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Abstract—In this paper, we propose a novel biclustering approach called BiClusO. Biclustering can be applied to various types of

bipartite data such as gene-condition or gene-disease relations. For example, we applied BiClusO to bipartite relations between

species and volatile organic compounds (VOCs). VOCs, which are emitted by different species, have huge environmental and

ecological impacts. The biosynthesis of VOCs depends on different metabolic pathways which can be used to categorize the species. A

previous study related to the KNApSAcK VOC database classified microorganisms based on their VOC profiles, which confirmed the

consistency between VOC-based and pathogenicity-based classifications. However, due to limited data, classification of all species in

terms of VOC profiles was not performed. In this study, we enriched our database with additional data collected from different online

sources and journals. Then, by applying BiClusO to species-VOC relational data, we determined that VOC-based classification is

consistent with taxonomy-based classification of the species. We also assessed the diversity of VOC pathways across different

kingdoms of species.

Index Terms—Bicluster, bipartite graph, volatile organic compound, tanimoto coefficient, biclique

Ç

1 INTRODUCTION

BICLUSTERING is an important data mining technique usu-
ally used to partition a sparse data matrix into a finite

number of highly dense submatrices. In computational sys-
tems biology, two variable pairs such as gene-condition,
gene-patient, or gene-disease are widely used with bicluster-
ing to identify the specific set of genes up-regulated and/or
down-regulated by similar types of conditions, patients, or
diseases. Also, some studies use biclustering to classify her-
bivorous species based on the plants they feed on to under-
stand the evolutionary changes of the species in adapting to
the availability of certain kinds of plants in their habitat [1].
Thus biclustering can be applied to various types of bipartite
data in different fields.

In this paper, we introduce a new biclustering algorithm
called BiClusO using the concept of the Tanimoto coefficient,
relation number, and the DPClusO algorithm [2], [3], [4] and
emphasize the construction of a simple graph by means of
the first node set of a bipartite graph. In our approach, the
edges of the simple graph are selected based on the common
neighbors (in the second set) of the nodes of the first set.
Thus, we create data folding and apply the DPClusO algo-
rithm to generate a cluster set. After generating a cluster set,
we unfold the data by assigning the members of the second
node set to an individual cluster using the probability of their
attachment to cluster nodes. Our algorithm can produce

overlapping biclusters. Overlapping biclustering means a
node of any side of a bipartite graphmay belong tomore than
one bicluster. The problem of finding a minimum bicluster
set which is either mutually exclusive or overlapping and
covers all data elements from a bipartite graph has been
proven to be NP-hard [5]. So, we select a single node set, i.e,
the most significant node set, rather than both node sets to
convert the biclustering problem to a simple graph clustering
problem, for which there are polynomial-time heuristic
algorithms.

As an example of our biclustering algorithm, we applied it
to a database of Volatile Organic Compounds (VOCs). Under
environmental temperature and pressure, VOCs can easily
become vapor. Most VOCs contain carbon, alongwith hydro-
gen, oxygen, chlorine, fluorine, bromine, sulfur, or nitrogen.
In this study, we mainly focused on VOCs emitted by living
organisms. These are called biogenic VOCs. They have huge
environmental and ecological impacts because they are the
medium of mutual interactions between species. By facilitat-
ing the survival of species, VOCs play important roles in con-
trolling the ecosystem with individual and combined effects.
VOC emission is also substantially affected by the impacts of
climate changes and ecosystem redistribution. The evolution-
ary development of species partially depends on changes in
the environment and mutual interactions of species using
VOCs. Backtracking VOC generation as a product of intricate
metabolic pathways can identify complex cellular processes,
which can then be used to categorize the biosynthesis mecha-
nisms of these metabolites in different species. Having suc-
cessful discovery of some VOC pathways, scientist are now
trying to control the floral VOCs of plants through metabolic
engineering such as up-regulating or down-regulating of bio-
chemical steps and modification of existing pathways in an
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attempt to increase pollination and defense mechanisms [6].
Classification of species based on common emitting VOCs
can lead to understanding the symbiosis of organisms in
terms of VOCs. Also, clustering of VOCs based on chemical
structure similarities can help to predict their pathways. In
this study, we applied our algorithm to cluster the species-
VOC relational data from the KNApSAcK database [7], [8],
[9] and determined that the VOC-based classification of spe-
cies was consistent with the taxonomy-based classification.
We also assessed the diversity of VOC pathways across dif-
ferent kingdoms of species.

2 PROPOSED BICLUSTERING ALGORITHM

2.1 The Concept of Biclustering

A bipartite graph is a graph that consists of two disjoint sets of
nodes, U and V , such that each edge connects a node in U
with a node in V , i.e., U and V are independent sets. Mathe-
matically, a bipartite graph is denoted asG ¼ ðU;V;EÞ where
U and V are twodisjoint partitions inG. An edgematrix is rep-
resented by a weight function w : U � V ! f0; 1g such that
wððu; vÞÞ ¼ 1 for ðu; vÞ 2 E andwððu; vÞÞ ¼ 0 for ðu; vÞ =2 E.

