
FPGA Accelerated Analysis of Boolean
Gene Regulatory Networks

Matteo Manica , Raphael Polig, Mitra Purandare,
Roland Mathis, Christoph Hagleitner ,

and Mar�ıa Rodr�ıguez Mart�ınez

Abstract—Boolean models are a powerful abstraction for qualitative modeling of

gene regulatory networks. With the recent availability of advanced high-throughput

technologies, Boolean models have increasingly grown in size and complexity,

posing a challenge for existing software simulation tools that have not scaled at the

same speed. Field Programmable Gate Arrays (FPGAs) are powerful

reconfigurable integrated circuits that can offer massive performance

improvements. Due to their highly parallel nature, FPGAs are well suited to

simulate complex molecular networks. We present here a new simulation

framework for Boolean models, which first converts the model to Verilog, a

standardized hardware description language, and then connects it to an execution

core that runs on an FPGA coherently attached to a POWER8 processor. We

report an order of magnitude speedup over a multi-threaded software simulation

tool running on the same processor on a selection of Boolean models. Analysis on

a T-cell large granular lymphocyte leukemia (T-LGL) demonstrates that our

framework achieves consistent performance improvements resulting in new

biological insights. In addition, we show that our solution allows to perform attractor

detection at an unprecedented speed, exhibiting a speedup ranging from one to

three orders of magnitude compared to alternative software solutions.

Index Terms—Field programmable gate arrays, accelerator architectures,

mathematical model, biological system modeling, biological systems, biological

control systems, biological processes, computer simulation, systems simulation,

computational biology, computational systems biology, bioinformatics, systems

biology

Ç

1 INTRODUCTION

GENES do not work in isolation, but exert their function in complex
and tightly connected gene regulatory networks (GRNs) [1]. At the
very basis, understanding complex diseases amounts to unravel-
ling normal and dysregulated behavior of GRNs. However, due to
their complexity and the lack of quantitative knowledge about
most kinetic parameters governing molecular interactions, an exact
analysis of GRNs, usually based on ordinary differential equations,
is in most cases not possible.

Boolean models [2] are an attractive alternative approach for the
study of GRNs that are consistently used in the systems biology com-
munity [3], [4], [5], [6], [7], [8], [9], [10], [11]. Boolean models provide
a qualitative description of aGRN,where chemical species concentra-
tions or activities are represented using a finite set of discrete values.
In a Boolean model, a node corresponds to a species, e.g., a gene, and
an edge represents an interaction between species. In its simplest
form, a gene can be ON (1) or OFF (0), and its interactions with other
genes are defined by means of a Boolean function of its immediate
parent nodes in the GRN. Time is represented by discrete steps, after
which the Boolean functions are evaluated following an update
scheme and the new values are assigned to their corresponding
genes [12]. Various update schemes can be adopted. In the

synchronous scheme [13], all genes are simultaneously evaluated and
updated, resulting in a fully deterministic and computationally trac-
table system, although often biologically unrealistic. An asynchro-
nous scheme [14] takes in account time diversity associated with the
different reaction rates of biological systems by updating variables in
a non-synchronous order. Multiple asynchronous update schemes
are possible, e.g., deterministic asynchronous, stochastic asynchro-
nous, randomasynchronous, etc. [15].We focus on a random asynchro-
nousupdate scheme inwhich a gene is chosen randomly andupdated
to its next value. The asynchronous scheme provides a stochastic, and
hence more realistic, description of a GRN, although at the price of
greatly increasing the computational complexity and execution time
of the model. In addition, as the model is stochastic, it has to be run
multiple times in order to resolve the mean dynamical behavior,
resulting often in prohibitively long simulation times.

Although a Boolean model cannot provide the level of detailed
information that an experimentally well-characterized ordinary
differential equation system can achieve, it can produce a qualita-
tive description of the most salient features of a dynamical system.
For instance, Boolean models can be used to identify steady states,
cyclic states or attractors – cycles of states A such that no trajectory
entering A can leave A, see for instance [16], [17], [18]. Attractors,
in particular, can provide valuable information about the observed
phenotypes and underlying mechanisms associated with complex
diseases, such as cancer [19]. However, the problem of finding attr-
actors is characterized by a high computational complexity, which
steeply increases with the number of network nodes. Furthermore,
the number and the size of the attractors of a system changes dra-
matically with the update scheme [20]. Some types of attractors,
such as self-loops and simple loops, are common to both update
schemes and hence can be computed using the less expensive syn-
chronous update scheme. However, in the most general case, the
characterization of the attractors landscape of a model requires
asynchronous updates, resulting in high complexity in the number
of states forming the attractor, as well as lengthy transitory states
leading to an attractor [12].

The computational problem of finding all the attractors in a
Booleanmodel is extremely hard. Even the simpler problem of find-
ing the steady states in a Boolean model is NP-hard [21], [22],
indicating that it is not possible to efficiently, i.e., in polynomial
time, find all attractors in the analysed system. Some of our co-
authors [15] have proposed a fast and scalable solution using FPGAs
to simulate Boolean models. The framework supports synchronous
and asynchronous updates. The approach scales efficiently, show-
ing a significant speedup compared with BoolNet [23], a popular R
package for the construction and analysis of Boolean networks. In
this paper, we extend our FPGA simulator to detection of attractors
leveraging the highly parallel nature and ever incresing capacity of
FPGAs for attractor detection.

Our accelerator is seamlessly integrated with a POWER8 proces-
sor, greatly increasing the usability of the proposed framework. We
demonstrate the performance of our accelerator using six state-of-
the-art Boolean models from the literature, including models for T-
cell large granular lymphocyte leukemia [24], castration resistant
prostate cancer [6], signaling pathways involved in cancer [7], colon
cancer [4], Fanconi anemia and breast cancer [25], and the MAPK
pathway [8]. First, using the 3 largest models, we compare the run-
time performance of our framework with a multi-threaded imp-
lementations of two commonly used software tools, namely
BoolNet [23] and BooleanNet [26], both running on a POWER8 pro-
cessor, and with an existing accelerator proposed by Miskov-
Zivanov et al. [27]. Our solution demonstrates an order of magni-
tude speedup over BoolNet, which already runs significantly faster
than BooleanNet, and exhibits better performance than the Miskov-

� R. Polig, M. Purandare, R. Mathis, C. Hagleitner, and M.R. Mart�ınez are with IBM
Research Z€urich, R€uschlikon 8803, Switzerland.
E-mail: {pol, mpu, lth, hle, mrm}@zurich.ibm.com.

