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Abstract—Ordinary differential equations (ODEs) provide a powerful formalism to model molecular networks mechanistically.

However, inferring the model structure, given a set of time course measurements and a large number of alternative molecular

mechanisms, is a challenging and open research question. Existing search heuristics are designed only for finding a single best model

configuration and cannot account for the uncertainty in selecting the network components. In this study, we present a novel Markov

chain Monte Carlo approach for performing Bayesian model structure inference over ODE models. We formulate a Metropolis

algorithm that explores the model space efficiently and is suitable for obtaining probabilistic inferences about the network structure.

The method and its special parallelization possibilities are demonstrated using simulated data. Furthermore, we apply the method to

a time course RNA sequencing data set to infer the structure of the transiently evolving core regulatory network that steers the T helper

17 (Th17) cell differentiation. Our results are in agreement with the earlier finding that the Th17 lineage-specific differentiation program

evolves in three sequential phases. Further, the analysis provides us with probabilistic predictions on the molecular interactions that

are active in different phases of Th17 cell differentiation.

Index Terms—Biological network modeling, gene regulatory networks, Markov chain Monte Carlo, ODE models, model selection,

Th17 cell differentiation
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1 INTRODUCTION

IN the field of computational biology, mechanistic mod-
els for biochemical networks are often constructed in the

form of nonlinear ordinary differential equation (ODE)
systems. Kinetic parameters of these mechanistic ODE
models can be calibrated using statistical techniques if suf-
ficient amount of time course data are available (see e.g.,
[1], [2], [3], [4]). Whereas the parameter estimation prob-
lem for ODE models is rather well studied, the related
model structure inference problem remains unsolved in
practice.

When mechanistic models are constructed, there is typi-
cally a large number of well-motivated, hypothetical models
for the underlying biochemical mechanisms. A central chal-
lenge is to determine the most likely model structures given
the experimental data. The number of alternative models
can span from two to hundreds of thousands, and therefore
the need for reliable, automatized, and computationally
efficient methods that can reveal the underlying mecha-
nisms is urgent.

Under the Bayesian formalism, different model structures
can be compared by evaluating their posterior probabilities [5].
However, this is computationally demanding for nonlinear

ODE models, because it involves computing the model
marginal likelihoods by integrating over the model param-
eters [3]. Even if some approximation for the marginal like-
lihood is used [6], in practical applications it is not usually
feasible to exhaustively compare all the alternative network
combinations.

The combinatorial complexity of the network inference
problem is often tackled by searching the optimal model
using some greedy heuristic such as forward or backward
search or their variants (see e.g., [7], [8], [9], [10]). The heu-
ristic search methods are designed to find a single model
which is the best according to some criterion. In the context
of Bayesian model inference, the search methods can be
used to find the maximum a posteriori (MAP) point esti-
mate for the model structure. On the other hand, if we wish
to obtain an approximation for the full model posterior, the
simple search techniques are infeasible and we need to
build an algorithm which explores the model space more
thoroughly.

In this study, we present a novel approach to efficiently
approximate the posterior distribution over alternative
ODE model structures. The main idea is to use Markov
Chain Monte Carlo (MCMC) methods for exploring the
discrete model space. This is efficient because an MCMC
chain is attracted towards the high-probability regions of
the model space, and only the models that are encountered
by the chain have to be evaluated. Furthermore, the uncer-
tainty related to the structure inference can be accounted for
by approximating the discrete model posterior distribution
so that the models that have not been evaluated are given
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zero probability. The proposed method therefore gives us
an approximation of the entire model posterior distribution,
and therefore provides much richer information than the
MAP solution which can be obtained using a search heuris-
tic such as the forward or backward search.

We provide an implementation of a discrete Metropolis
algorithm with a simple yet efficient proposal distribution.
The performance of our method is demonstrated using toy
problems in which the data is artificial and the set of possible
models is restricted so that we are able to compare the model
posterior approximations with the full posterior. Using these
test cases, we show that our MCMC-based approach is capa-
ble of producing accurate probabilistic inferences about the
true molecular interactions even when only a fraction of all
possible models are evaluated. Moreover, we argue that the
proposed method has beneficial parallelization opportuni-
ties, because computation time required for reliably explor-
ing the interesting parts of the model posterior can be
reduced by combining information from multiple indepen-
dent MCMC chains. This is also demonstrated in the simu-
lated data experiments.

For a real world application, the proposed method is used
to infer the transiently evolving core molecular network that
steers the T helper 17 (Th17) cell differentiation. To capture
the rewiring effects during the differentiation process, we uti-
lize the recently developed latent effect mechanistic (LEM)
modeling approach [9]. In this study, we also extend the LEM
modeling approach to allow rigorous statistical testing about
the type of the latent process. In our Th17 cell differentiation
application, this extension enables us to test hypotheses about
how many sequential phases are involved in the differentia-
tion processes. Further, our novel approach also enables us to
generate probabilistic predictions on the molecular interac-
tions that are active in different phases of Th17 cell differenti-
ation instead of merely finding a single molecular network
structurewith the highest posterior probability.

2 MATERIALS AND METHODS

2.1 Constructing ODE Models for Biochemical
Systems

Mechanistic ODE models can in principle be constructed for
any biochemical system which consists of molecular species
that interact through chemical reactions. The functional form
of the ODE system can be determined by using, for instance,
the law of mass action, Hill kinetics, or Michaelis–Menten
kinetics (for an introduction on building mathematical
models in systems biology, see e.g., [11]). In general form, the
model construction process results in anODE system

dy

dt
¼ gðy; uÞ; (1)

where yðt; uÞ : ½0; T � �Rd ! Rn, gðy; uÞ : Rn �Rd ! Rn, and
u 2 Rd is a parameter vector. Here d is the dimension of the
parameter space and n is the number of model components
(chemical species). The interactions between model compo-
nents can be of many types, for instance, activating or inhibit-
ing. The type and number of chemical interactions between
different chemical species determine the biochemical network
structure that steers the time evolution of the system.