A bicluster represents a pair of subsets U 0 � U and V 0 � V
withw : U 0 � V 0 ! f0; 1gwith a higher density of ‘1’. A biclus-
tering algorithm finds a region bounded by I ¼ jU 0j rows and
J ¼ jV 0j columns which maximizes the density and dimen-
sions of the submatrix. In simple terms, a bipartite graph can
be represented by a binary matrix. The concept of biclustering
can also be extended for a generalmatrix. There have been sev-
eral different approaches invented to seek maximal region
biclusters [5], [10], [11], [12]. For example, Cheng and Church
(2000) applied the greedy approach-based biclusteringmethod
to gene expression data. Amos, Roded, and Shamir developed

Statistical-Algorithmic Method for Bicluster Analysis
(SAMBA) using statistical data modeling to calculate vertex
pair weighting, a hashing technique to find the heaviest bicli-
ques, and a local score improvement procedure for addition
or deletion of a single vertex. Factor Analysis for Bicluster
Acquisition (FABIA) uses linear dependencies between sam-
ples and feature patterns. It is based on a multiplicative
model which captures realistic non-Gaussian data distribu-
tions with heavy tails as observed in bipartite relationships
in gene expression data. BiMax, on the other hand, recur-
sively uses the divide and conquer method to enumerate all
the maximal biclusters in a binary data matrix. Another sta-
tistically significant biclustering for a binary data matrix was
defined by Koyut€urk [13] which is referred to as Cmnk [14].
However, most of these approaches do not support cluster-
ing by controlling overlapping. Cmnk and BiMax, which are
mainly designed for binary data sets, cannot produce good
results when there are large number of zeros [14] in the input
binarymatrix. In this work, we propose a heuristic algorithm
for finding biclusters in binary matrix data. Our approach
can generate overlapping biclusters by utilizing the overlap-
ping property of DPClusO.

Algorithm 1. Constructing R and T Matrices

Input: Bipartite graph G ¼ ðU; V;EÞ represented by a matrix
where the rows and columns correspond to the nodes
of set U and V respectively.

Output: Two square matrices R and T containing relation num-
ber and Tanimoto coefficient between each pair of
nodes of U .

Pseudo Code:
1: Find node pairs ðui; ujÞ 2 U where ði < jÞ
2: Find neighbors set of ui and uj from V asNðuiÞ; NðujÞ
3: Calculate the total number of the common neighbor

jNðuiÞ \NðujÞj from NðuiÞ , NðujÞ and assign it to relation
matrix as Ri;j

4: Calculate the Tanimoto coefficient
ðjNðuiÞ \NðujÞj=jNðuiÞ [NðujÞjÞ between ui and uj and
assign it to Tanimoto matrix as Ti;j

5: Output the R, T matrix

2.2 The Biclustering Algorithm BiClusO

Table 1 summarizes the notations and their meanings that are
used in the description of the algorithm. In this paper, we use
data folding mechanism to create a simple graph Gs from
the bipartite graphG ¼ ðU;V;EÞ involving the nodes of set U .
We discuss the proposed biclustering algorithm in terms of
two separate algorithms. Algorithm 1 creates the relation
matrix and the Tanimoto cofficient matrix. Based on these
two matrices the second algorithm constructs Gs, applies
DPClusO to generate clusters, and then unfolds the data by
assigning the members of set V to individual clusters and
thus completes the biclusters. TheR andT matrices are diago-
nally symmetrical squarematrices, andwe only need to calcu-
late the lower triangular parts of them. Condition ði < jÞ in
step 1 of Algorithm 1 only considers the lower triangular por-
tions of R and T . If we have a total number of d elements in
set V , then the degree of the nodes in set U may vary between
1 and d, considering the fact that no isolated node exists in U
and V . This degree distribution makes Algorithm 1 output a

TABLE 1
Symbols and Their Meanings

Notation Description

U; V Two disjoint sets of nodes of a bipartite graph
E Edge set between U and V
NðuÞ Neighbor of uwhere u 2 U and NðuÞ � V
NðvikÞ Neighbor of vi in kth cluster vi 2 V ,NðviÞ � U

and jNðvikÞj � jNðviÞj
R Relation matrix with dimension jU j � jU j

where Ri;j ¼ NðuiÞ \NðujÞ
T Tanimoto cofficient matrix with dimension

jU j � jU j
where Ti;j ¼ ðjRi;jj=jNðuiÞ [NðujÞjÞ

Thrlð2 RÞ Relation number threshold , usually any small
element from Rmatrix

Thtfð2 T Þ Tanimoto cofficient threshold , usually any
small element from T matrix

F Boolean matrix of dimension jU j � jU j
constructed by using R, T ,
Thrl, Thtf where Fi;j 2 f0; 1g

Pvk Probability set for finding second set of nodes
in kth cluster.
Where vk ¼ fv1; v2; . . . . . . :vmg � V , the totalm
number of attached nodes in kth cluster

Pvik Probability of node vi to be included in kth
cluster where Pvik 2 Pvk and 1 � i � jPvkj

Pvth Threshold value of finding second set of nodes
in a cluster, expressed as probability.