� M. Manica with IBM Research Z€urich, R€uschlikon 8803, Switzerland, and also with
ETH Z€urich, Z€urich 8092, Switzerland. E-mail: tte@zurich.ibm.com.

Manuscript received 21 Nov. 2018; revised 29 July 2019; accepted 6 Aug. 2019. Date of
publication 3 Sept. 2019; date of current version 8 Dec. 2020.
(Corresponding author: Mar�ıa Rodr�ıguez Mart�ınez.)
Digital Object Identifier no. 10.1109/TCBB.2019.2936836

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020 2141

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8872-0269
https://orcid.org/0000-0002-8872-0269
https://orcid.org/0000-0002-8872-0269
https://orcid.org/0000-0002-8872-0269
https://orcid.org/0000-0002-8872-0269
https://orcid.org/0000-0002-6815-7835
https://orcid.org/0000-0002-6815-7835
https://orcid.org/0000-0002-6815-7835
https://orcid.org/0000-0002-6815-7835
https://orcid.org/0000-0002-6815-7835
https://orcid.org/0000-0003-3766-4233
https://orcid.org/0000-0003-3766-4233
https://orcid.org/0000-0003-3766-4233
https://orcid.org/0000-0003-3766-4233
https://orcid.org/0000-0003-3766-4233
mailto:
mailto:

Zivanov accelerator. Second, we include an analysis of the dynamic
behavior of some key signaling pathways in the large granular lym-
phocyte leukemia (T-LGL) model [24]. Lastly, we apply our frame-
work to attractor analysis in all the six models considered. Our
accelerator reaches a speedup of one to three orders of magnitude
over BoolNet and demonstrates consistent advantages when com-
pared to symbolic approaches for attractor detection [28], [29].

2 RELATED WORK

Simulators like BooleanNet [26] and BoolNet [23] analyze Boolean
GRNs. However, simulations on conventional computers, espe-
cially, using asynchronous updates, usually result in prohibitively
long execution times due to the intrinsic disparity between the
sequential steps executed by a microprocessor program and the
highly parallel nature of biological systems [30]. Stochastic simula-
tors have also been proposed. For instance, MaBoSS [31] simulates
individual time trajectories using a Monte-Carlo kinetic algorithm
(or Gillespie algorithm) and provides a generalization of the asyn-
chronous Boolean dynamical rules. Similarly to conventional simu-
lators, stochastic simulators suffer from long execution times.

Most common methods to compute attractors start with ran-
domly selected initial states and perform exhaustive searches of
the state space of a network. However, the time complexity of these
methods grows exponentially with the number of nodes in the net-
work, and hence, techniques to alleviate the complexity of the state
space are needed. For instance, the entire network state space can
be appropriately broken down into selected subspaces that can be
exhaustively searched [32]. However, this approach is not scalable
and it is currently limited to networks of up to 150 nodes. Network
reduction techniques that conserve the fixed points and complex
attractors of asynchronous Boolean models have also been devel-
oped [33]. In a different approach, a systematic removal of state
transitions renders the state transition graph acyclic and trans-
forms all attractors into fixed points that can be enumerated with
little effort [20]. A mathematical model of a pruned portion of the
state space, followed by a randomized traversal method to extract
the steady states in the remaining state space, has also been pro-
posed to increase speed and scalability [34]. Finally, variants of the
Gillespie algorithm have also been used to compute probability
estimates of attractor reachability in asynchronous dynamics [35].

When approximate solutions are not desirable, symbolic appro-
aches can be efficient as they do not perform explicit traversal of the
state space. Reduced ordered binary decision diagrams (ROBDDs)
use directed acyclic graphs to represent large Boolean functions
in a space-efficient manner, and are computationally suitable for
complex Boolean operations, e.g., logical AND, OR, etc, and set
operations, e.g., union, intersection, etc. Some of the tools that use
ROBDDs are geneFAtt [36] and boolSim/genYsis [28]. A decomposi-
tion method based on strongly connected components is proposed
in [37]. However, binary decision diagrams (BDDs) have generally
unpredictable memory requirements. Satisfiability solvers, usually
more scalable than BDDs, are also popular in attractor compu-
tation [38], [39]. But with increasing number of genes and length
of Boolean rule unwinding, these approaches become inefficient.
Analysis of Networks through TEmporal-LOgic sPEcifications
(Antelope) uses model checkers, a collection of techniques for auto-
matically verifying properties of discrete systems, and for analyzing
and constructing Boolean GRNs [40]. Unlike simulators, model
checkers can prove properties of a set of infinitely many paths. In
addition, they can handle new, unforeseen properties by simply
adding temporal-logic formulas, while simulators require the incor-
poration of such properties in their program code. Despite these
properties, one common disadvantage of symbolic approaches with
respect to explicit approaches is that attractors are available only at
the very end of the computation, which can take a prohibitively
long time and possibly, largememory.

While explicit approaches are not scalable, they present results
as and when available. A practical solution is to accelerate them
using highly parallel Field programmable Gate Arrays (FPGAs). A
handful of hardware accelerated biological network simulators
have been proposed in the past. A mix of digital and large-signal
analog computation has been proposed for the simulation of gene
regulatory networks [41]. It is reported to simulate networks of up
to 20 nodes. FPGA-accelerated attractor computation of scale-free
gene regulatory networks is proposed in [42], [43], [44]. Some [30],
[45] implement variants of Gillespie’s stochastic simulation algo-
rithm on FPGAs. They have demonstrated the suitability of FPGA
technology for the simulation of variants of the Gillespie algorithm,
achieving a performance 20 times faster than a competing general
purpose CPU. An FPGA-based accelerator framework for Boolean
models has been demonstrated by Miskov-Zivanov et al. [27], [46].
While this framework supports asynchronous simulation, it does
not perform attractor analysis. Also, the framework is not fully
integrated with the host system, limiting its accessibility by the
user software. For instance, buttons are used to manually start and
stop the simulation on the FPGA, and the state of the network is
displayed using 7-segment LED displays. This prohibits any fur-
ther analysis of computed results. More recently, da Silva et al. [47]
presented an integrated acceleration framework for synchronous
GRNs using a tightly coupled architecture on an Intel Xeon proces-
sor and an Intel Stratix V FPGA. It provides up to two orders of
magnitude speedup over a parallel OpenMP implementation.