2.2 Latent Effect Mechanistic Models for Transiently
Evolving Biochemical Systems

In many applications, the biochemical reaction system may
evolve transiently in time (see e.g., [12]). As a simple exam-
ple, a set of fixed biochemical interactions may be affected
by fluctuations in the system temperature. Alternatively, in
a more complex setting, the reactions that drive the gene reg-
ulatory interactions may be affected by transient epigenetic
or signaling mechanisms that are difficult or impossible to
incorporate into the standard ODE model due to the lack of
detailed information about the hidden mechanisms. In such
cases, the standard ODE modeling approach is insufficient
and a more powerful modeling formalism is needed.

In a recent study [9], Intosalmi et al. introduced the so-
called latent effect mechanistic models which facilitate the
study of dynamically evolving gene regulatory networks.
LEM modeling provides a powerful and rigorous means to
model transiently evolving systems, but due to the large
model space, the LEM model structure inference problem is
even more challenging than for standard ODE models. The
approach that we propose for model structure inference in
this study is specifically designed for problems with a large
model space and, thus, LEM modeling provides us with an
excellent model class to test our approach.

A detailed formal definition of the LEMmodel, as well as
illustrative examples, can be found in [9]. However, we pres-
ent the central steps in constructing LEM models in the fol-
lowing. To formulate a LEM model with M different latent
states, we need to define a set of N mechanistically moti-
vated functions fjðy; uÞ that each correspond to a mechanism
involving one or more of the components yi. In addition, we
need to design an M-dimensional latent process xðt; uÞ that
defines how the strength of each mechanism evolves over
time. The exact functional form of this process needs to be
designed based on the system properties. Given a latent
process xðt; uÞ, the LEMmodel is defined by the equations

dyi
dt

¼
X
j2I i

fjðy; uÞwjðt; x; Z; uÞ; (2)

where for each i ¼ 1; . . . ; n, I i is the set of indices j 2
f1; . . . ; Ng, for which the function fjðy; uÞ is affecting yi. The
matrixZ is anN �M binarymatrix where the element fZgjk
determines if function fj is present in the kth latent state or
not (values 1 and 0, respectively). This state-dependent
behavior of the functions fj is mediated to the final ODE
system through theweight function

wjðt; x; Z; uÞ ¼
PM

k¼1fZgjkxkðt; uÞPM
k¼1 xkðt; uÞ

: (3)

Intuitively, the LEM model consists of a standard ODE
model which is coupled with a latent process that determines
how different subnetworks contribute to the dynamics over
time. In the context of the LEMmodel formulation, the binary
matrix Z determines the structures of the subnetworks. The
standard ODE model also can be constructed using the same
formalism and considering the latent process as a single com-
ponent constant function. Thus, the structure of a standard
ODE model is determined by a N � 1 matrix (vector) Z.
The correspondence between the network structures and Z
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matrices in standard ODE models and LEM models is illus-
trated along with an example latent process design in Fig. 1.
Because the standard ODEmodel is a special case of the LEM
model, we will use Z to denote the model structure through-
out this paper.

2.3 Statistical Inference of Rate Parameters and
Model Structure

The model class that we introduced above provides us with
powerful means to describe the dynamics of different kinds
of biochemical systems. However, the rate parameters, pos-
sible latent process parameters, and also the model struc-
ture Z are typically unknown and they need to be calibrated
from time course data using statistical techniques. To carry
out this calibration task, we formulate the problem within
the Bayesian framework (for an introduction to Bayesian
inference for ODE models, see e.g., [3]).

Let us assume that we have a data set D ¼ fDik j i ¼
1; . . . ; n; k ¼ 1; . . . ; Kig where Dik corresponds to a noisy
measurement of the ODE model output yikðZ; uZÞ ¼
yiðtik; Z; uZÞ, i.e., the value of the ith component at time tik,
given that the model is Z and has parameters uZ . For nota-
tional convenience, we will from now on drop the subscript
from uZ as it is always clear that the parameters in question
are those of model Z. Assuming that the data points are
independent, the model response y can be combined with
the time course data through the likelihood function

pðD j u; ZÞ ¼
Yn
i¼1

YKi

k¼1

hðDik j u; ZÞ; (4)

where sampling distribution h should be selected based on
the properties of measurements used in an application. By
applying the Bayes’ theorem, we can obtain the parameter
posterior distribution

pðu jD;ZÞ ¼ pðD j u; ZÞpðu jZÞ
pðD jZÞ ; (5)

where pðu jZÞ is the prior distribution over the model
parameters and

pðD jZÞ ¼
Z

pðD jZ; uÞpðu jZÞdu; (6)

is the marginal likelihood. Further, we can express the
posterior distribution over models Z in the form

pðZ jDÞ / pðD jZÞpðZÞ; (7)

where pðZÞ is the prior distribution over all possible con-
figurations of the matrix Z.

2.4 Testing Hypotheses about the Latent Process
of LEM Model

Applications of LEM modeling can involve several alter-
native hypotheses about the possible latent process. For
instance, in the gene regulatory network application that we
consider in this study, the latent process can be constructed
to have one, two, or three sequential phases. Bayesian meth-
odology makes it possible to compute the posterior proba-
bilities for the hypotheses about the latent process and thus
obtain quantitative ranking for the hypotheses. In the fol-
lowing, this is derived formally by generalizing the notation
of the previous section to allow conditioning on hypotheses
about the latent process.

