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Abstract—The study of genetic variants (GVs) can help find correlating population groups and to identify cohorts that are predisposed to

common diseases and explain differences in disease susceptibility and how patients react to drugs. Machine learning techniques are

increasingly being applied to identify interacting GVs to understand their complex phenotypic traits. Since the performance of a learning

algorithm not only depends on the size and nature of the data but also on the quality of underlying representation, deep neural

networks (DNNs) can learn non-linear mappings that allow transformingGVs data intomore clustering and classification friendly

representations thanmanual feature selection. In this paper, we propose convolutional embedded networks (CEN) in which we combine

two DNN architectures called convolutional embedded clustering (CEC) and convolutional autoencoder (CAE) classifier for clustering

individuals and predicting geographic ethnicity based onGVs, respectively. We employed CAE-based representation learning to 95

millionGVs from the ‘1000 genomes’ (covering 2,504 individuals from 26 ethnic origins) and ‘Simons genome diversity’ (covering 279

individuals from 130 ethnic origins) projects. Quantitative and qualitative analyseswith a focus on accuracy and scalability show that our

approach outperforms state-of-the-art approaches such as VariantSpark and ADMIXTURE. In particular, CEC can cluster targeted

population groups in 22 hourswith an adjusted rand index (ARI) of 0.915, the normalizedmutual information (NMI) of 0.92, and the

clustering accuracy (ACC) of 89 percent. Contrarily, the CAE classifier can predict the geographic ethnicity of unknown sampleswith an

F1 andMathews correlation coefficient (MCC) score of 0.9004 and 0.8245, respectively. Further, to provide interpretations of the

predictions, we identify significant biomarkers using gradient boosted trees (GBT) and SHapley Additive exPlanations (SHAP). Overall,

our approach is transparent and faster than the baselinemethods, and scalable for 5 to 100 percent of the full human genome.

Index Terms—Population genomics, genotype clustering, bio-ancestry inference, deep neural networks, representation learning

Ç

1 INTRODUCTION

GENETIC ariations (GVs) are structural variation in the
DNA sequence in human genomes, which makes us all

unique in terms of phenotype, e.g., genetic polymorphism is
implicated in numerous diseases and constitute the majority
of varying nucleotides among human genomes [1]. Genetic
research has played a significant role in the discovery of new
biological pathways underpinning complex human disease
and the evaluation of new targets for therapeutic develop-
ment [2]. In particular, biological understanding of the
relationship between GVs can provide insights into the dis-
ease status of a patient (e.g., interacting GVs contributing to
breast cancer risk) [3], which is the prerequisite to enable

personalized treatment. Further benefits of studying GVs
lies in the discovery and description of the genetic contribu-
tion to many human diseases based on their haplogroup and
ethnicity [4]. Subsequently, finding similar population
groups and identifying patients who are predisposed to
common or rare diseases at early stages is increasingly
important in understanding the effects of biomarkers on the
development of certain disease [5].

Despite strides in characterizing human history fromGVs
data, progress in identifying genetic signatures of recent
demography has been limited. Predicting haplogroup and
ethnicity accurately (called bio-ancestry inferencing (BAI)1)
is very challenging in which one of the most critical tasks is
the analysis of genomic profiles to attribute individuals to
specific ethnic populations or the interpretation of nucleotide
haplotypes for diseases susceptibility [6]. Consequently, BAI
is a frequently studied problem, with themain goal of identi-
fying an individual’s population of origin based on our
knowledge of natural populations [7]. Accordingly, BAI has
numerous applications in forensic analyses, genetic associa-
tion studies, and personal genomics. Further, BAI is used
as a checksum method to verify a sample’s integrity, e.g.,
case-control studies [4], where BAI is key to understand
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population stratification across the cohorts to help avoid
probable spurious associations with even subtle ancestry dif-
ferences [8]. Identification of ancestry is an important
research challenge in which any direct assessment of dis-
ease-relatedGVswill yieldmore insights [9].

Since the race of an individual depends on ancestry,
grouping each into a cluster is expected to correlate with the
traditional concepts of race. However, this correlation is not
perfect since GVs occurs according to probabilistic princi-
ples, which often does not follow any continuous distribu-
tion across races but slightly overlaps across diverse
populations, e.g., research [10] has exposed that population
groups from Asia, Europe, Africa, and America can be sepa-
rated based on their genomic data based on the fact that ‘Y’
chromosome lineage can be geographically localized, form-
ing an evidence for clustering of human alleles. In this study,
we try to understand: i) if individual genetic profiles can be
used to attribute into specific populations, ii) if individual
GVs are suitable for predicting it’s ethnicity, iii) how individ-
uals are distributed geographically, e.g, among population
groups. However, grouping individuals or BAI based on
GVs requires access to genomics data and efficient analytic
methodologies to cope with millions of GVs from thousands
of individuals [11], [12], [13], [14]. However, extracting sig-
nificant features from a large-scale GVs is not only computa-
tionally expensive but also a critical bottleneck.

Previous approaches [15], [16] employed machine
learning (ML) based approaches to answer these questions.
In particular, ML-based clustering algorithms such as
DBSCAN, OPTICS, Gaussian Mixture (GMM), Agglomera-
tive clustering (AC), and K-means have long been used in lit-
erature to address issues with higher-dimensional input
spaces. However, they are fundamentally limited to linear
embedding [17]. Often ML-based approaches failed to
exploit non-linear relationships from high-dimensional and
cannot exhibit good accuracy at BAI and clustering tasks.
The reason lies in the fact that non-linear embedding is often
necessary to deal with high-dimensionality before initializ-
ing the clustering operation [18]. In contrast, approaches
based on neural networks (DNNs) can be more effective at
RL and feature extraction [18]. In particular, DNN architec-
tures (e.g., autoencoder (AE)) with multiple hidden layers
and non-linear activation functions, can capture more com-
plex and higher-level features and contextual information
from the input [19], [20], [21], [22]. Further, non-linear map-
pings allows transforming input data into more clustering-
friendly representations in which the data is mapped into
a lower-dimensional feature space that helps fine-tune
clustering [23].