Input GRN model format: The tools for simulation and analysis
of Boolean GRNs unfortunately do not agree on a common input
format. This has been a main hindrance to comparing our work to
others. The SAT-based tool from Dubrova et al. [38] accepts the
models in Berkeley Logic Interchange Format (BLIF), which is spe-
cific to the field of electronic design automation. Boolnet and Boo-
leannet do not agree on the input model format as well. There are
ongoing efforts towards standardization using a common model
representation format such as SBML-qual [48].

Our work presents an FPGA-accelerated framework for the
simulation and analysis of Boolean networks that can also identify
synchronous attractors. Our proposed approach is seamlessly inte-
grated with a POWER8 processor, which greatly increases its usabil-
ity and integration capabilitieswith other software tools.

3 METHODS

This section describes our accelerator framework detailing its arch-
itecture and system integration.

Host Processor and FPGA Integration. The host is an IBM
POWER8-based server system with the ability to coherently con-
nect an FPGA via the coherent accelerator processor interface
(CAPI). This enables the FPGA to act as a part of a software process
and access virtual memory locations just like a regular processor
core. Also, it allows the FPGA to access the system’s main memory
that has been allocated by the software process owning the acceler-
ator. The proposed solution allows a seamless integration of the
FPGA and the host processor. Fig. 1 provides an overview of the
overall system architecture.

Input Arguments. The end-user is required to provide six argu-
ments: i) a Boolean model definition; ii) an update order, i.e., syn-
chronous or asynchronous update; iii) a number of simulation
repetitions if an asynchronous update scheme is selected; iv) the
list of start states to analyze; v) the number of time steps to simu-
late, and vi) a flag indicating whether to perform attractor analysis.

Detailed Hardware Acceleration Process. Once the arguments are
received, our framework performs the following steps. First, the
host converts the Boolean model into a hardware description lan-
guage (HDL) model. Verilog is the chosen HDL. Second, the host
creates a bit stream and configures the FPGA card for the computa-
tion. Afterwards, the simulation parameters are transferred from

2142 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020

the host to the FPGA. The simulation is then started on the FPGA
using the chosen update strategy and the given start states. Option-
ally, if enabled, the FPGA checks for attractors. As soon as the
results are processed the FPGA reports them to the host. Once the
results are in the host, they can be either displayed via a graphical
user interface or written on disk for further analysis.

Execution Core. As depicted in Fig. 1, we have put two types of
modules on the FPGA, namely, the core module and the communi-
cating module (to-and-from host). The core module contains the
Boolean model and is responsible for simulation and analysis. The
remaining modules for POWER service layer, PSL-to-AXI etc. form
the communicating module. Fig. 2 illustrates the top-level of the
core with its main components.

The Boolean model is embedded in the Boolean Model Circuit
(BMC). In addition, the execution core contains all the necessary
components to perform simulations of the Boolean model and fur-
ther analyze the results. The core receives a start signal together
with a set of arguments listed before. The implemented computa-
tional core is capable of performing synchronous or asynchronous
simulations of the Boolean model and can detect simple attractors
for synchronous updates. The random enable generator block (bot-
tom left part of Fig. 2) takes care of selecting the node update order
accordingly.

In the asynchronous mode, a simulation is run for a given num-
ber of time steps for all the start states provided by the user, i.e., for
all the start states, the simulations are repeated for a user-specified
number of times. The core captures the states reached in the multi-
ple simulation iterations.

Synchronous Attractor Computation. In the synchronous mode,
the execution core can also perform an exhaustive search for attrac-
tors. The attractor detection module stores all visited states during
a simulation in a local time series memory block. Before the current
state is added to the list, the core checks if the state is present in the
time series list. If the state is not present, it is added to the list. Oth-
erwise, the simulation stops and the attractor states are copied to a
local attractor list memory block. To identify the attractors, pointers
to the start state of an attractor are stored in a third memory block.
The core then moves on to the next initial state supplied to it.

In the current implementation, the attractor module is disabled
for asynchronous updates. If the attractor module is activated for
asynchronous updates, simulations must continue even if a state is
visited more than once. In this case, the attractor module will detect
all the cycles. Additional checks/computations are needed to find
attractors arising from the detected cycles.

Reporting Asynchronous Simulation Results: Due to the determin-
istic nature of synchronous updates, a state of a Boolean model has

only one successor state. For a given input, the value of a particular
output at a particular time step remains the same across all simula-
tion repetitions. Hence, it is feasible to report all the states reached
during simulation to the host/software.

This is not the case for asynchronous updates. For a fixed input
and two simulation repetitions, the generated sequences of random
permutations/updates is potentially different. Different sequences
of update orders most likely result in different outputs. Hence, out-
puts at the same time step can be different for different simulation
iterations. We present the results of such simulations in a meaning-
ful manner. The collector module records how often a particular
node is active at a given time step. For all the nodes and all the time
steps, the fraction of simulations in which the gene node is activated
(node set to ON) at that time step is computed. The fraction of simu-
lations is then divided by the total number of simulation repetitions.
This gives us the activation frequency of each node at each time step.

4 RESULTS

The performance of our accelerator framework is evaluated on six
published models with varied number of nodes and complexity: i)
T-LGL, a Boolean model proposed in [24] for T-cell large granular
lymphocyte leukemia (model version from the set of examples that
are provided with BooleanNet); ii) CRPC, a model by Hu et. al [6]
that includes relevant pathways for castration resistant prostate
cancer; iii) Fumia, a model that incorporates the main signaling
pathways in cancer [7]; iv) CAC, a model for the development of
colitis-associated colon cancer that integrates the extracellular envi-
ronment and intracellular signalling pathways [4]; v) FA-BRCA, a
Boolean model of Fanconi Anemia/Breast Cancer (FA/BRCA)
pathway [25]; and vi) MAPK, a comprehensive model of MAPK
pathway [8].