VOCCk VOC set of kth cluster.
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relation matrix with values ranging between ð0; dÞ. Here 0
means there is no common neighbor between two nodes. Step
1 to Step 4 loop through the nodes of set U . Calculating Step 3
and 4 only needs to determine the union and intersection
operation on neighbors of nodes of setU from set V .

Algorithm 2 constructs a simple graph Gs using user
defined threshold values Thrl and Thtf and applies the
DPClusO clustering algorithm to find the cluster sets in Gs.
The relation number threshold Thrl and Tanimoto coeffi-
cient threshold Thtf are used to select the edges of Gs. The
values for these thresholds can be calculated based on the
characteristics of the input bipartite graph.

Algorithm 2. Generate Biclusters

Input: R and T matrices from Algorithm 1, Relation number
threshold Thrl, Tanimoto coefficient thereshold Thtf ,
Cluster Property CP , Cluster Density CD, Overlapping
Coefficient OV , Pvth.

Output: Bicluster set
Pseudo Code:

1: Construct boolean matrix F such that Fi;j ¼ 1 when
Ri;j � Thrl and Ti;j � Thtf , otherwise Fi;j ¼ 0

2: For all i; j Construct Gs by adding an edge between ui and
uj where Fij ¼ 1

3: Apply DPClusO to Gs using parameters CP , CD, OV and
generate cluster set C1; C2; . . .Cr where Ci � U .

4: Find out the neighbor nodes in set V for each cluster from
step 3

5: Calculate the probability set Pvk of all neighbor nodes v 2 V
of kth cluster.

6: Select neighbor nodes of kth cluster by using condition
Pvik � Pvth

7: Construct bicluster by attaching selected neighbor nodes to
kth cluster

8: Repeat step 5 to 7 for 1 � k � r

The DPClusO algorithm is mainly used to cluster a simple
graph. The DPClusO algorithm takes three input parameters,
which are the cluster density (CD), cluster property(CP ), and
the overlapping coefficient (OV ). The details of these parame-
ters can be found in [2]. The DPClusO algorithm generates
overlapping clusters with nodes of set U where each cluster
has links to nodes from set V . Let the kth cluster Ck have
n nodes, Ck ¼ fu1; u2; u3 . . . . . . . . . . . .ung where ui 2 U .
The neighbor of Ck , that is NðCkÞ can be written as NðCkÞ ¼
fNðu1Þ [Nðu2Þ [Nðu3Þ . . . . . . . . . . . . . . . [NðunÞgwhereNðCkÞ �
V . Let the total number of distinct nodes inNðCkÞ bem, such
that NðCkÞ ¼ vk ¼ fv1; v2; v3 . . . . . . . . . . . . vmg Step 5 in Algo-
rithm 2 finds the probability set Pvk of all vi 2 V nodes in the
kth cluster. We calculate the probability of inclusion of vi in
clusterCk by using the formula

Pvik ¼ jNðvikÞ j
jCk j : (1)

Step 6 and 7 in Algorithm 2 filter out some of the v 2 V
nodes by comparing this probability with the threshold and
attaching the remaining nodes to the cluster. The algorithm
can generate bicliques if they exists by setting Pvth ¼ 1.

For clear understanding, here we explain our method by
an example, shown in Fig. 1. First, let a simple bipartite graph

G ¼ ðU;V;EÞ be represented by the matrix of Fig. 1a. Here
jUj ¼ 7, jV j ¼ 10 , u1 has the neighbor set fv1; v2; v3; v4; v5g
and u2 has the neighbor set fv2; v3; v4; v5; v6g. jNðu1Þ \
Nðu2Þj ¼ 4 which is the relation number, i.e., the common
neighbors between u1 and u2. The Tanimoto coefficient
between these two nodes is jNðu1Þ \Nðu2Þj=jNðu1Þ[
Nðu2Þj ¼ 0:66. The simple graph in Fig. 1b was constructed
by considering the elements of set U as nodes and by placing
an edge between any node pair when the relation number
between them is greater than 0. Next, we get the graph of
Fig. 1c from the graph of Fig. 1b by filtering out the edges cor-
responding to relation number < 2. Fig. 1d then shows the
Tanimoto coefficients corresponding to each edge. Then we
get the graph of Fig. 1e by filtering out the edges where the
Tanimoto coefficient is �0.25. Thus, filtering both removes
the less important edges and improves the possibility of find-
ing good clusters of densely connected subgraphs. By apply-
ing DPClusO algorithm to the graph of Fig. 1e, we get two
clusters fu1; u2; u3g and fu4; u5; u6g. To complete the biclus-
ters, we add nodes from set V to these clusters using
Pvth > 0:5. Finally, as shown in Fig. 1f, we get two biclusters
fðu1; u2; u3Þ; ðv2; v3; v4; v5Þg and fðu4; u5; u6Þ; ðv7; v8; v9Þg.
3 APPLYING BICLUSO TO SPECIES-VOC DATA

To demonstrate the BiClusO algorithm, we applied it to
species-VOC relationship data. This section describes that
process and the results.