Although DNNs have shown tremendous success to deal
with such complex tasks, they are mostly perceived as ‘black
box’ methods because of lack of understanding of their func-
tionalities [24], which is a serious drawback. To recommend
more accurate treatments and drug repositioning, interpret-
ability is essential to provide insights on why and how a cer-
tain prediction is made by the algorithm outlining important
biomarkers. Nevertheless, according to article 22 of the Euro-
pean Union (EU) General Data Protection Regulation (GDPR)
states that individuals have the right not to be subject to a
decision based solely on automated processing andwhenever
human subjects have their lives significantly impacted by an

automatic decision-making machine, the human subject has
the right to know why the decision is made, i.e., “right to
explanation”[25].

We try to address the challenges and requirements in a
scalable and efficient ways: first, we use Spark and ADAM
for processing large-scale GVs to convert them into geno-
type objects. Then convolutional autoencoder (CAE) is
employed representation learning on GVs data. Learned
features are then used to: i) train the convolutional embed-
ding clustering (CEC) for clustering individual to determine
inter and intra-population groups, ii) train the CAE classi-
fier to predict ethnicity of unknown samples. Finally, to pro-
vide interpretations of the predictions and to identify
relevant features that contributed most, we identify signifi-
cant biomarkers using gradient boosted trees (GBT) and
SHapley Additive exPlanations (SHAP) [26]. The rest of the
paper is structured as follows: Section 2 discusses related
works and analyze their potential limitations. Section 3
chronicles our proposed approach in detail with materials
and methods. Section 4 demonstrates some experiment
results, discuss the findings, and highlights potential limita-
tions of the study. Section 5 provides some explanations of
the importance and relevance of the research reported and
discussed some future works before concluding the paper.

2 RELATED WORK

Although 1000GP consortium has developed a global refer-
ence for human genetic variation for exome and genome
sequencing and despite strides in characterizing human his-
tory from genetic polymorphism data, progress in identify-
ing genetic signatures of recent demography has been
limited [27]. Lek M. et al. [28], describe aggregation and
analysis of high-quality protein-coding region and DNA
sequence data for 60,706 individuals of diverse ancestries in
which the objective metrics of pathogenicity are calculated
for sequence variants against various classes of mutations.
Their approach: i) identify as much as 3,230 genes with
near-complete depletion of predicted protein-truncating
variants, while 72 percent of these genes have no currently
established human disease phenotype, ii) demonstrate that
GVs can be used for efficient filtering of candidate disease-
causing variants, which helps in the discovery of human
‘knockout’ variants in protein-coding genes.

Studies on population structure clustering include [27],
which identify fine-scale population structure clustering of
770,000 genomes in North America, which reveals post-
colonial population structure. Another used approach is
ADMIXTURE [15], which performs maximum likelihood
estimation (MLE) of individual ancestries from multilocus
SNP genotype data. However, this approach cannot cluster
GVs comfortably giving an ARI of only 0.25. Further,
ADMIXTURE requires a preprocessing step from VCF to
PED format, which takes a significant amount of time. To
address the shortcomings of ADMIXTURE, VariantSpark is
proposed [16], which provides an interface from MLlib that
offers a seamless genome-wide sampling of variants and
provides a pipeline for visualizing results from the 1000GP
and PGP. However, overall clustering accuracy is low, and
VariantSpark does not provide support for classifying indi-
viduals based on genotypic information.

370 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022



Research also focused on genomic inferring, and ethnic-
ity prediction, e.g., literature [29] proposed approximate
Bayesian computation (ABC), which is a likelihood-free
inference method based on simulating datasets and compar-
ing their summary statistics. Although ABC’s main advan-
tages lie in its simplicity and ability to output a posterior
distribution, it suffers from the ‘curse of dimensionality’
with decreasing accuracy and stability as the number of
summary statistics grows [8]. Byun et al. [4], proposed a dis-
tance-based approach for BAI using principal component
analysis and spatial analysis to assign individuals to popu-
lation memberships.

In a previous work [30], [31], we applied K-means for the
population scale clustering and achieved better accuracy
than ADMIXTURE and VariantSpark. For predicting ethnic-
ity, we trained an MLP classifier, which achieved a state-of-
the-art result with high confidence. However, two limita-
tions remained: i) the feature extraction process based on
SPARQL query and converting genotype data into Resource
Description Format (RDF) [32] take non-trivial time for all
the chromosomes. Excellent performance was obtained for
the genotype dataset for a single chromosome due to a low
number of latent variables, which shows inferior results for
all the chromosomes because of the overfitting and lack of
generalization while training MLP model.

3 MATERIALS AND METHODS

In this section, we describe materials and methods of our
approach: first, we describe our feature engineering step we
followed to prepare the training data consisting of GVs fea-
tures and labels. Then we chronicle network constructions
for clustering and classifying population groups. Finally,
we describe the training process and hyper-parameter
tuning.

3.1 Problem Statement

Clustering individual’s based on GVs is correlated with geo-
graphic ethnicity and bio-ancestry, where the main objective
is grouping populations into clusters based on similarity,
density, intervals, or particular statistical distributions meas-
ures of the data space [18]. Given GVs of n samples, X =
fx1; x2; . . . ; xng, where X 2 RD. We consider clustering indi-
viduals into k-categories (i.e., k super-population or sub-
population groups), each represented by a centroid mj; j ¼
1; . . .; k. On the other hand, predicting the ethnicity of an
individual xi is classifying a data point into a specific into
sub-population groups based on its GVs.

However, instead of clustering or classifying samples
directly in the original data space X, we first transform the
data with a nonlinear mapping fu : X ! Z, where u are learn-
able parameters and Z 2 RK is the learned or embedded fea-
ture space, whereK � D. In our approach, to parametrize fu,
CAE architecture is employed due to it’s function approxi-
mation properties and feature learning capabilities [33]
by capturing local relationship values [22] in GVs with
convolutional (conv) filters.

3.2 Datasets

Various genomics projects based onnextGeneration Sequenc-
ing technologies have emerged, including The Cancer

Genome Atlas (TCGA),2 International Cancer Genome
Consortium (ICGC),3 1,000 genomes project4 (1000GP),
Human Genome Project (HGP),5 Simons Genome Diversity
Project (SGDP),6 and Personal Genome Project(PGP).7 The
HGP showed that significant genetic differences exist
between individuals, whereas, inspired by HGP, 1000GP
seeks to measure those differences to help biomedical
researchers understand the roles of GVs in health and illness.
In previous studies, the 1000GP [1], [34] serves as one of the
prime sources to analyze genome-wide single nucleotide
polymorphisms (SNPs) at scale for predicting individual’s
ancestrywith regards to continental and regional origins [35].