4.1 Asynchronous Simulation

Runtime Analysis. Software simulations of BoolNet and BooleanNet
constitute the baseline and are performed on the same POWER8-
based server node that hosts the FPGA accelerator. The server has
20 physical cores running at 2.29 GHz and a total of 512 GB DDR3
RAM. The simulations are run using the BooleanNet Python pack-
age and the BoolNet R package. The benchmarks processed all sim-
ulation jobs with 20 worker threads simultaneously to fully utilize
the server node.

Our framework uses the Xilinx Kintex UltraScale KU060 FPGA
and the target frequency is 250 MHz. The measurements include
the time for transferring the parameters to the FPGA and transfer-
ring the results from the FPGA to the main memory. Only one soft-
ware thread has been used to perform the memory management
and control for the FPGA.

We ran our accelerator for asynchronous simulations on the fol-
lowing models: T-LGL, CRPC and Fumia. Table 1 summarizes the

Fig. 2. Execution core scheme. The top-level modules are used in the execution
core to implement: synchronous and asynchronous simulations as well as attractor
detection.

Fig. 1. System architecture overview. Overall system architecture with the FPGA
top-level. Communication between the FPGA card and the POWER8 processor is
performed through CAPI.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020 2143

results for each model. The first two columns list the number of
inputs and outputs. All possible input combinations are generated
as individual simulation jobs. These are listed in the third column
labelled #sim. in Table 1). Each job is then simulated by Boolean-
Net, BoolNet, and the FPGA. The next thre columns report the run-
times of each of these tools. Only for the CRPC model the number
of simulations has been limited due to the long runtime. Each sim-
ulation job has been simulated in asynchronous mode on the mod-
els for 100 time steps and repeated 100 times. The last three
columns report time taken by BooleanNet, BoolNet, and the FPGA
for a single simulation, i.e., runtime divided by the number of
simulations.

Compared to BooleanNet and BoolNet, the FPGA accelerator
exhibits a speedup of 750.8x and 7.3x respectively for the T-LGL
model. For the CRPC model, it takes a prohibitively long time to
generate all inputs in case of software simulations and hence, the
number of simulations is limited to 64. While BooleanNet appar-
ently struggles to simulate the CRPC model, the runtime of Bool-
Net is dominated by the number of simulations. In this case the
speedup obtained is 2523.9x compared to BooleanNet and 15.2x
compared to BoolNet. For the Fumia model, the FPGA accelerator
demonstrates a speedup of 26,319x and 11.7x over BooleanNet and
BoolNet, respectively.

Comparison with Miskov-Zivanov et al. [27]. The FPGA framework
presented in Miskov-Zivanov et al. [27] reports an asynchronous
simulation time of 0.019s on the T-LGL model for 200 repeats and
15 time steps. These experiments have been conducted on a stand-
alone FPGA board at 50 MHz. Adjusting this number for 100 time
steps, 100 iterations, and a frequency of 250 MHz, such a simula-
tion would take 0.012s. This is 68 percent slower than the asynchro-
nous simulations performed by the presented architecture, where
the deteriorated performance is mainly due to the generation of the
random update order. Specifically, the slow speed arises from its
reliance on the random order generated by the linear-feedback shift
register (LFSR). Note that the LFSRs also lead to a non-determin-
istic runtime of the architecture.

Dynamic Behavior Analysis of T-LGL. Analysis of the dynamic
behavior of the T-LGL leukemia network using asynchronous sim-
ulations identified a diverging dynamics associated with the apo-
ptosis, i.e., programmed cell death, output node [49]. Namely,
when the node is ON, a single steady state associated with apopto-
sis is found. Conversely, when the node is stabilized at OFF, two
additional fixed points for which the cells escape apoptosis are
found. This criterion can be used to group steady state behavior
into the T-LGL leukemia class (diseased state) and into the apopto-
sis attractor class (normal state), showing the importance of
describing accurately network dynamics.

We compute the activation frequencies of all the nodes in the T-
LGL model and study model dynamics and the reached steady
states. Activation frequencies for representative nodes, e.g., apo-
ptosis node and BID (BH3 Interacting Domain Death Agonist)
node, whose over-expression was predicted to lead to apoptosis in
T-LGL cells [49], are shown in Fig. 3. It is evident from the figure
that low number of repetitions (<1000) results in curves that are

not smooth, rendering difficulties in the accurate prediction of the
biological properties of the system. As the number of repetitions is
increased, the curves become smoother and more consistent with
the expected behavior. The order of magnitude speedup achieved
by our hardware accelerator framework enables larger number of
simulation repetitions for the same initial state, resulting in
smoother curves that better capture the dynamical evolution of
the network with time. Accurate dynamic estimation of the cur-
rent state of a system also plays a critical role in attractor analysis,
as convergence of node activation frequencies is an indicator of
the presence of an attractor. Fig. 3 shows how increasing the num-
ber of repetitions for a given initial state changes the activation
frequency estimates in the T-LGL model. The average curves for
the different repetitions numbers converge to smooth curves
around 1000 repetitions. The curves for the apoptosis node illus-
trate how the estimates change their evolution over the time steps:
fewer repetitions underestimate the steepness, while higher num-
bers of repetitions capture the dynamics of the system in a more
consistent fashion. For the node BID, the curves estimated from
the higher number of repetitions show the presence of a maximum
around timestep 20. However, this maximum is not correctly
estimated at lower number of repetitions. This example shows
that an efficient simulator performing high number of repetitions

TABLE 1
Asynchronous Simulation Benchmark

Time Time Time Time Time Time

Model input output sim. B1 B2 FPGA B1 B2 FPGA

T-LGL 4 47 16 90.1s 0.88s 0.12s 5.6s 0.043s 0.007s
CRPC 22 69 64 580.5s 3.51s 0.23s 9.1s 0.043s 0.003s
Fumia 6 92 64 7895.7s 3.52s 0.30s 123.4s 0.044s 0.004s

Summary of the total execution times for evaluated models: T-LGL, CRPC and
Fumia. The total running times of 100 repetitions with 100 time steps each in
the asynchronous mode are reported.

Fig. 3. Frequency at different number of repetitions. Average activation frequen-
cies over time for the apoptosis (a) and BID (b) nodes. The increased number of
repetitions results in smoother curves that capture better the dynamics of the
system and are more consisting with the biological expected behavior.

2144 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020

with low runtime helps to better capture the dynamics of a bio-
logical system.

