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The SCJ Small Parsimony Problem for
Weighted Gene Adjacencies

Nina Luhmann™, Manuel Lafond, Annelyse Thévenin, Aida Ouangraoua, Roland Wittler™, and Cedric Chauve

Abstract—Reconstructing ancestral gene orders in a given phylogeny is a classical problem in comparative genomics. Most existing
methods compare conserved features in extant genomes in the phylogeny to define potential ancestral gene adjacencies, and either try
to reconstruct all ancestral genomes under a global evolutionary parsimony criterion, or, focusing on a single ancestral genome, use a
scaffolding approach to select a subset of ancestral gene adjacencies, generally aiming at reducing the fragmentation of the
reconstructed ancestral genome. In this paper, we describe an exact algorithm for the Small Parsimony Problem that combines both
approaches. We consider that gene adjacencies at internal nodes of the species phylogeny are weighted, and we introduce an
objective function defined as a convex combination of these weights and the evolutionary cost under the Single-Cut-or-Join (SCJ)
model. The weights of ancestral gene adjacencies can, e.g., be obtained through the recent availability of ancient DNA sequencing
data, which provide a direct hint at the genome structure of the considered ancestor, or through probabilistic analysis of gene
adjacencies evolution. We show the NP-hardness of our problem variant and propose a Fixed-Parameter Tractable algorithm based on
the Sankoff-Rousseau dynamic programming algorithm that also allows to sample co-optimal solutions. We apply our approach to
mammalian and bacterial data providing different degrees of complexity. We show that including adjacency weights in the objective has
a significant impact in reducing the fragmentation of the reconstructed ancestral gene orders. An implementation is available at http:/

github.com/nluhmann/PhySca.

Index Terms—Comparative genomics, ancestral reconstruction, parsimony, genome rearrangements

1 INTRODUCTION

RECONSTRUCTING ancestral gene orders is a long-
standing computational biology problem with impor-
tant applications, as shown in several recent large-scale
projects [1], [2], [3]. Informally, the problem can be defined
as follows: Given a phylogenetic tree representing the speci-
ation history leading to a set of extant genomes, we want to
reconstruct the structure of the ancestral genomes corre-
sponding to the internal nodes of the tree.

Existing ancestral genome reconstruction methods con-
centrate on two main strategies. Local approaches consider
the reconstruction of one specific ancestor at a time
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independently from the other ancestors of the tree. Usu-
ally, they do not consider an evolutionary model and pro-
ceed in two stages: (1) comparing gene orders of ingroup
and outgroup species to define potential ancestral gene
adjacencies, and (2) selecting a conflict-free subset of
ancestral gene adjacencies-where a conflict is defined as an
ancestral gene extremity belonging to more than two
potential adjacencies, e.g., due to convergent evolution-, to
obtain a set of Contiguous Ancestral Regions (CARs) [4],
[5], [6]. The second stage of this approach is often defined
as a combinatorial optimization problem aiming to mini-
mize the number of discarded ancestral adjacencies, thus
maximizing the number of selected adjacencies [4], [6], [7].
This stage follows principles common in scaffolding meth-
ods used to obtain gene orders for extant genomes from
sequencing data [8], [9]. This approach was recently used
to scaffold an ancestral pathogen genome for which
ancient DNA (aDNA) sequencing data could be
obtained [10]. Global approaches on the other hand simul-
taneously reconstruct ancestral gene orders at all internal
nodes of the considered phylogeny, generally based on a
parsimony criterion within an evolutionary model. This so
called Small Parsimony Problem has been studied with sev-
eral underlying genome rearrangement models, such as
the breakpoint distance or the Double-Cut-and-Join (DCJ)
distance [11], [12], [13]. While rearrangement scenarios
based on complex rearrangement models can give insights
into underlying evolutionary mechanisms, from a compu-
tational point of view, the Small Parsimony Problem is
NP-hard for most rearrangement distances [14]. One
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exception is the Single-Cut-or-Join (SCJ) distance, for
which linear/circular ancestral gene orders can be found
in polynomial time [15], however constraints required to
ensure algorithmic tractability yield fragmented ancestral
gene orders.