3.2.1 Data Selection

Data used in this study from the 1000GP (phase 3) and SGDP
act large catalog of human GVs, where the phase 3 of 1000GP
provides GVs data of 2,504 individuals from 26 populations
(i.e., ethnicity) in which samples are grouped into five super-
population groups according to their predominant ancestry:
Europe, Africa, America, and Asia in which each of the 26
populations has about 60-100 individuals [36].

However, deletions and substitutions of less important
variants (single nucleotide polymorphisms, indels, and other
structural variant classes) in quality control leaves a total of 88
million variants: 84.7 million were SNPs, 3.6 million short
indels, and 60,000 structural variants) identified as high-qual-
ity haplotypes [1], [34], [37]. Each genotype comprises all 23
chromosomes and a separate panel file containing samples
and population information. For multi-allelic variants (e.g.,
Listing 1), each alternative allele frequency (AF) is calculated
as the quotient of allele count and allele number (AN), where
AF in the five super-population groups is calculated from the
AN(range=[0,1]). Table 1 shows the distribution of the popu-
lation groups in 1000GP.

Listing 1. an Example of Multi Allelic Variants in 1000GP

1 1 15211 rs78601809 T G 100 PASS AC=3050;

AF=0.609026;AN=5008;NS=2504;DP=32245;

EAS_AF=0.504;AMR_AF=0.6772;AFR_AF=0.5371;

EUR_AF=0.7316;SAS_AF=0.6401;AA=t|||;VT=SNP

However, one downside of 1000GP is that it’s sequencing
study focused on demographically large populations, which,
unfortunately, tend to ignore smaller populations that are
also important for understanding human diversity [38]. To
include such smaller populations, GVs from the SGDP are
used, which contains deep genome sequences of 279 individ-
uals from 130 populations chosen to span much of human
genetic, linguistic, and cultural variation, covering: 44 Afri-
cans, 22 Native Americans, 27 Central Asians or Siberians, 47
East Asians, 25Oceanians, 39 SouthAsians, and 75West Eur-
asians. The 1000GP8 and SGDPdata9 are publicly available in

2. TCGA: https://cancergenome.nih.gov/
3. ICGC: https://dcc.icgc.org/
4. 1000GP: https://www.internationalgenome.org/
5. HGP: http://humangenes.org/
6. SGDP: http://reichdata.hms.harvard.edu/sgdp/
7. PGP: http://www.personalgenomes.org/
8. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
9. https://reichdata.hms.harvard.edu/pub/datasets/sgdp/
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variant call format (VCF). Additionally, population region
for each sample is provided.

3.2.2 Population Stratification

Sincemajority of the variants are SNPs and INDELs [8], com-
puting likelihood of complex population genetic models is
often infeasible from the multiple individuals. Further, pop-
ulation stratification is necessary to identify the presence of a
systematic difference in AF between sub-populations in a
population, possibly due to different ancestry. First, we pro-
cess the panel file containing sample IDs of the individuals,
population group, ethnicity, super population groups, and
the gender info (Table 2) and extract only the targeted popu-
lation data which identify the population groups. Then we
convert the GVs to common genotype object, followed by
another round of filtering to extract data for the relevant indi-
viduals and super population groups only. Genotype objects
are then converted into a sample variant object containing
the following genotypic information:

� Sample ID: to uniquely identify a sample
� Variant ID: to uniquely identify a genetic variant
� Alternate allele count: count of alternate alleles (AA) in

which the sample differs from the reference genome.

Furthermore, since ADMIXTURE’s underlying statistical
model does not take linkage disequilibrium (LD) into
account, we remove variants with high LD and incomplete
variants, assuming they are outliers [39]. Moreover, since
1000GP phase 3 contains overlapping and duplicate sites,
we ignored duplicate sites in any analysis. The total number
of sample (i.e., individual) is then determined, before
grouping them using their variant IDs, and filtering out var-
iants without support by the samples. Then we group var-
iants by sample ID and sort them for each sample
consistently using variant IDs, which gives us a sparse train-
ing data consisting of sample ID, variant ID, position ID, RS
ID, and AA count, where a row represents an individual, a
column represents a specific variant, and the “Region” col-
umn signifies labels.

3.3 Network Constructions and Training

In our approach, we model two tasks into a single pipeline,
which has three stages as shown in Fig. 1: i) representation
learning (RL) based on CAE, ii) population scale clustering
using CEC in which we jointly optimize clustering and non-
clustering losses, iii) ethnicity prediction using a CAE classi-
fier. Non-clustering loss (NCL) is independent of the clus-
tering algorithm and usually enforces a desired constraint

Fig. 1. Processing pipeline of the proposed approach for for population-scale clustering and bio-ancestry inferencing.

TABLE 2
A Snapshot From the Panel File From 1000GP

Sample ID Population group Ethnicity Super population group Gender

HG00096 GBR British in England and Scotland EUR Male
HG00171 FIN Finnish in Finland EUR Female
HG00472 CHS Southern Han Chinese EAS Male
HG00551 PUR Puerto Ricans from Puerto Rico AMR Female

TABLE 1
Distribution of the Population Groups in 1000GP

Super population group Acronym Covering ethnicity Sample count

East Asia EAS CHB, JPT, CHS, CDX, KHV 617
European EUR CEU, TSI, FIN, GBR, IBS 669
African AFR YRI, LWK, GWD, MSL, ESN, ASW, ACB 1,018
American AMR MXL, PUR, CLM, PEL 535
South Asian SAS GIH, PJL, BEB, STU, ITU 661

372 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022



on the learned model [40]. NCL also guarantees the learned
representation to preserve spatial relationships between
GVs so the original input can be reconstructed in the decod-
ing phase [23], while the clustering loss is specific to the
clustering method and clustering-friendliness of the learned
representations [40].