4.2 Attractor Analysis

For attractor analysis, we excluded BooleanNet from the bench-
mark given its poor performance. BoolNet does not perform
exhaustive attractor analysis if the number of nodes in the model is
greater than 29, and all models considered in the benchmark
exceed this limit. Hence, we selected a limited set of initial states
and we have set the method for finding attractors to chosen, an
option that allows us to guide the attractor analysis and to ensure a
fair comparison with our framework.

Attractor search is performed by running multiple synchronous
simulations using different initial states. This reduces the attractor
search space only to simple attractors, but since we are interested
in comparing runtime performances, it does not constitute a limita-
tion for us. The time to generate the start states is excluded from
timing measurements. The number of start states has been selected
such that the runtime for a specific model is sufficiently long
(>10 s) to avoid side effects for short runs (e.g.: effects of unex-
pected processes run by the operative system).

Table 2 summarizes the evaluated models and the measured
runtime for both BoolNet and our accelerator framework. Since the
FPGA simulations run consistently faster compared to BoolNet
ones, the number of initial states has been adjusted accordingly.
When we used the same number of start states for both, it often
happened that either BoolNet ran for too long or the accelerator
was too fast, resulting in short runtimes prone to side effects affect-
ing performance measurements, e.g., time fluctuations due to other
operative system processes running.

As the overall runtime is dependent on the number of start
states used for the attractor search, Table 2 includes a runtime per
state column to make the tools comparable. The speedup factors of
the FPGA framework range from 50x to 6531x over BoolNet. Inter-
estingly, the runtime of BoolNet per state is significantly better on
the FA-BRCA model, the smallest model in terms of number of
nodes, than on the other models. This is probably due to the fact
that in this regime it can perform an exhaustive search of all states.

Performance Projections. As we run BoolNet only on a single core,
a single accelerator core has been used on the FPGA to make the
comparison fair. The accelerator consumes only 2 percent of the
overall resources available on the FPGA. This allows the accelera-
tor core to be replicated at least 20 times on a single FPGA card,

resulting in a further speedup of 20x. The server system allows to
plug in an additional coherent accelerator processor interface-
based (CAPI-based) accelerator to further increase performance
and adjust for a multi-threaded software implementation. When
utilizing all cores of the POWER8 processor, the performance of
the software should increase linearly and be 20 times faster as well.

Comparison with Symbolic Approaches. We also ran boolSim [28]
(previously known as genYsis, a symbolic ROBDD-based tool for
attractor analysis on our models. Synchronous attractor computa-
tion for T-LGL (51 nodes) on an Intel Xeon processor running at
3.5GHz was performed in only 80 seconds and 71 attractors were
reported. boolSim took 10 seconds to finish the analysis for MAPK
(53 nodes). However, we observed that boolSim was unable to fin-
ish the attractor analysis in a reasonable time as the number of
nodes increases. Some of the runs of boolSim had to be killed
after running for a long time. For instance, for the Fumia model
(98 nodes), boolSim kept running for >5317 minutes (approxi-
mately 4 days). The runtime for both CRPC (91 nodes) and CAC
(70 nodes) is >8352 minutes (approximately 6 days). We chose to
stop boolSim after running for such a long time. As it is observed
in all symbolic approaches, no response/feedback was presented
to the user during this time. Our approach, on the other hand,
performs an exhaustive search and presents the results fast and
efficiently thanks to its FPGA acceleration.

For the sake of completeness, we also tried to test the state-of-the-
art ROBDD-based software tool geneFAtt [29]. Although the source
code is publicly available, it seems to be incomplete, and compila-
tion failed on the POWER system aswell as on an x86 system.

4.3 Further Improvements

FPGA Utilization. The simulation core is rather small leaving the
FPGA resources under utilized. Each model requires around 7,200
to 7,400 look-up tables (LUTs) which is about 2 percent of the over-
all resources available on the KU060 FPGA. The BlockRAM
requirements are higher due to the collector module. The entire
core requires 43 BlockRAM instances for the T-LGL model. Each of
the larger models requires 75 instances, which is about 7 percent of
all BlockRAMs on this FPGA chip. The POWER Service Layer and
the interconnecting modules require far more logic resources and
BlockRAMs. These are necessary to connect the accelerator to the
host system. Table 3 summarizes the required resources.

Performance Enhancements. As the core requires little resources
on the FPGA, multiple instances of the Boolean network can be
analysed concurrently to further reduce the processing time. This
will more efficiently utilize the available bandwidth towards
the processor. More results can be concurrently sent back to the
host system. Since results are sent back only after all simulation
repetitions are complete, a single core requires a high bandwidth.
The experiments indicate a utilization of less than 1percent of the
available bandwidth of CAPI. Recent research has demonstrated
the use of network-attached FPGAs to accelerate applications [50].
Boolean network simulations can leverage such an architecture
by distributing the simulations across multiple FPGAs. This
will allow to scale the models even further without sacrificing
performance.

TABLE 2
Attractor Search Benchmark

Model #nodes Tool #Start states Time Time per state #attractors

T-LGL 51
BoolNet 212 0.12 s 32 us 3

FPGA 228 6.46 s 0.024 us 5

CRPC 91
BoolNet 216 13.43 s 205 us 1

FPGA 220 1.64 s 1.56 us 135

Fumia 98
BoolNet 216 15.62 s 238 us 4

FPGA 220 0.59 s 0.56 us 26

CAC 70
BoolNet 216 20.17 s 307 us 4

FPGA 225 1.59 s 0.047 us 6

FA-BRCA 28
BoolNet 228 214.8 s 0.8 us 1

FPGA 228 4.31 s 0.016 us 1

MAPK 53
BoolNet 216 12.12 s 184 us 4
FPGA 224 13.01 s 0.7 us 10

Summary of the evaluated models and results for the synchronous attractor
search comparing BoolNet and our framework.

TABLE 3
FPGA Resources Requirements

Model LUTs BRAM LUTs (%) BRAM (%)

T-LGL 7227 43 2.1 4.0
CRPC 7345 75 2.2 6.9
Fumia 7405 75 2.2 6.9
PSL 54945 281 16.5 26.0

Required FPGA resources for the core per model and the property specification
language (PSL).