If we condition the whole model with the latent process
hypothesis H, the parameter posterior takes the form
pðu jD;Z;HÞ / pðD jZ;H; uÞpðu jZ;HÞ and the marginal
likelihood pðD jZ;HÞ can be computed by integrating
the rate parameters out in a similar manner as in Eq. (6).
The posterior distribution over the alternative models can
also be expressed conditioned with H, i.e., pðZ jD;HÞ /
pðD jZ;HÞpðZ jHÞ. The posterior distribution over different
latent process hypotheses is then

pðH jDÞ ¼ pðD jHÞpðHÞP
H pðD jHÞpðHÞ ; (8)

where pðHÞ is the prior distribution over alternative hypoth-
eses and

pðD jHÞ ¼
X

Z2MH

pðD jZ;HÞpðZ jHÞ; (9)

where MH denotes the set of alternative models consistent
with the hypothesis H. Eq. (9) provides a well-defined pos-
terior probability measure that can be used to evaluate the
hypothesisH.

2.5 Probabilistic Inference of the ODE Model
Mechanisms

If the full posterior distribution over alternative model con-
figurations is available, we can determine how probable the
individual mechanisms of the network are. For this purpose
we can compute the so-called posterior weights that are pre-
sented in the following.

Let us assume that we have a model posterior distribu-
tion p : M ! ½0; 1�, and we wish to obtain predictions about
the model structure. Now the matrix

Fig. 1. Illustration of a standard ODE and a three-phase LEM model.
Each row of the binary matrix corresponds to one mechanism and each
column to one latent state. Here, the solid arrows represent activation
links and the dashed lines are inhibition links. The element on row i and
column j defines if mechanism i is present in phase j. An example
design of the time-dependent latent process is illustrated with the red,
blue, and green lines that represent the three latent states as a function
of time. Each latent component represents a different, possibly overlap-
ping phase of cellular process.
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Wp ¼
P

Z2M pðZÞZP
Z2M pðZÞ ; (10)

contains the posterior-weighted averages for each element
in the model configuration matrix over all possible models.
We can interpret the element ði; jÞ of this matrix as the prob-
ability that describes how likely it is that the corresponding
molecular interaction i is present in the jth phase of the
rewiring sequence. In the case of standard ODE models, Wp

is just a vector that contains the posterior weights for each
link in the full network.

In real world applications, the posterior weights have to
be computed by using an approximation for p, since it often
is not feasible to compute the posterior probability for
all viable models. The following sections focus on how to
obtain a good approximation efficiently. This approximative
distribution can then also be used to perform the hypothesis
testing presented in the previous section.

2.6 Marginal Likelihood Estimation

The estimation of the marginal likelihood is challenging in
general and there exist several approaches to carry out the
estimation task [6]. Throughout this study, we compute all
marginal likelihoods using the approximation

log pðD jZ;HÞ � log pðD jZ;H; uMLÞ þ d

2
log ðT Þ; (11)

where uML is the maximum likelihood estimate, d is the
parameter dimension and T the total number of data points
[13]. This crude approximation is essentially the same as
the approximation behind the Bayesian information criterion
[14]. The only computational task that is required for evaluat-
ing Eq. (11) is computing the maximum likelihood estimate,
and consequently, it provides us with a computationally
efficient estimate which can be computed for a large number
ofmodels in a reasonable time.

2.7 Exploring the Model Space Using Markov Chain
Monte Carlo Methods

Even though estimation of the marginal likelihood via
Eq. (11) is computationally rather efficient, the evaluation of
this expression can be carried out for all possible configu-
rations of Z only in the case of simple toy systems with
a limited number of possible models. On the other hand, if
the data are informative, only a small fraction of alternative
configurations of matrix Z are likely to fit the data well.
Embracing Markov chain Monte Carlo methods allows us
to search the discrete model space cleverly without having
to wade through the multitude of unsatisfactory models.
The idea is to create an MCMC sampler which efficiently
samples the model posterior distribution and is attracted
towards the high probability models. Moving between
already visited or proposed states is computationally light
and can be implemented using the lookup method, since
the parameters of any model have to be optimized only
once. This means that time-consuming computations are
needed only when a previously unseen model is being
proposed. Furthermore, the MCMC sampler will explore
the high-probability regions of the model space more
thoroughly than any greedy search method, and therefore
finds many more high-probability models. This is essential

for obtaining information about the link uncertainties, since
the model posterior can often be very vague in applications.

It is well known that the choice of proposal distribution is
vital for MCMC methods that have desirable properties,
such as rapid convergence or good mixing of the chains
[15]. With a discrete model space, we wish to define a sensi-
ble neighborhood relation between the different models so
that building an efficient proposal distribution is possible.
Let us define a model space M which is a set of all N �M
binary matrices. For model configuration Z 2 M, we define
the k-neighborhood of Z as

N kðZÞ ¼ fY 2 M : 1 � jjY � Zjj2F � kg; (12)

where jjAjjF is the Frobenius norm of matrix A. With binary
matrices Y and Z, jjY � Zjj2F is the number of differing ele-
ments of the matrices. Now, if Y 2 N kðZÞ with k � N �M,
then the models Z and Y have a high degree of similarity
and many common components. Consequently, they are
likely to have rather comparable posterior probabilities.
Thus, a randomwalkMonte Carlo algorithmwith a proposal
distribution that has most weight on models in k-neighbor-
hoods of the current state with small k presumably allows
reasonably smoothmovingwith a practical acceptance rate.

2.8 A RandomWalk Metropolis Algorithm for Model
Posterior Sampling

We now formulate a Metropolis algorithm [16] for exploring
a discrete model space consisting of binary configuration
matrices, that can represent different ODE or LEM model
structures. For a model Z, we have pðZ jD;HÞ / pðD j
Z;HÞpðZ jHÞ, where pðZ jHÞ is the prior distribution ofmod-
els, given the hypotheses H. In the following, we denote
pHðZÞ ¼ pðD jZ;HÞpðZ jHÞ. We use a proposal distribution
that is uniform over the 1-neighbors of the currentmodel, i.e.,

QðZ0 jZÞ ¼
1

NM ; if Z0 2 N 1ðZÞ
0; otherwise;

�
(13)

which clearly is symmetrical. When the models space
consists of only standard ODE models, this proposal distri-
bution is just uniform over removing or adding one link in
the network. If the current state is Z, one Metropolis step
consists of the following parts:

1) Draw a proposal model Z0 from the discrete
proposal distribution Qð	 jZÞ.