Fig. 1. An example demonstrating the algorithm of BiClusO. (a) Matrix
representation of a bipartite graph. (b) Graph construction by relation
number. (c) Filtering by relation number threshold. (d) Generating Tani-
moto coefficient of edges. (e) Filtering by Tanimoto threshold and apply-
ing DPClusO. (f) Second node attachment to each cluster.
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3.1 Data Collection and Preprocessing

We collected species-VOC relationship data from the KNAp-
SAcK metabolite ecology section of the KNApSAcK family
databases [9].We also collected additional data fromdifferent
papers and journals using Google Scholar and other publica-
tion sites [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54]. The final data
consists of 12,410 species-VOC relations including 710 species
and 1,740 different VOCs. We applied our proposed biclus-
tering algorithm to the species-VOC relationship data.

As shown in Table 2, taxonomically, the species are from
five different kingdoms. Most of the species belong to the
plant, fungi, or bacteria kingdoms.

In most of the literatures, VOCs are described by chemical
names. Sometimes a VOC is identified by different names
according to different chemical naming conventions. For
example, the sweet scent compound a-humulene has
four different names; alpha-humulene; humulene; alpha-
caryophyllene; and 3,7,10-humulatriene. For our study, we
selected only one name for each compound. In total, the 710
different species with 1,740 distinct VOCs have many-to-
many relationships which forms a big bipartite graph. The
number of reported VOCs emitted by a species varied
between 1 and 157. Fig. 2a shows the frequency of species
with respect to the reported number of emitted VOCs based
on our database. The uneven distribution of VOCs is due to
the fact that some research emphasizes retention time or per-
centage volume of a small number of emitted VOCs over the
complete set of emitted VOCs. Some experiments emphasize
an important set of VOCs which have specific activities asso-
ciated with characteristics such as plant growth, pollinator
attraction, resisting enemies, or disease biomarkers. Only
some literature reports the complete VOC profiles of species.
From Fig. 2a, we can see that 122 species are associated with
only one VOC, 51 species with only two VOCs, 50 species
with only three VOCs, and so on. For our purposes, we
completely discarded those species which are associated
with only one or two VOCs. Finally, we produced an input
bipartite graphGwith dimension 540 x 1710.

3.2 Threshold Selection and Biclustering

In step three of algorithm two, the DPClusO algorithm gen-
erates a cluster set using three parameters. Based on our
previous experience we set these DPClusO related thresh-
olds as CD ¼ 0:5, CP ¼ 0:5 and OV ¼ 0:05 [20], [21].

Two other important thresholds for the BiClusO algorithm
are Thrl and Thtf , which are used to transform the bipartite
graph to a simple graph. These thresholds are utilized for the
two-step screening of the edges of the simple graph. In this
work, we converted the species-VOC bipartite graph to a

simple graph where species are the nodes. A relation number
is the number of common VOCs between two species. There-
fore, a lower value of Thrl allows many edges in the simple
graph which do not represent strong relations. Similarly, we
can calculate Tanimoto similarity between any two species in
the context of the associatedVOCs, and a lowerThtf will allow
many noisy edges in the simple graph. At the same time,
higher values of Thrl and Thtf will make many species as iso-
latednodes in the graph, and thus exclude them from the anal-
ysis. Therefore, we need to handle the trade-off between
allowingmeaningful edges and keeping a substantial number
of species as non-isolated nodes in the simple graph.

In this work, we determined these thresholds based on the
characteristics of the input data, i.e., the species-VOC rela-
tional data. The first step of screening was done based on
Thrl. A simple graph can be generated using different values
of Thrl. For example, Fig. 2b shows the plot of Thrl versus the
clustering co-efficient, and Fig. 2c shows the plot of Thrl ver-
sus the non-isolated species, in the context of the generated
simple graphs. In Fig. 2b, initially the clustering coefficient
decreases mainly because of the removal of non-important
edges. Also, from Fig. 2c, we can see that Thrl ¼ 3 allows
about 70 more species in the network compared to Thrl ¼ 4.
In this work, we empirically selected Thrl ¼ 3. We then per-
formed the second step of screening based on Thtf . We
assume that the relationship between two species is strong if

TABLE 2
VOC Data Count According to Different Taxonomy

Kingdom Phylum Class Phylum Order Phylum Family

Bacteria 11 24 43 60 420 773
Eubacteria 1 1 1 1 1 1
Euryarchaeota 1 1 1 1 2 5
Fungi 4 16 22 34 148 598
Plantae 3 5 7 16 139 793

Fig. 2. (a) Frequency of species versus VOC count. (b) Transitivity ver-
sus relation number. (c) Node count versus relation number.
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at least 50 percent of the VOCs of a species match those of the
other species. For such a relationship, Thtf should be greater
than 0.33 aswe prove in the following theorem.