3.3.1 Construction of Convolutional Autoencoder

Inspired by literature [18], we learn the cluster and classifi-
cation friendly representations of samples by employing
CAE: first, to apply conv operations, we embed extracted
GVs of each sample into a 2D image inspired by literature
[20] in which each sample is reshaped from a 4,238x1 array
into a 66 x 66 image by adding zero padding around the
edges and normalized each image to [0,255]. Instead of
manually engineered conv filters in a CNN, we constructed
the CAE by adding conv and pooling layers. The CAE con-
sists of an encoder that performs convolution and pooling
operations and a decoder that performs unpooling and
deconvolution (deconv) operations. From the given GVs,
the first conv layer in the encoder calculates jth feature
map (FM) as follows [41]:

hj ¼ s xi �Wj
ij þ bj

� �
; (1)

where xi is the input sample, Wj
ij is the jth filter from input

channel i and filter j, bj is the bias for the jth filter, i.e., single
bias per latent map,10 s is rectified linear unit (ReLu) activa-
tion function, and � denotes the conv operation. To obtain
the translation-invariant representations, max-pooling is
performed by downsampling conv layer’s output and taking
the maximum value in each m� n non-overlapping sub-
region [41]. In the decoding phase, unpooling and deconv
operations are performed to preserve the positional-invari-
ance information during the pooling operations. The deconv
operation is performed to reconstruct xi as follows [41]:

xi ¼ s oj �Wj
oj þ cj

� �
; (2)

where oj is jth FM andWj
oj is jth filter of unpooling layer o; j

and cj are filter and bias of jth output layer. Hence, CAE

learns optimal filters by minimizing the RL1, which is the
distance measure dCAE between input xi and its correspond-
ing reconstruction fðxiÞ [18]

LCAE ¼ dCAEðxi; fðxiÞ ¼
X
i

jjxi � fðxiÞjj2: (3)

Eventually, CAE-based RL results more abstract features
that help to stabilize training and network converges faster,
avoid corruption in feature space, and improve clustering
quality [18]. The architecture of CAE consist of a 20-layer net-
work in which batch normalization layer is used after every
conv layer and the ReLu activation is used in every layer
except for the last layer where softmax activation is used. In
particular, the CAE part has the following structure:

� Input layer: genetic variants of each sample reduced
from 4,238 � 1 to 66 � 66 � 1

� Convolutional layer: of size 32 � 32 � 32
� Batch normalization layer: of size 32 � 32 � 32
� Convolutional layer: of size 16 � 16 � 64
� Batch normalization layer: of size 16 � 16 � 64
� Max-pooling layer: of size 2 � 2
� Convolutional layer: of size 8 � 8 � 128
� Batch normalization layer: of size 8 � 8 � 128
� Convolutional layer: of size 4 � 4 � 256
� Batch normalization layer: of size 4 � 4 � 256
� Max-pooling layer: of size 2 � 2
� Upsampling layer: of size 2 � 2
� Deconvolutional layer: of size 4 � 4 � 256
� Batch normalization layer: of size 4 � 4 � 256
� Deconvolutional layer: of size 8 � 8 � 128
� Batch normalization layer: of size 8 � 8 � 128
� Deconvolutional layer: of size 16 � 16 � 64
� Batch normalization layer: of size 16 � 16 � 64
� Upsampling layer: of size 2 � 2
� Deconvolutional layer: of size 32 � 32 � 32.

3.3.2 Construction and Training of CEC Network

As shown in Fig. 2, architecturally, CEC is an improved var-
iant of DEC in which405we employed CAE instead of
vanilla AE and denoising AE. The CEC is trained in two
phases: i) parameter initialization with a CAE (see

Fig. 2. Improving deep embedding clustering based on CAE and optimizing both reconstruction and CAH losses jointly. Less bright GVs (right side)
means reconstruction errors exist.

10. One bias per GV would introduce many degrees of freedom
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Section 3.3.1) and trained by optimizing the standard RL1,
ii) parameter optimization by iterating between computing
an auxiliary target distribution and minimizing the Kull-
back-Leibler divergence (KLD) [42] and cluster assignment
hardening loss (CAHL) loss in which the cluster assignment
is formulated, followed by the centroid updated with
backpropagation.

The RL1 guarantees the learned representation to preserve
important information (e.g., spatial relationships between
features) so that the original input can be reconstructed [23].
Once the RL1 is optimized, latent features (LF) Z are
extracted from the encoder, followed by normalizing them
such that 1

d jjzijj22 is approximately 1, where d is dimension of
the feature space fzi 2 Zg. Next, from an initial estimate of
the non-linear mapping fu and centroids fmj 2 ZgKj¼1 (as
trainable weights Z), we improve the clustering by alternat-
ing between two steps which we repeat until a convergence
criterion ismet [43]:

� Step 1: soft assignment of Z to the cluster centroids.
� Step 2: updating the mapping fu and refining cluster

centroids by learning from initial assignments using
an auxiliary target distribution.

Initializing clustering on LF generates second type of
loss called CAHL, which is specific to clustering method
and clustering-friendliness of the learned representa-
tions [40]. Similar to literature [43], we consider normal-
ized similarities between data points and centroids as
the soft cluster assignments in which the Student t-distri-
bution [44] is used as the kernel to measure the similar-
ity between embedded point zj and centroid mj, where
zi= fu ðxiÞ 2 Z corresponds to xi 2 X after embedding, a
is the degree of freedom, and qij is the probability of
assigning sample i to cluster j [33].

qij ¼
ð1þ jjzi � mjjj2=aÞ�

aþ1
2P

j0 ð1þ jjzi � mj0 jj2=aÞ�
aþ1
2

: (4)

However, cross-validation of a in the unsupervised set-
ting is not a viable option. Moreover, learning a is super-
fluous, similar to literature [43], we set a to 1. In step 2,
similarity between the distributions is evaluated using
KLD w.r.t. by decreasing the distance between soft
assignments (qij) and the auxiliary distribution (pij) as fol-
lows [33]:

LKLD ¼ KLðP jjQÞ ¼
X
i

X
j

pijlog
pij
qij

; (5)

where qij 2 Q and pij 2 P are optimized through backpro-
pagation. Minimizing this loss w.r.t. network parameters
leads to smaller distances between the data points and
their assigned cluster center for a better CQ, where the
loss is computed by favoring a situation where points of
a cluster are close to the mean of the cluster. Conversely,
points that are close to the mean of another cluster will
adversely affect the loss. However, since setting P is cru-
cial to increase the CQ, similar to [43], the soft assignment
qij is computed by raising auxiliary distribution pij to the
second power and normalizing by frequency per cluster
as follows:

pij ¼
q2ij=fjP
j0 q

2
ij0=fj0

; (6)

where fj ¼
P

i qij are soft cluster frequencies and P forces
the assignments to have stricter probabilities between [0–1].
On the other hand, since the constraints enforced by the
RL1 can be lost after training the network longer, using only
clustering loss may lead to worse clustering results [40]. To
tackle this issue and similar to literature [23], [45], [46], we
performed joint training by setting a such that the network
training is affected by both clustering and non-clustering
loss functions simultaneously in which combining them
with a linear combination of individual loss is priory

LðdÞ ¼ sLKLDðdÞ þ ð1� sÞLCAEðsÞ; (7)

where LKLDðdÞ is the clustering loss, LCAEðsÞ is the non-
clustering loss, and s 2 ½0; 1� is a constant hyperparameter
to specify the weighting between both functions. We opti-
mize LðdÞ using the first-order gradient-based AdaGrad
with varying learning rates and different batch size, where
gradients of L (w.r.t Z) for each data point zi and cluster
centroid mj are computed as follows [43]:

@L

@zi
¼ aþ 1

a

X
j

1þ jjzi � mjjj2
a

 !�1

(8)

� ðpij � qijÞðzi � mjÞ
@L

@mj

¼ �aþ 1

a

X
i

1þ jjzi � mjjj2
a

 !�1

� ðpij � qijÞðzi � mjÞ:

(9)

where the gradients @L/@zi are used in standard backpropa-
gation to compute network’s parameter gradient @L/@u.
This iterative process continues until less than tol% of points
change cluster assignment between two consecutive itera-
tions for the cluster assignments [31].

3.3.3 Training of CAE Classifier

As shown in Fig. 3, the CAE classifier has two module:
autoencoder and classifier. As discussed in the previous sec-
tion, after training the CAE, we remove the decoder compo-
nents by making the first 20 layers trainable false, since the
encoder part is already trained. 80 percent of the LF is used
for the training the CAE classifier and 30 percent as the held-
out test set. The training LF vector is fed into a flattening layer,
followed by a dense, dropout, and Softmax layers (with out-
put unit of 26 for 1000GP and 7 for SGDP) for the probability
distribution over the classes.

Gaussian noise layer was also added followed by each
conv, dense, and dropout (with a high probability value) to
improve the model generalization by reducing overfitting.
Moreover, to improve the classification results, we applied
batch normalization and kept the adaptive rate. Weights are
then updated using backpropagation, whereas the AdaGrad
optimizer is used to optimize the categorical cross-entropy
loss between predicted (P) versus true sub-population
groups (T) in a random-search and 5-fold cross validation
setting for finding optimal hyperparameters
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E ¼
X
i;j

Ti;jlogPi;j þ 1� Ti;j

� �
log 1� Pi;j

� �
: (10)

When the training is completed, the model is used to score
against the test set to measure predicted population groups
versus GVs producing in a multiclass setting.

3.4 Formulating Performance Metrics

We used three empirical measures: Elbow [47], generaliz-
ability G, and normalized mutual information (NMI) [48].
In Elbow, we calculate the cost using within-cluster sum of
squares (WCSS) as a function of the number of clusters, K.
Since Elbow performs better in a classical clustering set-
ting [31], NMI is used for evaluating clustering results with
different cluster numbers [33], which tells us the reduction
in the entropy of class labels, computed as follows:

NMIðy; cÞ ¼ Iðy; cÞ
1
2 ½HðyÞ þHðcÞ� ; (11)

where y signifies the ground-truth labels, c is the cluster
assignment, I is the mutual information between y and c,
and Hð:Þ is the entropy. On the other hand, G is the ratio
between training and validation loss [33], in which G is
small when training loss is lower than the validation loss,
an indication of high degree of overfitting.

G ¼ Ltrain

Lvalidation
: (12)

Since a good clustering accuracy also characterized by high
intra-cluster similarity and low inter-cluster similarity for
the data points. Accordingly, rand index (RI) is calculated
based on the permutation model (PM) as follows [18]:

RI ¼ TP þ TN

TP þ FP þ FN þ TN
; (13)

where TP, TN, FP, and FN signify true positive, true negative,
false positive, and false-negative rates. RI has a value bet-
ween 0 and 1, where 0 indicates the disagreement between
twodata clusters on any pair of points, and 1 signifies the per-
fect agreement (i.e., the same cluster). In our approach, nor-
malized RI (ARI), which ranges between -1 (independent
labeling) and 1 (perfect match) is used [49]. Further, to evalu-
ate the CQ, unsupervised clustering accuracy (ACC) [33]

metric is used, which takes a cluster assignment from a base
clustering algorithm, assigns the ground truths, and com-
putes the best match between them. From the ground
ground-truth label yi and the cluster assignment ci, ACC is
computed as follows:

ACC ¼ maxm

Pn
i¼1 1

n
yi ¼ mðciÞ

o
n

; (14)

where m ranges overall possible one-to-one mappings
between clusters and labels using Hungarian algorithm [50].
Further, since ground truths are available, homogeneity and
completeness are formulated to desirable objectives for the
cluster assignment using conditional entropy analysis [51].
While, the former signifies if each cluster contains only
members of a single class, the latter tells us if all members
of a given class are assigned to the same cluster.

4 EXPERIMENT RESULTS

We discuss the evaluation results, both quantitatively and
qualitatively. Besides, a comparative analysis with state-of-
the-art approaches is provided.

4.1 Experiment Setup

All the programs11 were written in Python and experi-
mented on a computer having 32 cores, 256 GB of RAM,
and Debian 9.9, while the software stack consisted of Keras
and scikit-learn with the TensorFlow backend. First, to
achieve massive scalability while processing genotype data
across all the chromosomes, we used ADAM,12 while spar-
kling water13 is used to transform data between ADAM and
Spark. Network training is then carried out on an Nvidia
Titan Xp GPU with CUDA and cuDNN enabled.