2) Accept transition to Z0 with probability

AðZ0 jZÞ ¼ min 1;
pHðZ0Þ
pHðZÞ

� �
; (14)

or reject it with the probability 1�AðZ0 jZÞ.
Now the transition probability from state Z to Z0 is
the product T ðZ0 jZÞ ¼ QðZ0 jZÞAðZ0 jZÞ. For any distinct
models Z and Z0 such that Z0 2 N 1ðZÞ, we have

pHðZÞT ðZ0 jZÞ ¼ min
pHðZÞ
NM

;
pHðZ0Þ
NM

� �
(15)

¼ pHðZ0ÞT ðZ jZ0Þ; (16)

1846 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2019



which is the detailed balance condition. Because the
detailed balance is satisfied and the proposal distribution Q
is irreducible, it follows that this sampling algorithm produ-
ces an ergodic Markov chain, and thus its invariant distribu-
tion is pHðZÞ [17]. Because pHðZÞ is proportional to the
model posterior, the algorithm will give unnormalized pos-
terior probabilities for all the models that it has encountered
at least once.

2.9 Model Posterior Distribution Approximation

Assume that we have first defined a model spaceM consist-
ing of well-motivated ODE models that are viable under all
hypotheses and prior information concerning the model
components and parameters. After measuring time course
data of the ODE model components, our goal is to obtain
information about the actual underlying model structure.
When the full model posterior pðZ jD;HÞ is not computa-
tionally solvable, we begin the task by approximating this
discrete probability distribution with a distribution that has
a relatively small support. Of course, for this approximation
to be good, the support must contain a remarkable propor-
tion of the high posterior probability models.

Assume that we have run any search algorithm that has
explored the set Z 
 M and therefore provided us with
the (possibly approximated) marginal likelihood values
pðD jZ;HÞ for each Z 2 Z. The model posterior approxima-
tion is then the distribution q : M ! ½0; 1�, where

qðZÞ ¼ pðD jZ;HÞpðZ jHÞP
Y2Z pðD jY;HÞpðY jHÞ ; (17)

for all Z 2 Z and qðZÞ ¼ 0 for all Z 2 MnZ.

2.10 Assessing the Goodness of the Model
Posterior Approximation Using Independent
Chains

In our approach, we use the Metropolis algorithm to effi-
ciently find a subset of models that is sufficient for obtaining
a good model posterior approximation. In order to assess
the reliability of the obtained results and to decide when to
terminate the search, we use multiple independent MCMC
chains. Naturally, the model posterior approximation is
slightly different for different runs and, in the worst case
if the independent MCMC chains have not reached the
same high probability regions, the difference may be nota-
ble. Note that as the sampled distribution is discrete, we do
not need to estimate the model posterior probabilities based
on how frequently they occur in the MCMC chain, because
the actual posterior probabilities (or their approximations)
are available for each of the encountered model structures
via Eq. (11). Consequently, we should not use the standard
convergence diagnostics but rather need some measure to
compare the approximative distributions that are obtained
from independent chains using Eq. (17) and this way also
assess the convergence of the approximations. For this pur-
pose, we use the overlapping (OVL) coefficient [18], [19].

The OVL for two different posterior approximations pðZÞ
and qðZÞ can be computed simply via the formula

OVLðp; qÞ ¼
X
Z2M

min pðZÞ; qðZÞf g: (18)

Intuitively, the OVL coefficient measures the similarity
of two distributions by computing the area that they share
and the measure is bounded between 0 and 1, so that
OVLðp; qÞ ¼ 1 if and only if p ¼ q.

2.11 Computational Implementation

The Metropolis algorithm, and the marginal likelihood
approximation in Eq. (11) are implemented in MATLAB

(The MathWorks Inc., Natick, MA, USA). Even though the
marginal likelihood approximation in Eq. (11) is compu-
tationally relatively simple compared to other methods, the
related maximum likelihood parameter optimization prob-
lem is often difficult for nonlinear ODE models due to
multimodality of the likelihood surface [3]. Following
the recommendations presented in [1] and [2], we tackle
the parameter optimization by using multiple local optimi-
zation starts with a latin hypercube setting. In order to
achieve better performance, these starts are done in paral-
lel. The CVODES solver from the SUNDIALS package [20] is
used to solve the ODE systems numerically. This involves
solving the related sensitivity equations simultaneously
with the actual ODE system [21]. A more detailed descrip-
tion of the used methods and their reasoning can be found
in the supplemental material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2018.2825327. The
implementation is available at version.aalto.fi/gitlab/
timonej3/ode_mcmc.

2.12 Exact Mathematical Formulation of the
Dynamically Evolving Molecular Interactions
in Our Experiments

In the present study, we will demonstrate the model struc-
ture inference with both simulated toy examples, and real
data. In all our experiments, the construction of the ODE
system that mathematically describes a given LEM model
(Eq. (2)) is begun by creating a standard ODE system

dyi
dt

¼ kbi þ
Xn
j¼1

kaijyj þ
Xn
k;j¼1
j> k

ksaj yjyk �
Xn
j¼1

kinhij yiyj � kdi yi; (19)

where kbi , k
a
ij, k

sa
ijk, k

inh
ij and kdi are the corresponding basal acti-

vation, independent activation, synergistic activation, inhibi-
tion and degradation rate constants, respectively.
The summed components of Eq. (19) correspond to the func-
tions fj in Eq. (2). To include the time-dependent behavior
of the mechanisms, we couple the ODE system with a latent
process x : ½0; T � ! D, where D ¼ fxðtÞ 2 ½0; 1�3 : Pi xiðtÞ ¼ 1g
using Eq. (3). In our design, xðtÞ has the form

x1ðtÞ ¼ 1� 1
1þexpð��1ðt�t1ÞÞ

x2ðtÞ ¼ 1
1þexpð��1ðt�t1ÞÞ � 1

1þexpð��2ðt�t1�t2ÞÞ
x3ðtÞ ¼ 1

1þexpð��2ðt�t1�t2ÞÞ

8><
>: ; (20)

where t1; t2 are location parameters and �1; �2 are shape
parameters of the process. This formulation can be used for
models that have up to three latent states. For models with
two latent states, the parameters �2; t2 get suppressed from
the final ODE system, and for models with only one latent
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state the whole coupling weight function in Eq. (3) is con-
stant at 1.