Theorem 1. The Tanimoto coefficient between two binary (0,1)
vectors is greater than or equal 0.33 if the common number of 1
s between them is greater than or equal 50 percent of the 1 s of
any of them.

Proof. Let the number of 1 s in two binary vectors are x and
ywhere c is the common number of 1 s between them. If c
has to be more than or equal to 50 percent of each of x
and y then we can write c � x=2 and c � y=2. From these
conditions, we can write

4c � xþ y;

or

3c � xþ y� c:

Which is equivalent to

c

xþ y� c
� c

3c
;

so, the Tanimoto coefficient � 1
3. tu

Adding some margin to 0.33, we empirically selected
Thtf � 0:4 for this study. These empirical thresholds pro-
duced good results, as explained in the next section.

After observing different test data, we come to the conclu-
sion that a minimum and reasonable value to start with the
Thtf is 0.33. As a simple way, the Thrl can be decided by
observing the sparseness/density of the input bipartite
graph. For higher density graphs higher Thrl is recom-
mended. For example, the density of the species-VOC
bipartite graph we utilized in the present work is roughly
1 percent and we used the Thrl as 3. Usually, most practical
graphs are sparse (density less than 5 percent) and using Thrl

between 2 to 5 is recommended.

4 RESULTS AND DISCUSSION

In this section, we discuss the results produced by applying
the proposed biclustering algorithm to the species-VOC rela-
tional data. We examine the properties of the clusters identi-
fied by this process, similarities between some of the clusters
and some of the VOC groups, and the VOC diversity in terms
of kingdoms of species identified by these results.

After applying the proposed biclustering algorithm to the
species-VOC relational data in this study, we obtained a total
of 57 clusters. Fig. 3a shows the matrix representing the spe-
cies-VOC relational data before clustering, while Fig. 3b
shows the same matrix after clustering. Visual comparison of
Figs. 3a and 3b indicates that our algorithm efficiently sepa-
rated the data into clusters. The dimensions of the two matri-
ces in Fig. 3 are not the same because our algorithm filtered
out species and VOCs for which there is not enough reported
information, which failed to become part of a meaningful
bicluster. The VOC set corresponding to each cluster was
determined using Pvth � 0:6, which can be considered as
characteristic VOCs of the corresponding taxonomic group.

4.1 Properties of Clusters

In the present case, a bicluster consists of one set of species
and one set of VOCs. First, we assessed the richness of the
species of similar taxonomic groups in each cluster. In each
cluster, the richness of species belonging to similar hierar-
chical level, mostly at the family level, was determined by
Fisher’s exact test.

In Supplementary file 1, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2019.2914901, we
summarized all the clusters, referred to as C1 to C57, with
their classification, p-value, species, and VOCs determi-
ned with Pvth � 0:6. Out of 57 clusters, 36 clusters have
p-values between 3.19E-52 and 9.46E-05, 12 clusters have val-
ues between 0.000134 and 0.006641, and 6 clusters have values
between 0.019159 and 0.040969. Only 3 clusters have p-values
> 0.05. Fig. 4 shows the distribution of p-values. The low
p-values for 54 out of 57 clusters are significant, which indi-
cates that the taxonomic classification is consistent with the
VOC-based classification.

In the following, we briefly discuss the top 10 clusters
based on the p-value and the most common VOCs corre-
sponding to the respective clusters obtained by setting
Pvth ¼ 1 in most cases, i.e., based on bicliques.

Fig. 3. Graphical presentation of matrix data (a) before and (b) after clus-
tering. X axis represents VOCs and y axis represents species.
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InC1, there are 45 species of genus salvia under the lamia-
ceae family (p-value 3.19E-52). The most common volatile
compounds for this cluster are cedr-8-en-15-ol; humulene
epoxideII; p-cymen-8-ol; and trans-caryophyllene which form
a biclique. The essential oil composition of the salvia species
contains medicinal and aromatic compounds. These species
are commonly referred to asmembers of themint family.

C2 is comprised of mostly bacteria in the family entero-
bacteriaceae (p-value 2.38E-32), with the most common
VOCs being 1-decanol and 1-dodecanol. All of these species
are gram negative bacteria mostly live in animal intestine.

