold from the previous setting gives
the scores of 0.933, 0.0046 and 0.93.

TABLE 5
Performances, Given as Area Under the Receiver Operating
Characteristics Curve (ROC AUC), of Recent Studies and the

Transformer Based Model on the Annotation of s70 Transcription
Start Sites (TSS), Translation Initiation Sites (TIS) and 4mC

Methylation (4mC)

Task Study Approach Model weights ROC AUC

TSS Lin et al. [3] SVM - 0.909
TSS Rahman et al. [41] SVM - 0.90
TSS Umarov et al. [4] CNN 395,236 0.949*
TSS This paper transformer 314,946 0.977

TIS Clauwaert et al. [2] CNN 445,238 0.995*
TIS This paper transformer 314,946 0.998

4mC Chen et al. [42] SVM - 0.886
4mC Khanal et al. [5] CNN 16,634 0.652*/0.960
4mC This paper transformer 314,946 0.985

Performances listed are those reported by the paper, and generally constitute a
much smaller negative set. Additionally, performances with an asterisk (*) are
obtained by implementation of the model architecture and training on the full
genome. Applied machine learning approaches include Convolutional Neural
Networks (CNN) and Support Vector Machines (SVM). When applicable, the
amount of model weights is given.
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overfitting due to bad generalization towards the true nega-
tive set. Furthermore, application of the full genome for evalu-
ation purposes ensures the resulting performances to
correctly reflect the model’s capability in a practical setting.
Both the application of the full negative and postive set and
the easy construction of the training, test and validation set
facilitate future benchmarking efforts.

Models were trained within 2–3 hours. A single iteration
over the prokaryotic genome on a single GeForce GTX 1080
Ti takes ca. six minutes. The transformer architecture does
not assert the relative positions of the input nucleotides
w.r.t. the output label, a property that makes the methodol-
ogy well-suited for the processing of genome sequences.
First, to annotate each position on the genome, inputs only
have to be processed once, as intermediary values are
shared between multiple outputs. Second, increasing the
receptive field of the model, defined through l and lmem,
does not require training a new neural network, and is unre-
lated to the total amount of model parameters. These advan-
tages improve the scalability of this technique. Specifically,
a model with a receptive field spanning 3,072 nucleotides
(l ¼ 512, ltrainmem ¼ 512) can process the full genome in ca. 12
minutes, as shown in Table 4. Moreover, as shown in this
paper, evaluation of the test set for different values of l,
reveals the minimal receptive field required by the model to
obtain optimal performances.

Next to state-of-the-art performances, the application of
the transformer-XL architecture and the evaluation on the
full genome sequence offer new opportunities. For example,
the probability profile of the model along the genome
sequence could result in a better understanding of the
model and the biological process. In natural language proc-
essing, evaluation of attention (QK>) has connected seman-
tically relevant words [6]. Investigation into the profile of
the attention scores might pinpoint biological sites of rele-
vancerite in a similar fashion.

Given the success of the models in this study, trans-
former based networks might show to be valuable in other
branches featuring sequence labeling tasks, such as second-
ary structure prediction of proteins. Due to the size of the
eukaryotic genome, application of the technique on these
genomes is not feasible at this point. Nevertheless, trans-
former-based models have not been studied before in this
setting, and several areas have potential for further optimi-
zation of the training process time. These include the gen-
eral architecture of the model, batch size, ltrain, ltrainmem,
learning rate schedules, etc.
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