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020 2145

5 DISCUSSION

In this work we have presented an FPGA-based framework for the
simulation of Boolean models and the computation of attractors.
We show that our accelerator can be used to asynchronously simu-
late network dynamics more efficiently than with the existing soft-
ware solutions. The proposed framework exhibits an order of
magnitude speedup over existing multi-threaded software tools.
We also leverage the speedup offered by our accelerator to perform
a massive number of repetitive asynchronous simulations of the T-
LGL model. Our framework successfully computes simple attrac-
tors of large and complex Boolean models, exhibiting one to three
orders of magnitude speedup over existing software solutions.

Our results show that our solution enables analysis of Boolean
models with unmatched performance. The low utilization of the
FPGA observed in the analyzed models, shows that there is enor-
mous room for improvement in terms of speed. A straightforward
way to achieve additional speedup is to synthesize multiple instan-
ces of the Boolean model on the FPGA. In addition, simulations can
also be distributed across multiple FPGAs, if further speedup is
necessary. Gaining speed eliminates existing limitations for Bool-
ean model analysis in terms of number of nodes and model com-
plexity that a simulator can handle. Being able to simulate and
analyze larger and more complex Boolean networks, up to thou-
sands of nodes, allows us to consider a more comprehensive
description of a biological system and to fully exploit the potential
of high-throughput molecular data.

Besides performance improvements, our framework can be eas-
ily extended to use other update strategies, such as random ranked
updates. This will increase its ability to explore the state space,
hence improving attractor detection. Additionally, another intrigu-
ing extension consists in implementing complex attractor computa-
tion on FPGAs to enable fast analysis of the reachable states of a
Boolean model.

The integration of the accelerator with a POWER8 processor via
CAPI greatly simplifies its usage. We believe that this is a funda-
mental feature in making our framework a valuable tool for the
whole scientific community, offering the possibility to seamlessly
integrate it in software applications.

ACKNOWLEDGMENTS

The projects leading to this publication have received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreements No 668858 and No 826121.

REFERENCES

[1] L. Koch, “A global view of regulatory networks,” Nature Rev. Genetics, vol.
17, no. 5, pp. 252–252, Mar. 2016. [Online]. Available: http://www.nature.
com/articles/nrg.2016.36

[2] L. Glass and S. A. Kauffman, “The Logical Analysis of Continuous, Non-lin-
ear Biochemical Control Networks,” J. Theoretical Biol., vol. 39, pp. 103–129,
1973.

[3] I. N. Melas, A. D. Chairakaki, E. I. Chatzopoulou, D. E. Messinis,
T. Katopodi, V. Pliaka, S. Samara, A. Mitsos, Z. Dailiana, P. Kollia, and
L. G. Alexopoulos, “Modeling of signaling pathways in chondrocytes
based on phosphoproteomic and cytokine release data,” Osteoarthritis
Cartilage, vol. 22, no. 3, pp. 509–518, 2014.

[4] J. Lu, H. Zeng, Z. Liang, L. Chen, L. Zhang, H. Zhang, H. Liu, H. Jiang,
B. Shen, M. Huang, et al., “Network modelling reveals the mechanism
underlying colitis-associated colon cancer and identifies novel combinato-
rial anti-cancer targets,” Sci. Rep., vol. 5, 2015, Art. no. 14739.

[5] H. Chen, G. Wang, R. Simha, C. Du, and C. Zeng, “Boolean models of
biological processes explain cascade-like behavior,” Sci. Rep., vol. 6, 2016,
Art. no. 20067.

[6] Y. Hu, Y. Gu, H. Wang, Y. Huang, and Y. M. Zou, “Integrated network
model provides new insights into castration-resistant prostate cancer,” Sci.
Rep., vol. 5, no. April, pp. 1–12, Nov. 2015.

[7] H. F. Fumi~a and M. L. Martins, “Boolean network model for cancer path-
ways: Predicting carcinogenesis and targeted therapy outcomes,” PLoS
One, vol. 8, no. 7, Sep. 2013, Art. no. 11.

[8] L. Grieco, L. Calzone, I. Bernard-Pierrot, F. Radvanyi, B. Kahn-Perl�es, andD.
Thieffry, “Integrative modelling of the influence of MAPK network on can-
cer cell fate cecision,” PLoS Comput. Biol., vol. 9, no. 10, pp. 1–15, Sep. 2013.

[9] D. P. Cohen, L. Martignetti, S. Robine, E. Barillot, A. Zinovyev, and
L. Calzone, “Mathematical modelling of molecular pathways enabling
tumour cell invasion and migration,” PLoS Comput. Biol., vol. 11, no. 11,
Sep. 2015, Art. no. e1004571. [Online]. Available: http://dx.plos.org/
10.1371/journal.pcbi.1004571

[10] J. Saez-Rodriguez, L. Simeoni, J. A. Lindquist, R. Hemenway, U. Bommhardt,
B. Arndt, U. U. Haus, R. Weismantel, E. D. Gilles, S. Klamt, and B. Schraven,
“A logical model provides insights into T cell receptor signaling,” PLoS Com-
put. Biol., vol. 3, no. 8, pp. 1580–1590, Sep. 2007. [Online]. Available: http://dx.
plos.org/10.1371%2Fjournal.pcbi.0030163

[11] J. Dorier, I. Crespo, A. Niknejad, R. Liechti, M. Ebeling, and I. Xenarios,
“Boolean regulatory network reconstruction using literature based knowl-
edge with a genetic algorithm optimization method,” BMC Bioinf., vol. 17,
no. 1, 2016, Art. no. 410. [Online]. Available: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-016 -1287-z

[12] A. Garg, A. DiCara, I. Xenarios, L. Mendoza, and G. De Micheli, “Synch-
ronous versus asynchronous modeling of gene regulatory networks,” Bioinf.,
vol. 24, no. 17, pp. 1917–1925, 2008.

[13] S. Kauffman, “Homeostasis and differentiation in random genetic control
networks,” Nature, vol. 224, no. 5215, pp. 177–178, Oct. 1969. [Online].
Available: http://dx.doi.org/10.1038/224177a0

[14] R. Thomas, “Regulatory networks seen as asynchronous automata: A
logical description,” J. Theoretical Biol., vol. 153, no. 1, pp. 1–23, 1991.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0022519305803509

[15] M. Purandare, R. Polig, and C. Hagleitner, “Accelerated analysis of Boolean
gene regulatory networks,” in Proc. 27th Int. Conf. Field Programmable Logic
Appl., 2017, pp. 1–6.