2.13 Experimental Data

To test the performance of our method in a real application,
we make use of the extensive RNA sequencing data set pro-
vided by [22]. This data set provides rich information about
the dynamic transcriptional changes during the T helper
17 differentiation process. These data are particularly good
for testing model structure inference in the context of LEM
modeling because Th17 cell differential process proceeds in
sequential phases which can be modelled as latent states [9],
[12]. The detailed experimental procedures that have been
used to generate the RNA-seq data set are given in the origi-
nal article [22]. In brief, the data are obtained by purifying
naive CD4þ cells from lymph nodes and spleen of wild-type
mice, culturing the cells in Th17 conditions, and harvesting a
proportion of cells at the time-points 0, 1, 3, 6, 9, 12, 16, 24,
and 48 hours for RNA-seq processing. In this study, we use
the fragments per kilobase of transcript per million mapped
reads (FPKM) values of each core regulatory gene.

3 RESULTS

3.1 Experiments with Simulated Data

In order to test the performance of our method, we formu-
late ODE model structure inference problems that involve
realistically simulated data. In these experiments, the
amount of different possible models is small enough to per-
mit exhaustive computation of the BIC (Eq. (11)) for each
model for reference. Running the Metropolis algorithm after
obtaining the full model posterior distribution will not then
increase the computational burden anymore, and we can
easily investigate how the inferred model structure evolves
as we run the algorithm. In particular, we test how the over-
lapping coefficient given in Eq. (18) between the real model
posterior and the obtained approximation as well as the
inferred posterior weights in Eq. (10) behave as a function
of the approximation support size. Throughout the rest of
the paper, we often refer to the size of the approximation
support simply as the number of (evaluated) models. This
number is the amount of models that have been proposed
and possibly accepted by the Metropolis sampler, and
reflects the computational burden that effectively increases
only when a previously unseen model is proposed.

We present three different examples, one considering
only standard ODE models and the other two involving
LEM models with one to three phases. In the LEM experi-
ments, we also demonstrate testing hypotheses about the
latent process. Readers who are only interested in ODE
model structure inference in general can study only Experi-
ment 1, whereas readers who also wish to understand infer-
ring the number of latent phases in the Th17 cell application
are encouraged to see also Experiments 2 and 3.

Each experiment involves noisy data that is simulated
from a mechanistically constructed ODE model. To be more
exact, the data points Dit are generated so that Dit ¼ yitþ
"ðyit;a;bÞ, where yit is the output of the data generating ODE
system for component i at time t. The added measurement
noise has a normal distribution with heteroscedastic vari-
ance that is proportional to the output, i.e.,

"ðyit;a;bÞ � N ð0; ðaþ byitÞ2Þ: (21)

In each experiment, we use fixed noise parameters a ¼ 10�4

and b ¼ 0:035 and assume them known. Also, all experi-
ments involve three genes and three replicates of each mea-
surement. Thus, the likelihood in Eq. (4) takes the form

pðD j u; ZÞ ¼
Y3
i¼1

Y3�K

k¼1

NðDik j yik; ðaþ byitÞ2Þ; (22)

where K is the number of distinct measurement time points
and yit ¼ yiðt; Z; uÞ.

In these experiments, the ODE system for a givenmodel is
first constructed from itsmechanisms according to Eq. (19). If
the model consists of several latent states, we use the latent
process design specified by Eq. (20). In each experiment, we
apply a uniform prior distribution over models, meaning
that pðZ jD;HÞ / pðD jZ;HÞ. Furthermore, we use fixed ini-
tial values yið0Þ ¼ 0:01 for each i ¼ 1; 2; 3. All experiments
also involve some mechanisms that are fixed, i.e., appear in
all feasible models. We note that the parameters of these
fixedmechanisms are nevertheless estimated from the data.

3.1.1 Experiment 1

In the first example, we consider standard ODE models
with three genes. We denote the genes by A, B and C and
for each gene, we simulate three replicates of measurements
at time points 0.25, 0.5, 1, 2, 3, 4, 5, 6 and 7. We consider
only models where each gene is affected by basal activation
and degradation. These mechanisms are thus included in
the ODE system of each model. Further, we allow the genes
to interact through all possible activating and inhibiting
interactions. The model space can then be expressed as the
union of all 12� 1 binary matrices, where each row corre-
sponds to one activation or inhibition link. This means that
there are 212 different models. The activation and inhibition
links of the data generating model as well as the generated
data are shown in Fig. 2. The corresponding kinetic rate

Fig. 2. Regulatory mechanisms of the data generating model and the
simulated data in Experiment 1. The solid arrows and dashed turnstiles
represent activating and inhibiting links, respectively. The dotted line rep-
resents the underlying model response and the noisy measurements
are plotted using gray circles.
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parameter values used in the data simulation are shown in
Table 1. When performing model parameter calibration, our
allowed range for the parameters is set to ½0:001; 30�.