The two approaches outlined above optimize somewhat
orthogonal criteria. For example, the underlying goal of the
local approach is to maximize the agreement between the
resulting ancestral gene order and the set of potential ances-
tral adjacencies, independently of the other ancestral gene
orders. Would it be applied independently to all ancestral
nodes, potential ancestral adjacencies exhibiting a mixed
profile of presence/absence in the extant genomes might
then lead to a set of non-parsimonious ancestral gene
orders. The global approach aims only at minimizing the
evolutionary cost in the phylogeny and can result in more
fragmented ancestral gene orders. Nevertheless, there is lit-
tle ground to claim that one approach or the other is more
accurate or to be preferred, and the work we present is an
attempt to reconcile both approaches.

We introduce a variant of the Small Parsimony Prob-
lem based on an optimality criterion that accounts for
both an evolutionary distance and the difference between
the initial set of potential ancestral adjacencies and the
final consistent subset of adjacencies conserved at each
ancestral node. More precisely we consider that each
potential ancestral gene adjacency can be provided with
a (prior) non-negative weight at every internal node. The
contribution of the discarded adjacencies to the objective
function is then the sum of their weights. These adja-
cency weights can e.g., be obtained as probabilities com-
puted by sampling scenarios for each potential adjacency
independently [16] or can be based on ancient DNA
sequencing data providing direct prior information
assigned to certain ancestral nodes. It follows that the
phylogenetic framework we present can then also assist
in scaffolding fragmented assemblies of aDNA sequenc-
ing data [10], [17].

We prove NP-hardness of the problem variant we
introduce and describe an exact exponential time algo-
rithm for reconstructing consistent ancestral genomes
under this optimality criterion, based on a mixed Dynamic
Programming / Integer Linear Programming approach.
We show that this Small Parsimony Problem variant is
Fixed-Parameter Tractable (FPT), with a parameter linked
to the amount of conflict in the data. Moreover, this also
allows us to provide an FPT sampling algorithm for co-
optimal solutions,-a problem recently addressed in [18]
using a MCMC approach. We evaluate our method on a
simulated dataset and compare our results to several other
methods reconstructing ancestral genomes. Further, we
apply our method to two real data sets: mammalian
genomes spanning roughly one million years of evolution,
and bacterial genomes (pathogen Yersinia) spanning
20,000 years of evolution and for which some aDNA
sequencing data is available. We show that we can reduce
the fragmentation of ancestral gene orders in both datasets
by integrating adjacency weights while reconstructing
robust ancestral genomes.

This paper is an extended version of the work
previously presented in [19], particularly including new
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results on simulated datasets and a hardness proof of the
defined problem.

2 BACKGROUND AND PROBLEM STATEMENT

2.1 Genomes and Adjacencies

Genomes consist of chromosomes and plasmids. Each such
component can be represented as a linear or circular
sequence of oriented markers over a marker alphabet.
Markers correspond to homologous sequences between
genomes, e.g., genes or synteny blocks. We assume that
each marker appears exactly once in each genome, so our
model does not consider duplications or deletions. To
account for its orientation, each marker z is encoded as a
pair of marker extremities (xy,, ;) or (z;, ).

An adjacency is an unordered pair of marker extremities,
e.g., {zi,yn}. The order of markers in a genome can be
encoded by a set of adjacencies. Two distinct adjacencies
are said to be conflicting if they share a common marker
extremity. If a set of adjacencies contains conflicting adja-
cencies, it is not consistent with a mixed linear/circular
genome model. We assume that the set of adjacencies for an
extant assembled genome is consistent. The set of adjacen-
cies for one genome naturally defines an adjacency graph,
where nodes represent marker extremities and edges repre-
sent adjacencies. Conflicting adjacencies can be identified as
branching nodes in this graph.

2.2 The Small Parsimony Problem and
Rearrangement Distances

In a global phylogenetic approach, we are given a phyloge-
netic tree with extant genomes at its leaves and internal
nodes representing ancestral genomes. We denote by A4 the
set of all adjacencies present in at least one extant genome
and assume that every ancestral adjacency belongs to A.
Then the goal is to find a labeling of the internal nodes by
consistent subsets of A minimizing a chosen genomic dis-
tance over the tree. This is known as the Parsimonious Label-
ing Problem.

Definition 1 (Parsimonious Labeling Problem). Let T' =
(V, E) be a tree with each leaf I labeled with a consistent set of
adjacencies A; C A, and d a distance between consistent sets of
adjacencies. A labeling X : V' — P(A) with X\(I) = A; for each
leaf is parsimonious for d if none of the internal nodes v € V.
contains a conflict and it minimizes the sum W (A, T)) of the dis-
tances along the branches of T'

> d(Mw), \(v).