For C3, we could not find any bi-cliques, but setting the
coefficient Pvth � 0:8, we identified four common VOCs, 1-
heptanol; 1-undecene; 3-methylbutan-1-ol; and hexan-1-ol.
C3 consists mostly of bacteria from the burkholderiaceae
family (p-value 5.87E-23). Species in this cluster are mostly
pathogenic for humans or animals.

C4 (p-value 1.16E-40) are mostly streptomycetaceae fam-
ily bacteria which are commercially used to produce antibi-
otics, antibacterial, antifungal, and antiparasitic metabolites
by their secondary metabolism. The common VOC for this
cluster is dimethyl disulfide.

C5 (p-value 3.87E-23) aremostly bacteria of the leuconosto-
caceae family. The most common VOCs are 2-methylpropan-
1-ol; 2-phenylethanol; 2-phenylpropan-2-ol; 3-(Methylsul-
fanyl)-1-propanol; 3-methylbutan-2-ol; 3-methylbutanol; ben-
zaldehyde; benzyl alcohol; butanoic acid; decanoic acid;
dodecanoic acid; heptanoic acid; n-hexaneic acid; octanoic
acid; tetradecanoic acid; and valeric acid. These gram positive
bacteria can ferment glucose in the heterofermentative way to
produce lactic acid.

C6 (p-value 1.65E-18) are mostly bacteria of the family
prevotellaceae. Most of these bacteria are indigenous to the
human and animal gastrointestinal tract and oral cavity.
The most common VOCs are 12-methyltetradecanoic acid;
13-methyltetradecanoic acid; 3-hydroxy-15-methylhexade-
canoic acid; 3-hydroxyhexadecanoic acid; hexadecanoic
acid; and tetradecanoic acid.

C7 (p-value 1.05E-15) are mostly plants of the cannaba-
ceae family. All of these plants are members of the eudicots
class, and the most common VOC is beta-caryophyllene.

C8 (p-value 1.92E-27) are mostly fungi of the hypocrea-
ceae family. These species are characterized as opportunis-
tic avirulent plant symbionts. The most common VOCs are
3-methylbutanal; decanal; ethyl acetate; and nonanal.

C10 (p-value 3.82E-10) aremostly bacteria in the cyanobac-
teria phylum with the common characteristic of obtaining

energy by photosynthesis. The most common VOC is beta-
ionone-5,6-epoxide.

C11 (p-value 1.47E-13) are mostly fungi of the trichocoma-
ceae family. These fungi are found in soil and cause disease in
corpses. Themost commonVOCs are (Z)-2-penten-1-ol; 1-hep-
tanol; 1-octanol; 1-pentanol; 1-penten-3-ol; 2(E)-octenal; 2-
amylfuran; 2-heptenal; 2-hexanol; 2-n-butylfuran; 2-nonanone;
2-octanol; 2-octen-1-ol ;2-pentanol; 3-nonen-1-ol,(Z); 3-octanol;
3-octanone; 3-pentanol; 5-octen-1-ol,(Z)-; 5-octen-2-ol; 6-unde-
canone; chalcogran,(Z); conophthorin; cyclopentanone; hep-
tan-2-ol; heptan-2-one; hexan-2-one; hexan-4-olide; hexanal;
hexylformate; hexan-1-ol; nonalactone; octan-2-one; octan-
3-ol; pentylhexanoate; propan-1-ol; and (Z)-3-hexen-1-ol.

4.2 Relationship Between Clusters

We also assessed the similarity between clusters in terms of
shared VOCs. Let a and b be the VOC sets of two clusters,
then the percentage of a \ b in the context of a [ b is a
measure of the Common VOC-based Similarity (CVSim)
between those two clusters. In Fig. 5, we show the graphs
where the nodes indicate the clusters, and the edges indi-
cate a certain minimum CVSim between two clusters. In this
figure, the size of a node is proportional to the number of
species in it. In Fig. 5a, with minimum CVSim of 10 percent,
we find many edges, implying that many cluster pairs have
common VOCs. But, as we increase the CVSim threshold,
the number of edges gradually decreases. At CVSim >¼
40%, there are only three edges linking 3 pair of clusters:
{C1; C38}, {C9; C40}, and {C42; C53}. Cluster C1with 41 spe-
cies and cluster C38 with three species belong to the plant
kingdom of family lamiaceae. Cluster C42 with three spe-
cies and cluster C53 with three species belong to the family
enterobacteriaceae in the kingdom of bacteria.