[16] A. Faur�e, A. Naldi, C. Chaouiya, and D. Thieffry, “Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle,” Bioinf.,
vol. 22, pp. 124–131, 2006.

[17] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “The yeast cell-cycle network
is robustly designed,” Proc. Nat. Acad. Sci., vol. 101, no. 14, pp. 4781–4786,
2004. [Online]. Available: http://www.pnas.org/cgi/doi/10.1073/
pnas.0305937101

[18] S. Huang, “Gene expression profiling, genetic networks, and cellular states:
An integrating concept for tumorigenesis and drug discovery,” J. Molecular
Med., vol. 77, no. 6, pp. 469–480, 1999.

[19] D. A. Orlando, C. Y. Lin, A. Bernard, J. Y. Wang, J. E. Socolar, E. S. Iversen,
A. J. Hartemink, and S. B. Haase, “Global control of cell-cycle transcription
by coupled CDK and network oscillators,” Nature, vol. 453, no. 7197,
pp. 944–947, 2008.

[20] T. Skodawessely and K. Klemm, “Finding attractors in asynchronous Bool-
ean dynamics,” Adv. Complex Syst., vol. 14, no. 3, pp. 439–449, 2010.
[Online]. Available: http://arxiv.org/abs/1008.3851

[21] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, “A system for identify-
ing genetic networks from gene expression patterns produced by gene
disruptions and overexpressions,” Genome Informat., vol. 9, pp. 151–160,
1998.

[22] S. Q. Zhang, M. Hayashida, T. Akutsu, W. K. Ching, and M. K. Ng,
“Algorithms for finding small attractors in boolean networks,” Eurasip J.
Bioinf. Syst. Biol., vol. 2007, no. 1, 2007, Art. no. 20180.

[23] C. M€ussel, M. Hopfensitz, and H. A. Kestler, “BoolNet-an R package
for generation, reconstruction and analysis of Boolean networks,” Bioinf.,
vol. 26, no. 10, pp. 1378–1380, 2010.

[24] R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, and
T. P. Loughran, “Network model of survival signaling in large granular
lymphocyte leukemia,” Proc. Nat. Acad. Sci., vol. 105, no. 42, pp. 16 308–
16 313, 2008. [Online]. Available: http://www.pnas.org/cgi/doi/10.1073/
pnas.0806447105

[25] A. Rodr�ıguez, D. Sosa, L. Torres, B. Molina, S. Fr�ıas, and L. Mendoza, “A
Boolean network model of the FA/BRCA pathway,” Bioinf., vol. 28, no. 6,
pp. 858–866, 2012.

[26] I. Albert, J. Thakar, S. Li, R. Zhang, and R. Albert, “Boolean network
simulations for life scientists,” Source Code Biol. Med., vol. 3, no. 1, 2008,
Art. no. 16.

[27] N. Miskov-Zivanov, A. Bresticker, D. Krishnaswamy, S. Venkatakrishnan,
D. Marculescu, and J. R. Faeder, “Emulation of biological networks in
reconfigurable hardware,” in Proc. 2nd ACM Conf. Bioinf. Comput. Biol.
Biomed., 2011, pp. 536–540. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2147805.2147893

[28] A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, and G. De Micheli, “Synch-
ronous versus asynchronous modeling of gene regulatory networks,” Bio-
inf., vol. 24, no. 17, pp. 1917–1925, 2008. [Online]. Available: http://dx.doi.
org/10.1093/bioinformatics/btn336

[29] D. Zheng, G. Yang, X. Li, Z. Wang, F. Liu, and L. He, “An efficient algo-
rithm for computing attractors of synchronous and asynchronous boolean
networks,” PLoS One, vol. 8, no. 4, pp. 1–7, Sep. 2013. [Online]. Available:
https://dx.plos.org/10.1371/journal.pone.0060593

[30] L. Salwinski and D. Eisenberg, “In silico simulation of biological network
dynamics,” Nature Biotechnology, vol. 22, no. 8, pp. 1017–1019, Aug. 2004.
[Online]. Available: http://dx.doi.org/10.1038/nbt991

[31] G. Stoll, B. Caron, E. Viara, A. Dugourd, A. Zinovyev, A. Naldi,
G. Kroemer, E. Barillot, and L. Calzone, “ MaBoSS 2.0: An environment
for stochastic Boolean modeling,” Bioinf., vol. 33, no. 14, pp. 2226–2228,
Jul. 2017. [Online]. Available: https://academic.oup.com/bioinformatics/
article/33/14/2226/3059141

2146 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020

http://www.nature.com/articles/nrg.2016.36
http://www.nature.com/articles/nrg.2016.36
http://dx.plos.org/10.1371/journal.pcbi.1004571
http://dx.plos.org/10.1371/journal.pcbi.1004571
http://dx.plos.org/10.1371%2Fjournal.pcbi.0030163
http://dx.plos.org/10.1371%2Fjournal.pcbi.0030163
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016 -1287-z
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016 -1287-z
http://dx.doi.org/10.1038/224177a0
http://www.sciencedirect.com/science/article/pii/S0022519305803509
http://www.sciencedirect.com/science/article/pii/S0022519305803509
http://www.pnas.org/cgi/doi/10.1073/pnas.0305937101
http://www.pnas.org/cgi/doi/10.1073/pnas.0305937101
http://arxiv.org/abs/1008.3851
http://www.pnas.org/cgi/doi/10.1073/pnas.0806447105
http://www.pnas.org/cgi/doi/10.1073/pnas.0806447105
http://dl.acm.org/citation.cfm?id=2147805.2147893
http://dl.acm.org/citation.cfm?id=2147805.2147893
http://dx.doi.org/10.1093/bioinformatics/btn336
http://dx.doi.org/10.1093/bioinformatics/btn336
https://dx.plos.org/10.1371/journal.pone.0060593
http://dx.doi.org/10.1038/nbt991
https://academic.oup.com/bioinformatics/article/33/14/2226/3059141
https://academic.oup.com/bioinformatics/article/33/14/2226/3059141

[32] N. Berntenis and M. Ebeling, “Detection of attractors of large Boolean net-
works via exhaustive enumeration of appropriate subspaces of the state
space,” BMC Bioinf., vol. 14, no. 1, 2013, Art. no. 361.