(up)eE

W(AT) =

This problem is NP-hard for most rearrangement distan-
ces taken as evolutionary models. The only known excep-
tion is the set-theoretic Single-Cut-or-Join distance [15]. It
defines a rearrangement distance by two operations: the cut
and join of adjacencies. Given two genomes defined by con-
sistent sets of adjacencies A and B, the SCJ distance between
these genomes is

dSC'](A,B) = |A—B| + |B—A|

The Small Parsimony Problem under the SCJ model can
be solved by computing a parsimonious gain/loss history
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for each adjacency separately with the dynamic program-
ming Fitch algorithm [20], [21] in polynomial time. Consis-
tent labelings can be ensured with the additional constraint
that in case of ambiguity at the root of the tree, the absence
of the adjacency is chosen [15]. As each adjacency is treated
independently, this constraint might automatically exclude
all adjacencies being part of a conflict to ensure consistency.
This results in an unnecessarily sparse reconstruction in
terms of reconstructed adjacencies and thus more frag-
mented genomes higher up in the tree.

2.3 Generalization by Weighting Adjacencies

When considering an internal node v, we define node u
as its parent node in 7. We assume that a specific adja-
cency graph is associated to each ancestral node v,
whose edges are annotated by a weight w,, € [0, 1] repre-
senting a confidence measure for the presence of
adjacency a in species v. Then in a global reconstruction,
cutting an adjacency of a higher weight has higher
impact in terms of the optimization criterion than cutting
an adjacency of lower weight.

Formally, we define two additional variables for each
adjacency a € A at each internal node v € V: The presence
(or absence) of a at node v is represented by p,, € {0,1},
while ¢,, € {0,1} indicates a change for the status of an
adjacency along an edge (u,v), i.e., pyq 7 Dvo- We consider
the problem of optimizing the following objective function,
where & € [0,1] is a convex combination factor.

Definition 2 (Weighted SCJ Labeling Problem). Let T' =
(V, E) be a tree with each leaf I labeled with a consistent set of
adjacencies A; C A and each adjacency a € A is assigned a
given weight w,, € [0,1] for each node v € V. A labeling X of
the internal nodes of T with A(I) = A; for each leaf is an opti-
mal weighted SCJ labeling if none of the internal nodes
v € V contains a conflict and it minimizes the criterion

D(\,T) = Za(l — Pua)Wpa + (1 — @)cyq.

v,a

Further, we can state the corresponding co-optimal
sampling problem. A sampling method is important to
examine different co-optimal rearrangement scenarios
that can explain evolution toward the structure of extant
genomes.

Definition 3 (Weighted SCJ Sampling Problem). Given
the setting of the Weighted SCJ Labeling Problem, sample uni-
formly from all labelings X\ of the internal nodes of T' that are
solutions to the Weighted SCJ] Labeling Problem.

2.4 Problem Complexity

Aside of the many heuristics for the Small Parsimony Prob-
lem for non-SCJ rearrangement models (see for exam-
ple [12], [13], [22] for the DCJ distance), there exist a few
positive results for the Weighted SCJ Labeling Problem
with specific values of .

If = 0, the objective function corresponds to the Small
Parsimony Problem under the SCJ distance and hence a
solution can be found in polynomial time [15]. A generaliza-
tion towards multifurcating, edge-weighted trees including
prior information on adjacencies at exactly one internal

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.16, NO.4, JULY/AUGUST 2019

node of the tree is given in [17]. Recently, Miklés and
Smith [18] proposed a Gibbs sampler for sampling optimal
labelings under the SCJ model with equal branch lengths. It
starts from an optimal labeling obtained as in [15], and then
explores the space of co-optimal labelings through repeated
constrained parsimonious modifications of a single adja-
cency evolutionary scenario. This method addresses the
issue of the high fragmentation of internal node labelings,
but convergence is not proven, and so there is no bound on
the computation time.

If « = 1, i.e., we do not take evolution in terms of SCJ dis-
tance along the branches of the tree into account, we can
solve the problem by applying independently a maximum-
weight matching algorithm at each internal node [7]. So the
extreme cases of the problem are tractable, and while we
assume that the general problem is hard, we will now prove
it for a small range of .

Theorem 1. The Weighted SCJ Labeling Problem is NP-hard for
any o > 33/34.

We show the hardness by reduction from the Maxi-
mum Intersection Matching Problem, which is defined as
follows. Let G and G3 be two graphs on the same vertex
set. Find a perfect matching in G| and G such that the
number of edges common to both matchings is maxi-
mized. We prove NP-hardness of this problem by reduc-
tion from 3-Balanced-Max-2-SAT (see appendix for
details, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2017.2661761).