Finally, cluster C9 with 15 species and cluster C40 with
two species belong to the bacteria kingdom in the families
bacteroidaceae and veillonellaceae. With CVSim more than
35 percent, the cluster C3 with 32 species and cluster C37
with three species belong to the bacteria kingdom of family
burkholderiaceae. Also, in examining these pairs of clusters,
we noticed that jVOCC38j ¼ 74 and 61 of those are included
in VOCC1, jVOCC42j ¼ 3 and 2 of them are included in
VOCC53, and jVOCC37j ¼ 8 and 5 of them are included in
VOCC3. Each of these three pairs should be merged into a
single cluster because the species belong to the same taxo-
nomical group and the VOCs of one cluster are subsets of
another cluster. However, they are divided into 2 clusters
mainly because of the lack of enough reported data. Based
on such results, we can predict some new species-VOC rela-
tions. For example, we can assume that VOCs reported for
species of C1 are likely to be reported for species of C38 and
vice versa, and similarly for the other pairs of clusters.

4.3 Structurally Similar VOC Groups (SSVGs)

In this section, we focus on relations between clusters of taxo-
nomically similar species with Structurally Similar VOC
Groups. This is important because it can be assumed that
structurally similar metabolites may belong to the same or
related metabolic pathways. Even though all metabolic path-
ways in living cells have not been determined, scientists are
trying to discover pathways by matching metabolites in

Fig. 4. Frequency of p-value of the clusters.
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terms of their chemical and physical properties [15], [16].
VOC biosynthesis depends on transcriptional regulation by
which different genes get involved in VOC emissions. Also,
post transcriptional regulation may play important roles
which yet to be discovered.

As the largest producers of VOCs, plants play important
roles in the natural ecosystem. In plants, most of the VOCs
are generated by using four major pathways: mevalonic
acid (MVA), methylerythritol phosphate (MEP), Shikimate
or phenylalanine, and lipoxygenase (LOX)[6], [17].

A metabolic pathway is generally defined as some of the
consecutive steps of biochemical reactions, catalyzed by

enzymes that occur inside a cell. In our study, there were a
total of 505 VOCs included in the 57 biclusters generated
from the species-VOC relational data. We generated Pub-
Chem IDs from the names of the VOCs and then downloaded
SDF files for thoseVOCs and converted them to atompair fin-
gerprints (APFP) by ChemmineR [22] using the functions
“sdf2ap” and “desc2fp” with default parameters. They com-
pute the top 1,024 out of 4,096 most common atom pairs
observed in the compound collection from DrugBank. To
determine the structurally similar VOC pairs, we applied the
“Tversky” similarity function to those APFP with cut off >
0.85, alpha = 1 and beta = 1. These coefficient values are recom-
mended as the best to measure similarity among compounds
[18], [19]. Thus we constructed a network of VOCs based on
the chemical structure similarities between them. Then we
applied the DPClusO tools [20] to create clusters from this
network with CD ¼ 0:7, CP ¼ 0:5 andOV ¼ 0:05. Doing this
clustered the total 505 VOCs into 256 SSVGs, of which 62 are
of size 2 ormore and the rest are single VOCs. Supplementary
Fig. 1a, available online, shows the cluster result (SSVGs)
with at least two VOCs. Supplementary Fig. 1b, available
online, shows the chemical 2d structure of a candidate ele-
ment in each of the SSVGs with size of 3 or more, where we
can visually see that the structures corresponding to different
SSVGs are different.

Fig. 6 shows the mapping of the VOCs belonging to 57
clusters to 256 SSVGs. When one or more VOCs belonging to

Fig. 5. Relations among species clusters in terms of common VOC sets.

Fig. 6. Scatter plot of SSVGs for plant (White), fungi (Black), and bacteria
(Gray). X axis represents SSVGs and y axis represents species clusters.
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a cluster matched the VOCs of a SSVG, we placed a circle at
the corresponding location on the map. The size of a circle on
the map in Fig. 6 is proportional to the number of shared
VOCs between a cluster and a SSVG. The color of a circle is
white, black, or gray depending on whether the correspond-
ing cluster belongs to the kingdom of plants, fungi, or bacte-
ria. From the mapping, cluster C1 is linked to 46 SSVGs of
which the first 9 groups are SSVG1, SSVG8, SSVG11,
SSVG18, SSVG21, SSVG27, SSVG26, SSVG28 and SSVG32. In
Supplementary Fig. s(b), available online, the representative
compounds for these 9 groups are displayed with labels 1, 8,
11, 18, 21, 27, 26, 28, and 32. The sparsity of the map in Fig. 6
implies that the species of different taxonomical groups pro-
duce different types of VOCs in terms of chemical structure.

It can be hypothesized that structurally different VOCs are
produced by different metabolic pathways. Thus, it may be
suggested that the characteristic VOC pathways in different
taxonomical groups are different. Such pathways evolved
depending on the needs for survival and adaptation in the
environment for certain classes of organisms. Further investi-
gation into species-specific VOCs can provide more clues to
the interaction of the specieswith the ecosystem.