Fig. 3 displays the overlapping coefficient between the
posterior approximation and the full posterior as a function
of the number of evaluated models. Here the Metropolis
algorithm is started from the emptymodel, i.e., from a 12� 1
matrix of zeros, and it was run until the overlap reaches 0.99.
This happened, when 339 different models where encoun-
tered. This means that the algorithm efficiently finds the
models with high posterior probability and only a fraction of
models is needed to obtain a good posterior approximation.
Fig. 3 exhibits the posterior weights of each link computed
using the approximations obtained after 80 and 100 evalu-
ated models. The weights computed using the full posterior
distribution are also plotted for reference. We see that after
100 models, when OVL � 0:8, the link weights are inferred
very accurately. Another thing to note is that even though
the OVL is only 0.35 after 80 models, we have inferred most
of the posterior weights rather accurately.

This experiment demonstrates that for a standard ODE
model structure inference problem, the algorithm indeed
can provide a good model posterior approximation with a
computational effort that is only a fraction from the effort
required to compute the full model posterior distribution.
It is clear that if this approximation is good, then also the
structure inference is reliable. However, the results show
that it is possible to obtain quite accurate predictions about
the model structure even when the obtained approximation
only partly overlaps with the full model posterior. Further-
more, the inference gives a posterior weight close to one for
those mechanisms that actually were in the data generating
model, when the data is informative enough.

3.1.2 Experiments 2 and 3

In the second and third experiment, we consider LEMmodels
that have from one to three latent states. We generate three
replicates of measurements at time points 1; 2; 3; 5; 8; 12;
18; 24 and compare hypotheses HM : “There are M latent
states.” for each M ¼ 1; 2; 3. We consider three genes A, B,
and C, and assume that basal activation of A and degradation
of each gene are fixed mechanisms. The model space under
the hypothesis HM contains all possible combinations of the
four links shown in Fig. 4 in M states. As explained in detail

in Section 2.2, the structure of a LEM model of this kind can
be expressed using a 4�M binary matrix and, in total, the
model space consists of 24M differentmodels. In Experiment 2,
the data are generated from a two-phasemodel and, in Exper-
iment 3, from a three-phasemodel. Illustrations of these mod-
els and data are shown in Figs. 5 and 6, respectively. The used
kinetic rate parameter values are shown in Table 1 and the
used latent process parameters in Table 2.

For kinetic rate parameters, we use the range ½0:001; 50�
in Experiment 2 and ½0:001; 30� in Experiment 3. In both
experiments, the allowed range for �1 and �2 is ½0:75; 3�. If
the model has three phases, then the allowed range is ½1; 12�
for t1 and ½3; 12� for t2. For two-phase models, we use the
range ½1; 24� for t1. These parameter ranges allow flexible
dynamics of the latent processes, but yet are restricted so
that very rapid changes that would demand very dense
data for reliable calibration are not possible. We note that
this formulation with extreme parameters allows negative
values for the second latent component of a three-phase
model, but within our bounds these values are negligibly
small. An example of a three-phase latent process obtained
with similar formulation is illustrated in Fig. 1.

The structure inference is performed separately for each
hypothesis HM , (M ¼ 1; 2; 3), by starting one Metropolis
chain in the corresponding model space from the 4�M
matrix of zeros. Fig. 7 shows the overlap of the real model

TABLE 1
Kinetic Rate Parameter Values of the Data Generating

Models in Each Simulated Data Experiment

Mechanism Exp. 1 Exp. 2 Exp. 3

basal activation of A 1 1.5 1
basal activation of B 1 - -
basal activation of C 1 - -

activation A ! B 5 3 3
activation A ! C - - 0.5
activation B ! C 2.5 2 -
activation C ! B - 1.5 1.5
inhibition C a A 0.15 - -
inhibition C a B 1 - -

degradation of A 0.5 0.5 0.3
degradation of B 0.5 2 1
degradation of C 0.8 3 1.5

Fig. 3. Visualization of the model structure inference in Experiment 1.
The top panel shows the value of the overlapping coefficient (OVL)
between the full model posterior distribution and the approximative distri-
bution as a function of the number of evaluated models. After 80 models,
we have OVL � 0:35 and after 100 models OVL � 0:80, which is
highlighted by the red and blue dots. The red and blue bars in the bottom
panel represent the inferred link weights at these points. The gray bars
represent the weights Wfull which were computed using the entire model
posterior. The total number of alternative models is 4,096.

Fig. 4. Possible activation mechanisms in Experiments 2 and 3. In addi-
tion to these interactions, it is assumed that gene A has basal activation
and all genes are allowed to degrade at some unknown rate.
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posterior and the approximation obtained after different
amounts of evaluated models for each M ¼ 1; 2; 3. Again,
we notice that the approximation is effectively same as the
real model posterior after only a relatively small number of
evaluated models. This is most evident in the case M ¼ 3,
when the model space is largest.

We assume a uniform prior distribution over the latent
process hypotheses and compute the posterior probabilities
pðHM jDÞ for each M ¼ 1; 2; 3 given by Eqs. (8) and (9) to
carry out the hypothesis comparison. The values for both
experiments are computed from the full posterior distribu-
tions and are shown in Table 3. The values indicate that the
hypothesis involving the real number of phases in the data
generating model gets virtually all of the posterior probabil-
ity mass in the hypothesis testing and we can infer the cor-
rect form of the latent process in both cases.

The successful exploration of the model space and the
consequent rapid finding of the high probability models
strengthen our belief in the power of the algorithm. Here,
we computed the values pðD jHMÞ using the full model

posterior, but since our approximations are good, it is clear
that the same result is obtained without having to compute
the full posterior exhaustively.

Fig. 6. Illustration of the activation mechanisms of the three-phase data
generating model and the simulated data used in Experiment 3. (a) Activa-
tion links in each of the three latent states. (b) The latent process, model
output, and noisy data plotted similarly as explained in Fig. 2.