Theorem 2. The Maximum Intersection Matching Problem is
NP-complete.

The relation of the Weighted SCJ Labeling Problem
and the Maximum Intersection Matching Problem can be
sketched as follows. For a given instance of the Maximum
Intersection Matching Problem, G; and G3, we construct a
tree that contains the edges of both graphs as potential
adjacencies. For « > 33/34, an optimal labeling of two
internal nodes then corresponds to perfect matchings in
G and Gy. Maximizing the number of common edges of
the matching then minimizes the SCJ distance between
the nodes. A detailed proof is given in the appendix,
available online.

3 METHODS

In order to find a solution to the Weighted SCJ Labeling
Problem, we first show that we can decompose the problem
into smaller independent subproblems. Then, for each sub-
problem containing conflicting adjacencies, we show that, if
it contains a moderate level of conflict, it can be solved using
the Sankoff-Rousseau algorithm [23] with a complexity
parameterized by the size of the subproblem. For a highly
conflicting subproblem, we show that it can be solved by an
Integer Linear Program (ILP).

3.1 Decomposition into Independent Subproblems

We first introduce a graph that encodes all adjacencies pres-
ent in at least one internal node of the considered phylogeny
(Definition 4 and Supplementary Fig. 7, available online).
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As introduced previously, we consider a tree 7' = (V, E)
where each node is augmented with an adjacency graph.

Definition 4 (Global adjacency graph). The set of vertices
Vag of the global adjacency graph AG consists of all marker
extremities present in at least one of the adjacency graphs.
There is an edge between two vertices a,b € Vaq that are not
extremities of a same marker, if there is an internal node in the
tree T whose adjacency graph contains the adjacency {a,b}.
The edge is labeled with the list of all internal nodes that con-
tain this adjacency.

Each connected component C' of the global adjacency
graph defines a subproblem composed of the species phy-
logeny, the set of marker extremities equal to the vertex set
of C, and the set of adjacencies equal to the edge set of C.
According to the following lemma, whose proof is straight-
forward, it is sufficient to solve each such subproblem
independently.

Lemma 1. The set of all optimal solutions of the Weighted SCJ
Labeling Problem is the set-theoretic Cartesian product of the
sets of optimal solutions of the instances defined by the con-
nected components of the global adjacency graph.

To solve the problem defined by a connected
component C of the global adjacency graph containing con-
flicts, we rely on an adaptation of the Sankoff-Rousseau
algorithm with exponential time complexity, parameterized
by the size and nature of conflicts of C, and thus can solve
subproblems with moderate amount of conflict.

3.2 Overview of the Sankoff-Rousseau Algorithm
The Sankoff-Rousseau dynamic programming algorithm [23]
solves the general Small Parsimony Problem for discrete
characters. Let L be the set of all possible labels of a node in
the phylogeny. Then for each node u in the tree, the cost
¢(a,u) of assigning a label a € L to this node is defined recur-
sively as follows
cla,u) = min (c(b, v) + d(a, b)),

v childofu "€

where in our case d(a,b) is defined as in Definition 2. This
equation defines a dynamic programming algorithm whose
base case is when u is a leaf in which case ¢(a,u) =0 if
Au) = a and ¢(a,u) = oo otherwise. Afterwards, choosing a
label with the minimum cost at the root node and backtrack-
ing in a top-down traversal of the tree results in a most par-
simonious labeling. We refer to [24] for a review on the
Sankoff-Rousseau algorithm.

3.3 Application to the Weighted SCJ
Labeling Problem

In order to use the Sankoff-Rousseau algorithm to solve the
problem defined by a connected component C' of the global
adjacency graph, we define a label of an internal node of the
phylogeny as the assignment of at most one adjacency to
each marker extremity. More precisely, let  be a marker
extremity in C, v an internal node of 7', and ey, . .., ¢4, be all
edges in the global adjacency graph that are incident to =
and whose label contains v (i.e., represent adjacencies in the
adjacency graph of node v). We define the set of possible
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labels of v as L., ={0,e1,...,eq,}. The set of potential
labels L, of node v is then the Cartesian product of the label
sets L, for all z € V(C) resulting in a set of discrete labels
for v of size [[,.(¢)(1 + d.). Note that not all of these joint
labelings are valid as they can assign an adjacency a = (z,y)
to z but not to y, or adjacency a = (z,y) to z and b = (z, 2) to
z thus creating a conflict (see Supplementary Fig. 8, avail-
able online for an example).