Results based on best hyperparameters produced through
random search are reported empirically, where we verified
whether the network converges to the optimal number of
clusters by setting K ¼ 2 and increasing it slowly. We also
focused on investigating how the network training con-
verged during the cluster assignments and updates by utiliz-
ing the Elbowmethod in which WCSS is calculated. Besides,

Fig. 3. Schematic representation of CAE classifier starts from taking input GVs and passing to CAE before getting the latent representation from the
encoder to pass to dense, dropout, and softmax layer for the super (or sub) population prediction.

11. https://github.com/rezacsedu/Convolutional-embedded-
networks

12. https://github.com/bigdatagenomics/adam
13. https://www.h2o.ai/sparkling-water/
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other metrics such as ARI, NMI, ACC, completeness, and
homogeneity. On the other hand, macro-averaged precision,
recall, F1-score, and Matthias correlation coefficient (MCC)
are reported in themulticlass setting.

4.2 Ethnicity Prediction and Inferencing Analysis

We evaluated performance of the trained models in 3
folds: first, we extracted GVs of selected sub-population
groups (i.e., ‘ASW’, ‘CHB’, ‘CLM’, ‘FIN’, ‘GBR’) from chro-
mosome 22 data, which gives 494,328 alleles allowing 5
class and compare the actual labels to the same number of
predicted ethnicity labels. This random sample selection
provides a good classification accuracy (i.e., 92.86 percent),
as shown in the confusion matrix in Table 3. The full test
set is then used to evaluate the model by measuring the
prediction performance for sub-populations at the bound-
aries of the super population, giving precision, recall, F1,

and MCC scores of 0.9025, 0.8983, 0.9004, and 0.8245,
respectively.

However, since classes are imbalanced, accuracy gives a
distorted estimation of the sub-populations. Hence, class-
specific classification reports and MCC scores are reported
in Table 4. As shown, precision, recall, and f1 for the major-
ity of sub-populations groups are high. In particular, the
CAE classifier classifies JPT, KHV, CEU, TSI, FIN, GBR, IBS,
LWK, ASW, ACB, MXL, PUR, CLM, PEL, GIH, PJL, BEB,
STU, and ITU samples mostly correctly. However, for the
Han Chinese in Beijing (CHB), Southern Han Chinese
(CHS), and Chinese Dai in Xishuangbanna (CDX) popula-
tions, the CAE classifier made considerable misclassifica-
tion, giving lower scores, probably because of similar GVs
across those samples. Although African populations were
mostly classified correctly, in the case of YRI (Yoruba in
Nigeria), GWD (Gambian in Gambia), MSL (Mende in
Sierra Leone), and ESN (Esan in Nigeria), a fairly high mis-
classification error is observed.

Even though, CAE classifier confused between AFR, SAS,
AMR, and EUR samples (as shown in Fig. 4), this is still con-
siderably low compared to literature [30]. The reason for the
improvement is that all the variantswith high LD and incom-
plete variants were removed in our preprocessing step,
which has contributed towards non-corrupted latent fea-
tures. The reason is simple with that minor factor, and we
removed some impurities giving the network more quality
features, which eventually helped in separating data points.
On the other hand, class-specific MCC scores of the CAE
classifier suggests that predictions were strongly correlated
with the ground truth, yielding a Pearson product-moment
correlation coefficient higher than 0.70 for the majority sub-
population groups. Besides, the ROC curves in Fig. 5 show
consistent AUC scores across folds for both datasets, which
signifies that the predictions by the CAE classifier in both
cases aremuch better than random guessing.

Finally, we trained the CAE classifier on the SGDP dataset
for predicting unknown ethinicity in which similar data
processing steps were followed. We experienced moderately
lower predictive accuracy: out of 44 Africans, only 35 sam-
ples were predicted correctly, and the rest of the samples
were predicted as South Asian. However, the CAE model

TABLE 3
Confusion Matrix of CAE Classifier

Sub population ASW CHB CLM FIN GBR Support

ASW 56 0 3 2 0 5/61
CHB 2 98 0 3 0 5/103
CLM 1 0 88 4 1 6/94
FIN 1 2 91 3 2 8/99
GBR 2 1 1 4 83 8/91

Total 62 103 174 16 85 32/448

TABLE 4
Class-Specific Performance of Ethnicity Prediction

Sub-population Precision Recall F1 MCC

CHB 0.8153 0.8015 0.8083 0.7235
JPT 0.9037 0.8976 0.90.07 0.8256
CHS 0.8233 0.8175 0.8204 0.7421
CDX 0.8025 0.7945 0.7985 0.7043
KHV 0.8643 0.8525 0.8583 0.8046
CEU 0.8583 0.8311 0.8445 0.7967
TSI 0.8826 0.8782 0.8804 0.8024
FIN 0.9235 0.9169 0.9202 0.8369
GBR 0.8943 0.9029 0.8886 0.8162
IBS 0.8224 0.8173 0.8242 0.7121
YRI 0.8381 0.8456 0.8419 0.7235
LWK 0.8967 0.9123 0.9044 0.8531
GWD 0.8194 0.8085 0.8140 0.7891
MSL 0.8368 0.8245 0.8306 0.7951
ESN 0.8785 0.8643 0.8714 0.8097
ASW 0.8954 0.8832 0.8893 0.8430
ACB 0.8753 0.8671 0.8712 0.8421
MXL 0.8825 0.8733 0.8779 0.8262
PUR 0.8913 0.8719 0.8815 0.8076
CLM 0.8537 0.8611 0.8574 0.8735
PEL 0.9629 0.9567 0.9598 0.8525
GIH 0.8736 0.8722 0.8729 0.8134
PJL 0.8952 0.8845 0.8898 0.8236
BEB 0.9255 0.9123 0.9188 0.8374
STU 0.8795 0.8857 0.8826 0.8212
ITU 0.8697 0.8567 0.8632 0.8513

Average 0.9025 0.8983 0.9004 0.8245

Fig. 4. Confusion matrix where predictions are for sub populations at the
boundaries of the super population.
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shows high confidence at predicting Native Americans sam-
ples in which 20 samples out 22 were correctly predicted,
and only 2 samples were predicted as West Eurasians; in the
case of Central Asians or Siberians, 20 sampleswere correctly
predicted, and 7 samples were predicted as West Eurasians,
while out of 47 East Asians samples, 39 were correctly pre-
dicted, 6 samples were predicted as Africans, and 2 samples
were predicted as SouthAsians.