TABLE 2
Latent Process Parameter Values of the Data Generating

Models in the Simulated LEM Experiments

Interpretation param. Exp. 2 Exp. 3

rate of first state transition �1 1.5 2.5
time of first state transition t1 6 3
rate of second state transition �2 - 1
time between state transitions t2 - 5

Fig. 7. Demonstration of the model posterior approximation in Experi-
ments 2 (top panel) and 3 (bottom panel). The lines indicate the value of
the overlapping coefficient between the full model posterior and the
approximation obtained at different amounts of explored models for
M ¼ 1; 2; 3. The chains were stopped when the overlap reaches 0.99.

TABLE 3
Posterior Probabilities for Different Numbers of

Latent States in the LEM Experiments

pðH1 jDÞ pðH2 jDÞ pðH3 jDÞ
Exp. 2 0 0.9955 0.0045
Exp. 3 0 9:8 	 10�223 1.0000

Fig. 5. Illustration of the activation mechanisms of the two-phase
data generating model and the simulated data used in Experiment 2.
(a) Activation links in each of the two latent states. (b) The latent process,
model output, and noisy data plotted similarly as explained in Fig. 2.
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3.2 Combining Information from Multiple Chains

The previous experiments demonstrated that a single
Metropolis-type sampler can indeed find the high-probabil-
ity models and thus give a reliable approximation for the
model posterior distribution. However, it is possible that a
Metropolis chain gets stuck in a local optimum and does
not escape it in a finite number of iterations. The inference
results can then be different for chains that are started from
different initial models. In order to obtain more reliable
results, one can start several independent chains in parallel,
possibly from different initial models, and create the poste-
rior approximation in Eq. (17) using all evaluated models
from each chain. Comparing different simulated chains is a
common strategy for assessing the convergence of MCMC
runs in continuous spaces [23]. For example, when sam-
pling a multimodal distribution, results have a higher
chance of being reliable, if all chains yield similar samples.
On the other hand, if one chain has only sampled one mode
and another chain has only sampled another mode for the
same number of iterations, one cannot combine the samples.
This is because the combined set of samples cannot gener-
ally be seen as a sample from the target distribution, since
we have equally many samples from both modes, even
though one of the modes might have a considerably larger
total probability mass. However, in the case of a discrete
model space, our information consists of the posterior prob-
abilities for each model that has been sampled at least once
by at least one chain. All this information can now be used
to create the posterior approximation. This can be especially
beneficial, if the independent chains can be run in parallel.

We demonstrate this strategy by returning to the model
structure inference problem and the data set considered in
Experiment 1. We start three independent chains from ran-
domly chosen initial models, and test how much faster we
would reach a good OVL if the chains were run in parallel
and their information was combined after each iteration.
Fig. 8 shows the OVL between the full model posterior and
the approximations obtained by each chain on their own
and the method of combining their information as a func-
tion of relative computation time. The relative computation
time is defined to be the number of encountered models

divided by the number of chains. For the individual chains,
the horizontal axis is thus just the number of encountered
models. Clearly, the latter method provides better results
in a shorter time, as it always has more information than
just a single chain.

3.3 Structure Inference for the Th17 Core
Regulatory Network

The five-gene core network thatwe studywas experimentally
derived in [22]. Thefive transcription factors that are included
in the network are the retinoic acid receptor-related orphan
receptor gamma t (RORC), signal transducer and activator of
transcription 3 (STAT3), basic leucine zipper transcription
factor (BATF), transcription factor Maf (MAF) and interferon
regulatory factor 4 (IRF4).We set the fixed part of the network
such that each gene degrades at a constant rate and experien-
ces a basal activation. An exception to this is RORCwhich has
no basal activation. In addition, Fig. 10 shows the 15 possible
free regulatory mechanisms that are motivated by [22]. The
time course data are presented in Fig. 9.

We use the parameter bounds ½0:001; 100� for kinetic rate
parameters and ½0:5; 3� for �1 and �2. Furthermore, for mod-
els with three latent states, we use the bounds ½1; 20� for t1
and ½4:5; 20� for t2 and for models with two latent states, our
bounds for t1 are ½1; 40�. The flexibility of the three-phase
latent processes allowed with this setting is illustrated in
Supplementary Fig. 1, available online.

The data set consists of measured FPKM values at time-
points 0, 1, 3, 6, 9, 12, 16, 24, and 48 hours. At time t ¼ 6 h,
there are three replicates but we treat those as a single mea-
surement that is the mean of three replicates in order to get
results that can more easily be compared with the ones in
[9]. The initial values for the ODE models are fixed accord-
ing to the measurements at time t ¼ 0 h.

In likelihood computations, an underlying assumption
thatwemake is that themeasurement errors come from a nor-
mal distributionwith heteroscedastic variance. The likelihood
in Eq. (4) takes the form

pðD j u; ZÞ ¼
Y5
i¼1

Y8
k¼1

NðDik j yik; ðaþ byitÞ2Þ; (23)

yit ¼ yiðt; Z; uÞ. We set the parameter values a ¼ 10�4 and
b ¼ 0:035, which are taken from the previous study [9].
Also an approach where these parameters are estimated

Fig. 8. Illustration of the benefit gained by using multiple parallel chains.
The colored traces represent the overlapping coefficient between the
posterior approximation given by that chain and the full model posterior
as a function of the relative computation time. The dashed black trace
represents the OVL between the full model posterior and the approxima-
tion created by combining the information of the independent chains.
The approximation computed using information from all the three parallel
chains reaches overlap of one in a shorter time.

Fig. 9. The Th17 time-course data set used in the real world application
along with the predictions given by the best found model. The top left
panel illustrates the three-phase latent process that was fitted for the best
found model. In other panels, gray lines are the output of the best model
for each of the five genes and red dots correspond to measurements.
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simultaneously with the model parameters was applied, but
this seemed to fit the models highly towards the first few
data points and give very small values for a.