[33] A. Saadatpour, R. Albert, and T. C. Reluga, “A reduction method for
Boolean network models proven to conserve attractors,” SIAM J. Appl.
Dynamical Syst., vol. 12, no. 4, pp. 1997–2011, 2013. [Online]. Available:
http://epubs.siam.org/doi/10.1137/13090537X

[34] F. Ay, F. Xu, and T. Kahveci, “Scalable steady state analysis of boolean
biological regulatory networks,” PLoS One, vol. 4, no. 12, pp. 1–9, Dec. 2009.

[35] N. D. Mendes, R. Henriques, E. Remy, J. Carneiro, P. T. Monteiro, and
C. Chaouiya, “Estimating attractor reachability in asynchronous logical
models,” Frontiers Physiology, vol. 9, 2018, Art. no. 1161.

[36] D. Zheng, G. Yang, X. Li, Z. Wang, F. Liu, and L. He, “An efficient algo-
rithm for computing attractors of synchronous and asynchronous boolean
networks,” PLoS One, vol. 8, no. 4, pp. 1–7, Apr. 2013.

[37] A. Mizera, J. Pang, H. Qu, and Q. Yuan, “Taming asynchrony for attractor
detection in large boolean networks,” IEEE/ACM Trans. Comput. Biol. Bio-
inf., vol. 16, no. 1, pp. 31–42, Jan./Feb. 2019.

[38] E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding attrac-
tors in synchronous boolean networks,” IEEE/ACM Trans. Comput. Biol. Bio-
inf., vol. 8, no. 5, pp. 1393–1399, Sep. 2011.

[39] W. Guo, G. Yang, W. Wu, L. He, and M. Sun, “A parallel attractor finding
algorithm based on boolean satisfiability for genetic regulatory networks,”
PLoS One, vol. 9, no. 4, pp. 1–10, Sep. 2014.

[40] G. Arellano, J. Argil, E. Azpeitia, M. Ben�ıtez, M. Carrillo, P. G�ongora,
D. A. Rosenblueth, and E. R. Alvarez-Buylla, ““Antelope”: A hybrid-logic
model checker for branching-time Boolean GRN analysis,” BMC Bioinf.,
vol. 12, no. 1, 2011, Art. no. 490.

[41] I. Tagkopoulos, C. Zukowski, G. Cavelier, and D. Anastassiou, “A custom
fpga for the simulation of gene regulatory networks,” in Proc. 13th ACM
Great Lakes Symp. VLSI, 2003, pp. 132–135.

[42] M. Zerarka, J. David, and E. M. Aboulhamid, “High speed emulation of
gene regulatory networks using FPGAs,” in Proc. 47th Midwest Symp. Cir-
cuits Syst., Aug. 2004, pp. I–545.

[43] I. Pournara, C. Bouganis, and G. Constantinides, “FPGA-accelerated Bayes-
ian learning for reconstruction of gene regulatory networks,” in Proc. Int.
Conf. Field Programmable Logic Appl., Sep. 2005, pp. 323–328.

[44] R. Ferreira and J. C. Goldner Vendramini, “FPGA-accelerated attractor
computation of scale free gene regulatory networks,” in Proc. Int. Conf. Field
Program. Logic Appl., Aug. 2010, pp. 550–555.

[45] J. F. Keane, C. Bradley, and C. Ebeling, “A compiled accelerator for biologi-
cal cell signaling simulations,” in Proc. ACMSIGDA 12th Int. Symp. Field
Program. Gate Arrays, 2004, Art. no. 233. [Online]. Available: http://portal.
acm.org/citation.cfm?doid=968280.968313

[46] N. Miskov-Zivanov, A. Bresticker, D. Krishnaswamy, S. Venkatakrishnan,
P. Kashinkunti, D. Marculescu, and J. R. Faeder, “Regulatory network anal-
ysis acceleration with reconfigurable hardware,” in Proc. Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc., vol. 2011, Aug. 2011, pp. 149–152. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/6089916/%5Cn, http://www.
ncbi.nlm.nih.gov/pubmed/22254272

[47] L. B. da Silva, D.Almeida, J. A.M.Nacif, I. S�anchez-Osorio, C.A.Hern�andez-
Mart�ınez, and R. Ferreira, “Exploring the dynamics of large-scale gene
regulatory networks using hardware acceleration on a heterogeneous cpu-
fpga platform,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs, Dec. 2017,
pp.1–7.

[48] C. Chaouiya, D. B�erenguier, S. M. Keating, A. Naldi, M. P. van Iersel,
N. Rodriguez, A. Dr€ager, F. B€uchel, T. Cokelaer, B. Kowal, B. Wicks,
E. Gonçalves, J. Dorier, M. Page, P. T. Monteiro, A. von Kamp, I. Xenarios,
H. de Jong,M.Hucka, S. Klamt, D. Thieffry, N. LeNov�ere, J. Saez-Rodriguez,
and T. Helikar, “Sbml qualitative models: a model representation format and
infrastructure to foster interactions between qualitative modelling formal-
isms and tools,” BMCSyst. Biol., vol. 7, no. 1, Dec. 2013, Art. no. 135.

[49] A. Saadatpour, R. S. Wang, A. Liao, X. Liu, T. P. Loughran, I. Albert, and
R. Albert, “Dynamical and structural analysis of a T cell survival net-
work identifies novel candidate therapeutic targets for large granular
lymphocyte leukemia,” PLoS Comput. Biol., vol. 7, no. 11, Sep. 2011,
Art. no. e1002267. [Online]. Available: http://dx.plos.org/10.1371/journal.
pcbi.1002267

[50] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
fpgas for data center applications,” in Proc. IEEE Int. Conf. Field-Programmable
Technol., 2016, pp. 36–43.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020 2147

http://epubs.siam.org/doi/10.1137/13090537X
http://portal.acm.org/citation.cfm?doid=968280.968313
http://portal.acm.org/citation.cfm?doid=968280.968313
http://ieeexplore.ieee.org/document/6089916/%5Cn
http://www.ncbi.nlm.nih.gov/pubmed/22254272
http://www.ncbi.nlm.nih.gov/pubmed/22254272
http://dx.plos.org/10.1371/journal.pcbi.1002267
http://dx.plos.org/10.1371/journal.pcbi.1002267

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