4.4 VOC Diversity Across Three Kingdoms

Using the first taxonomical hierarchy of species, the kingdom,
we classified the biclusters into three groups, i.e., plants,
fungi, and bacteria. First, we compared plants, fungi, and bac-
teria in terms of the abundance of associated characteristic
SSVGs. Out of 57 clusters, 10 clusters belong to plants, 10
belong to fungi, and 37 belong to bacteria. The histogram in
Fig. 7 shows the number of associated SSVGs with different
clusters in the three kingdoms.

To determine the differences between these three king-
doms in terms of the number of associated SSVGs to individ-
ual clusters, we performed a t-test. Based on the t-test, the
p-values are: plants-fungi, 0.04934; plants-bacteria, 0.0295;
and bacteria-fungi, 0.06914. From the results of the t-test, we

can say that the groups of plants have more diversified VOCs
compared to individual groups of bacteria or fungi. This is
consistent with the fact that plants are a more advanced spe-
cies compared to bacteria and fungi, and thus require more
diversified VOCs for survival. Also, plants have different
organs such as roots, leaves, stems, flowers, and fruits which
can produce different amounts and types of VOCs at different
times, e.g., different climate seasons, flowering seasons, diur-
nal and nocturnal times, for different purposes. Also, we con-
ducted a t-test with p-value 0.04028 between eukaryotes and
prokaryotes, i.e., bacteria versus combined clusters related to
plant and fungi. The p-value indicates that individual groups
of eukaryotes produce more diversified VOCs than individ-
ual groups of prokaryotes.

We also assessed the diversity of VOCs across the three
kingdoms in terms of different chemical structures. Generally,
each of the SSVGs can be considered as a group of chemical
compounds related to similar or related metabolic pathways.
In our dataset, most clusters were generated involving bacte-
ria because we found more data related to bacteria in pub-
lished literature. Separately, plants are associated with 136
SSVGs, fungi with 58 SSVGs, and bacteria with 148 SSVGs.
Although individual bacterial groups are associated with
smaller numbers of SSVGs, the total number of SSVGs related
to bacterial clusters is the highest. This is because diversified
types of bacteria live under diversified environments requir-
ing diversified types of VOCs. Also, plants are associated
with more diversified types of VOCs compared to fungi
because plants are amore advanced species than fungi.

The Venn diagram in Fig. 8 shows the sharing of SSVGs
across the kingdoms of plants, fungi, and bacteria. The evolu-
tionary hierarchy of the tree of life reveals the gradual decline
or uptake of biochemical traits by descendant species from
their ancestors. The tree of life generated using DNA data
from 3,000 species [23] reveals that bacteria are a predecessor
to both fungi and plants, and that plants are a predecessor to
fungi. DNA, converted to mRNA, creates different types of

Fig. 7. Number of associated SSVGs in different species groups.
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proteins, and proteins engaged in different biochemical reac-
tions eventually generate VOCs. Fig. 8 shows that many VOC
pathways are conserved in all three kingdoms, or between
any two kingdoms. The number of pathways conserved
between plants and bacteria are more than those conserved
between bacteria and fungi or plants and fungi. Plants and
fungi probably acquired different VOCpathways fromdiffer-
ent bacterial species at different times through different inter-
actions by horizontal gene transfers. Fig. 8 shows plants are
related to 81 unique SSVGs, fungi to 13, and bacteria to 92.
Different bacteria species living in many different types of
microenviroments developed many unique types of VOCs.
Plants beingmore advanced (need to handle different biolog-
ical processes) and sessile (face different challenges of envi-
ronmental stress) organisms developed many unique VOCs
for their survival. Fungi are less advanced organisms and dif-
ferent types of fungi live in very similar environments, so
they can survivewith a somewhat smaller number of VOCs.

5 CONCLUSION

In this study, we developed a novel biclustering algorithm
called BiClusO and applied it to species-VOC bipartite rela-
tional data to understand the diversity of VOCs and VOC
pathways across species in different kingdoms. We devel-
oped BiClusO based on a data folding mechanism and the
DPClusO algorithm previously developed by our group. By
controlling different coefficients, our algorithm can identify
high density biclusters as well as bicliques. We applied the
BiClusO algorithm to species-VOC relationship data to iden-
tify groups of species in terms of common VOCs. Based on
Fishers exact test we showed that VOC-based classification of
species is consistent with their taxonomical classification.
Inter-cluster relationships identified in terms of VOCs can
help to predict the VOCs of new species in a similar taxonom-
ical group. Furthermore, along with the algorithm, we used
DPClusO and ChemmineR to identify structurally similar
VOC groups. The relationships of those SSVGs to different
groups of species imply that common VOC pathways in dif-
ferent taxonomical groups are different. Based on the results
of the t-test, we showed that individual groups of plants are
associated to more VOCs compared to groups of bacteria.
Further analysis of the relations of these groups of species
with SSVGs revealed the diversity of VOCs across the king-
doms of plants, fungi, and bacteria. Pairwise overlapping of

SSVGs among three kingdoms reveals the conservation of
evolutionary hierarchy in terms of biochemical traits.
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