The model structure inference problem is tackled by
starting independent Metropolis samplers from the empty
model with different random seeds and comparing how the
model posterior approximations provided by the indepen-
dent chains converge close to each other. We perform the
inference separately for three different hypotheses aboutM,
the number of phases in the cellular differentiation. We start
four independent chains in the case M ¼ 3, and two inde-
pendent chains in the cases M ¼ 1 and M ¼ 2. The number
of alternative models in each case is 215�M (i.e., 3:3� 104 for
M ¼ 1, 1:1� 109 forM ¼ 2 and 3:5� 1013 for M ¼ 3), which
means that exhaustive computation of the full model poste-
rior is not computationally feasible.

The overlapping coefficients between the two indepen-
dent chains for M ¼ 1 and M ¼ 2, and between chains 1
and 2 as well as chains 3 and 4 for M ¼ 3, are shown in
Fig. 11. We notice that in the first two cases the OVL
approaches one and we get two model posterior approxi-
mations that are very similar. Thus we believe that the algo-
rithm has explored the high probability regions accurately
in both cases. In the first case, we see a temporary drop in
the OVL trace when one chain moves to a new high poste-
rior probability region and the other chain finds it only later.
For M ¼ 3, the model space is very large and our approxi-
mations obtained by independent chains only partially
overlap after approximately 3600 evaluated models. Never-
theless, despite non-perfect overlap for M ¼ 3, posterior
probabilities for different mechanisms are surprisingly sta-
ble as shown below.

The posterior weight approximations for each mecha-
nism in each phase from the different chains are presented
in Fig. 10. For one- and two-phase models, the weights
are naturally similar since our posterior approximations
overlap remarkably. In addition, for the four chains that
explore three-phase models, the obtained posterior weights
are rather close to each other even though the OVL for the

corresponding model posterior approximations does not
reach one. The simulated data experiments, where good
approximations to the weights were obtained even when
the model posterior approximation did not fully overlap
with the real model posterior, support our belief that the
algorithm has provided us with meaningful information
about the model structure given the mechanisms included
in the network.

Hypotheses about the number of phasesM are compared
by computing the corresponding posterior probabilities
pðHM jDÞ, where HM suggest that there are M different
phases. The hypothesis H3 gets practically all the posterior
probability mass (P ðH3 jDÞ � 1), since models with three
phases fit the data much better than ones with only one or
two phases.

To summarize, our analysis supports the earlier findings
that Th17 lineage specification occurs in three sequential
phases [12]. Further, the posterior weights for different
mechanisms (Fig. 10) obtained here with the novel and effi-
cient search strategy coincide with the point estimate that
was obtained in earlier LEM model analysis [9] through a
greedy search. Additionally, the results in Fig. 10 provide
interesting additional information about the uncertainty
related to different mechanisms.

Fig. 11. Illustration of the converge of different chains in the Th17 core
network structure inference under different hypotheses about the num-
ber of phases in cellular differentiation. Lines represent the overlapping
coefficients (OVL) between approximations obtained from different inde-
pendent chains as a function of evaluated models.

Fig. 10. Th17 core network inference results under different hypotheses about the number of distinct phases in the cellular differentiation. The bar
length represents the posterior weight of the corresponding mechanism in the corresponding phase. The posterior weights obtained from different
independent chains are color coded. Two independent chains were run for one- and two-phase models, and four chains for three-phase models.
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4 DISCUSSION AND CONCLUSION

In this study, we introduce a general framework which can
be used to make inference about the structure of mechanis-
tic ODE models. Our approach is especially suitable for
inference problems in which the model space is rather large
and exhaustive model evaluation is out of reach. The frame-
work that we propose is built upon well-established MCMC
techniques and provides an efficient yet simple means to
obtain an approximation of the posterior distribution over
alternative model structures. To our best knowledge, our
approach is unique in the context of mechanistic ODE mod-
els and our results illustrate the applicability of the pro-
posed algorithm.

The good performance of our sampling algorithm is due
to the efficient parallel implementation and, on the other
hand, due to successful choice of the proposal distribution
of Metropolis sampler. A good proposal distribution ena-
bles efficient exploration of the model space as well as fast
convergence to the high probability region of the distribu-
tion. However, the choice of the proposal distribution is at
least to some extent an application specific problem and, in
practice, it is always possible that the sampler gets stuck to
a local mode. Consequently, it is of great importance to run
several MCMC chains and carefully check how well the
chains converge and cover the same high probability region
(s). Good convergence of the chains is highly desirable, but
it is important to note that chains that cover only partly the
same high probability regions can also result in a good
approximation of the target distribution because in discrete
space we obtain rigorous probabilities of each visited state.
Further, it is obvious that the resulting approximation pro-
vides us always with much richer information when com-
pared with a point estimate that is obtained through a
deterministic greedy search.

In applications in which the choice of the proposal distri-
bution turns out to be especially challenging, the conver-
gence properties can also be improved not only by
changing the proposal distribution but also by constructing
a different version of the sampler. For instance, population-
based MCMC sampling [24] can be used to improve the
mixing performance of the sampler or multiple-try Metrop-
olis algorithm [25] can be used to make the sampler explore
the space more efficiently. We have run preliminary tests
using these two sampler variants and the results are promis-
ing. Importantly, both extensions can notably benefit from
the parallelisms and lookup strategy in our implementation
and we find these extensions as interesting future direction
for sampler development.

The framework that we introduce in this study enables
probabilistic model structure inference for mechanistic ODE
models in larger scale than existing standard techniques.
The inference problem is formulated within Bayesian frame-
work and can be flexibly implemented in various forms.
For example, the BIC approximation for the marginal likeli-
hood can be replaced with more rigorous approximations
such as the harmonic mean estimator [26] or power posterior
estimator [27]. Thus, our framework provides an ODE mod-
eller with a flexible and practical tool which makes it easier
to carry out data-driven mechanistic modeling studies also
when only weak prior information is available about the
model structure.
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