In the case of Oceanians samples, 22 samples were cor-
rectly predicted out of 25, and only 3 samples were pre-
dicted as Native Americans. Besides, out of 39 South Asians
samples, 29 were correctly predicted, and 10 samples were
predicted as Africans, showing considerably high misclassi-
fication rates. Out of 75 West Eurasians samples, only 65
were correctly predicted, 8 were predicted as Central Asians
or Siberians, and 2 were predicted as Native Americans.
Overall, 211 samples out of 279 were correctly classified giv-
ing an F1-score of 0.83 in which CAE classifier was more
confused between South Asian and Africans, Central Asians
or Siberians and West Eurasians, and between East Asian
and Africans, which is probably because GVs from these
two groups are mostly mixed and share common alleles. A
depth genomic analysis is further required to explain these.

4.3 Population Scale Cluster Analysis

Clustering results are reported in Table 5 with different met-
rics in which the AC algorithm performed the best clustering
with optimal hyperparameters onCAE-based LF (highlighted

in cyan): we observed an ARI, NMI, and ACC of 0.915, 0.927,
and 0.896, respectively in which each cluster contains only
members of a single class in 86.7 percent of the cases (homoge-
neity) and in 85.3 percent of the cases all members of a given
class are assigned to the same cluster (completeness). The rea-
son is that CAE learned LF that are more quality ones than
raw GVs data, as shown in Fig. 6, which eventually tends to
better separability of data points.

Besides, DBSCAN and K-means (on CAE-based on LF)
also performed moderately well compared GMM and
OPTICS algorithms in which DBSCAN turns out to be the
second-best clustering algorithm. Contrarily, both OPTICS
and GMM did not perform well, making the GMM the
worst performer. On one hand, OPTICS is inherently better
for sequences hence couldn’t provide better separability of
the data points. On the other hand, GMM doesn’t have any
uncertainty measure or probability w.r.t how much a data
point is associated with a specific cluster.

Predicted clusters by CEC can be observed in Fig. 6d,
where GVs of African (AFR), East Asian (EAS), and
American (AMR) super-population groups are highly sepa-
rated and grouped into distinct clusters. On the other hand,
although European individuals can be mostly separated
into persons of Finnish and non-Finnish ancestry [7], overall
EUR is more mixed with AMR and consists predominantly
of individuals, so didn’t cluster well. This is probably the
effect of several mixtures of GVs, e.g., migrational back-
grounds and a potential reason for such low clustering accu-
racy. However, in cases where individuals were not clearly
clustered due to diverse migrational backgrounds, the
ancestry itself influences the treatment hence accurate pop-
ulation association may not be known for the patients even
from the human leukocyte antigen (HLA) allele genotyping
from SNP information [39]. Albeit, literature [39] observed
an increase in cluster accuracy by removing individuals
with a mixed background and operating at super-popula-
tion level, and it was not the cases in the sub-population
level sine a recent research [28] has shown that the apparent
separation between East Asian and other samples reflects a

Fig. 5. ROC curves for the CAE classifier on 100GP and SGDP datasets.

TABLE 5
Clustering With Autoencoders + Base Clustering

Algorithms (Hom*==Homogeneity, Com*==Completeness)

Clustering algorithm ARI NMI ACC Hom* Com*

K-means 0.853 0.863 0.838 0.827 0.814
AC 0.915 0.927 0.896 0.867 0.853
GMM 0.814 0.821 0.792 0.775 0.776
DBSCAN 0.885 0.891 0.872 0.846 0.836
OPTICS 0.831 0.843 0.815 0.813 0.805
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deficiency of Middle Eastern and Central Asian samples in
the dataset.

Further, we investigate how well CEC converges to the
optimal number of population groups: we started the clus-
tering by setting K=2 (where applicable) and increased up
to 35 and observe the clustering performance. We plotted
NMI and G versus several clusters and found a sharp drop
of generalizability for K = 26 and 27, which means that 26 is
the optimal number of clusters. To support this argument,
the graph also shows that for 26, we observed the highest
NMI of about 0.92. Subsequently, we utilize the Elbow
method in which we calculated WCSS as a function of the
number of clusters (i.e., K), for which we observed a drastic
fall of WCSS when several clusters were around 25 and 26
for 1000GP and 7 and 8 for the SGDP.

To compare with VariationSpark, we further analyze the
clustering of five super-population groups (i.e., ‘EUR’,
‘AMR’, ‘AFR’, ‘EAS’, ‘SAS’) for each to the label assigned by
CEC. This experiment results in an ARI of 0.87, an ACC of
0.86, and an NMI of 0.88, showing higher confidence, at least
in terms of ARI (albeit, this is still low compared to our over-
all ARI). Finally, we investigate which super-population
group contains what percentage of human GVs in which

CEC reveals an interesting statistics showing majority of the
genetic variants were clustered into EUR (28.32 percent) and
lowest into AMR (12.68 percent), while the distributions of
samples from EAS, AFR, and SAS super-population groups
were 22.25, 18.65, and 18.10 percent, respectively.

4.4 Qualitative Study of the Learned
Representations

Since GVs data are high-dimensional, learning the associa-
tion between each feature was fairly considered. Inspired
by literature [20], [21], [52] and to qualitatively study
whether the learned representation can express the biologi-
cal characteristics of the individuals, t-SNE of the CAE
encoder’s output, i.e., latent FM and raw GVs are plotted in
Fig. 6. From t-SNE plots, we can observe moderately high
distinctive patterns between 4 super-population groups.
However, not all these patterns clearly visible in the t-SNE
plot of raw GVs, which signifies how CAE learned latent
genetic properties better from the GVs profiles.

4.5 Shapley Value-Based Explanations

Since CAE learns the representations are not easily interpret-
able, interpretable and disentangled representations are

Fig. 6. t-SNE plots of different clustering stages: a) no distinctive patterns visible between super-population groups on raw GVs, b) learned latent
genetic properties from GVs profiles with CAE, showing moderately high distinctive patterns between super-population groups, c) clustering super-
population groups on raw GVs, d) clustering super-population groups on learned feature maps with CAE.
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essential to provide insight into what features did the repre-
sentations capture and what attributes of the samples are the
clusters based on. To provide interpretations of the predic-
tions, we identify significant GV biomarkers using GBT in
which SHAP generates explanations. Shapley values are
used to calculate the importance of a feature by comparing
what a model predicts with and without a feature from all
possible combinations of n features in the dataset S, where
the prediction p of the model for a given feature i 2 S is gen-
erated w.r.t i, for which the Shapely value f is calculated as
follows [53]:

fiðpÞ ¼
X

S�N=i

jSj!ðn� jSj � 1Þ!
n!

ðpðS [ iÞ � pðSÞÞ: (15)

However, since the order in which a model sees features
can affect the predictions, this computation is repeated in
all possible orders to compare the features fairly [24]. The
feature that does not modify the predicted value is expected
to produce a Shapley value of 0. However, if two features
contribute equally to the prediction, Shapley values should
be the same [53]. The base value indicating the directions of
the first prediction made by the GBT model is Fig. 7 in
which how much each feature is pushing model’s output
from the base value14 to the predicted output is shown. Fea-
tures pushing the prediction higher are shown in red, those
pushing to lower are in blue.

In Fig. 8, top-15 common biomarkers are sorted by the
sum of SHAP value magnitudes over all the samples and
are ordered according to their importance, where the color
represents the value of the feature from low to high, i.e., red
represents high feature values, and blue represents low fea-
ture values. Overlapping points are jittered in the y-axis sig-
nifying the distribution of the Shapley values per feature,
i.e., delivery of the impact of each feature on the model out-
put. However, since all effects describe the overall behavior
of the model and are not necessarily causal, we provide
additional annotations for these biomarkers in Table 6. As
seen, the majority of the variants are multi-allele SNPs.

4.6 Discussion and Comparative Analysis

Based on optimal K and other hyperparameters, CEC com-
pletes clustering in 22 hours with an ARI of 0.915, an NMI
of 0.927 and ACC of 0.896 as shown in Table 7, while Varia-
tionSpark requires 30h to finish the overall computation,
leveraging an ARI of 0.82 only.15

ADMIXTURE performs clustering based on the maxi-
mum likelihood estimation of individual ancestries and

multi-locus SNP genotypes. Overall processing time is con-
siderably high (takes 35h), giving an ARI of only 0.25 [16].
Following are some potential reasons behind low clustering
accuracy of VariationSpark and ADMIXTURE:

� Being a K-means-based approach, VariationSpark
has several limitations. K-means is based on the
assumption that each cluster is equal-sized, where
clusters to have hyper-sphere shapes [18], which is
not the case for both 1000GP and SGDP datasets.
Further, since K-means is sensitive to noise and out-
liers thus was probably trapped in a local optimum
during the clustering operations. Nevertheless, we
observed that the clustering results were slightly dif-
ferent for a different initial value of K since it’s the
only hyperparameter.

� Being an MLE-based approach, ADMIXTURE is
limited to accurately estimate population mean and
standard deviation [54] in case of multi-locus SNP
genotypes.

Our study also investigated what percentage of the cases
for each cluster contains members of a single class and what
percentage of the cases for all members of a given class are
assigned to the same cluster, giving 86.7 of homogeneity
and 85.3 percent of the completeness of the clustering. Fur-
ther, the in-memory caching mechanism of ADAM and

Fig. 7. GVs feature contribution for the first prediction: red pushes the predictions higher, blue ones to lower.

Fig. 8. Clinical features ordered by ascending importance on the
y-axis (dots represent SHAP values of specific features).

14. The average model output over the training dataset passed
15. VariationSpark and ADMIXTURE did not report NMI, ACC,

homogeneity, and completeness
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Spark while processing VCF files made our processing pipe-
line 32 and 90 percent faster compared to VariantSpark and
ADMIXTURE, respectively. Nevertheless, VariationSpark
and ADMIXTURE are both black-box methods, whereas we
explain the prediction made by models showing class and
cluster discriminating features.

5 CONCLUSION AND OUTLOOK

In this paper, we implemented two powerful architecture
called CEC and CAE classifiers for the clustering population
and predicting genomic ancestry based on GVs of about
3,000 individuals from the 1000GP and SGDP. Our Spark
and ADAM based data processing is particularly suitable
for handling large-scale genomic data. Experiment results
with a focus on accuracy and scalability show that our
approach outperforms state-of-the-art approaches such as
ADMIXTURE and VariantSpark. Our approach can perform
clustering on VCF files from 2,504 individuals consist of
84 million GVs in just 22h, allowing faster clustering for
well-characterized cohorts, where 20 percent of the genome
is sufficient for the training. CEC can cluster the whole pop-
ulation by jointly optimized feature space with an ACC of
89 percent, which can be viewed as an unsupervised exten-
sion of semi-supervised self-training. Similar to [33], CEC
has linear complexity concerning several data points, which
allowed us to scale to large datasets, whereas the CAE clas-
sifier can predict the ethnicity of unknown samples with an
F1-score of 93 percent, which is consistent with all the geno-
typic dataset from 23 chromosomes, giving high-level of
confidence.

We have seen that explaining the predictions with
plots and charts are useful for exploration and discovery
but interpreting them for the first time may be tricky, e.g.,
suppose, the CAE classifier predicts (or groups) a selected
sample is of FIN population (or into EUR super-popula-
tion group) in which model’s average response to the
dataset is 0.6 and the model predicts that the selected
sample’s bio-ancestry with probability 0.75 by showing
all the variables that have contributed to that prediction
but still interpreting these for the first time may be diffi-
cult and need more human-interpretable decision rules in

natural language. In the future, we intend to extend this
work by providing: i) a more detailed analysis of intra-
super-population groups and discuss the homogeneity
and heterogeneity among different groups, ii) considering
other datasets and factors like predicting population
groups within larger geographic continents, iii) exploring
if we can make share representations of the features out
of both 1000 genomes and PGP datasets and cluster them
simultaneously using CEC, iv) by generating decision
rules to provide more human-interpretable explanations
using neuro-symbolic reasoning.
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