For an edge (u,v) in the tree, we can then define a cost
matrix that is indexed by pairs of labels of L, and L,,
respectively. The cost is infinite if one of the labels is not
valid, and defined by the objective function otherwise. We
can then apply the Sankoff-Rousseau approach to find an
optimal labeling of all internal nodes of the tree for con-
nected component C.

Note that, if C'is a connected component with no conflict,
it is composed of two vertices and a single edge, and can be
solved in space O(n) and time O(n).

3.4 Complexity Analysis

The time and space complexity of the algorithm is obvi-
ously exponential in the size of C. Indeed, the time (resp.
space) complexity of the Sankoff-Rousseau algorithm for
an instance with a tree having n leaves and r possible
labels for each node is O(nr?) (resp. O(nr)) [24]. In our
algorithm, assuming n leaves in T (i.e., n extant species),
me vertices in the global adjacency graph of C and a
maximum degree d¢ for vertices (marker extremities) in
this graph, (1+ d¢)™¢ is an upper bound for the size of
the label set L, for a node v. Moreover, computing the
distance between two labels of L, and L,, where (u,v) is
an edge of 7T, can trivially be done in time and space
O(mg¢): If both labels are valid, it suffices to check how
many common adjacencies are present in both labels,
while deciding if a label is not valid can be done by a
one-pass examination of the label. Combining this with
the Sankoff-Rousseau complexity yields a time com-
plexity in O(nme(1 + de)*"C) and a space complexity in
O(nmc(1+ dc)mc).

Given a general instance, i.e., an instance not limited to a
single connected component of the global adjacency graph,
we can consider each connected component independently
(Lemma 1). For a set of N markers and ¢ connected compo-
nents in the global adjacency graph defining a conflicting
instance, we define D as the maximum degree of a vertex
and M as the maximum number of vertices in all such com-
ponents. Then, the complexity analysis above shows that
the problem is Fixed-Parameter Tractable.

Theorem 3. The Weighted SCJ Labeling Problem can be solved in
worst-case time O(nN (1 + D)**) and space O(n.N (1 + D)™).

In practice, the exponential complexity of our algorithm
depends on the structure of the conflicting connected com-
ponents of the global adjacency graph. The dynamic pro-
gramming algorithm will be effective on instances with
either small conflicting connected components or small
degrees within such components, and will break down with
a single component with a large number of vertices of high
degree. For such components, the time complexity is prov-
ably high and we propose an ILP to solve them.
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3.5 AnInteger Linear Program

We can formulate the optimization problem as a simple ILP.
We consider two variables for any adjacency a and node v,
Pua € {0,1} and ¢, , € {0, 1}, defined as in Section 2.

Minimize Za(l — Poa)Wya + (1 —)cya

v,a

subject to

Puoa + Pua = Ppa > 0 for (p,u), (p,v) € E(T) ()
Puoa + Pua = Ppa < 1 for (p,u), (p,v) € E(T)  (c2)
Poa + Pua + oo < 2 for (u,v) € E(T) (cs)
Do + Pua — Coa > 0 for (u,v) € E(T) (c4)
Do — Pua + v > 0 for (u,v) € E(T) (¢c5)
— Pva + Pua + Coa > 0 for (u,v) € E(T) (cs)

Z Pu,a S 1 and Z DPuva S 1

a=(zt,y) a=(zp.y)

for any marker z and node v.

(c7)

The constraints ensure parsimony (¢; and c¢;), consistency
of the solution (¢;) and define the correct value for ¢,,
dependent on the value of p, along an edge (u,v) (c3—¢)-
This ILP has obviously a size that is polynomial in the size
of the problem.

3.6 Sampling Co-Optimal Labelings

The Sankoff-Rousseau DP algorithm can easily be modified
to sample uniformly from the space of all optimal solutions
to the Weighted SCJ labeling Problem in a forward-back-
ward fashion. The principle is to proceed in two stages: first,
for any pair (v, a) we compute the number of optimal solu-
tions under this label for the subtree rooted at v. Then,
when computing an optimal solution, if a DP equation has
several optimal choices, one is randomly picked according
to the distribution of optimal solutions induced by each
choice (see Appendix for more details, available in the
online supplemental material). This classical dynamic pro-
gramming approach leads to the following result.

Theorem 4. The Weighted SC] Sampling Problem can be
solved in worst-case time O(nN(1+ D)*M) and space
O(nN(1+ D)M).

For subproblems that are too large for being handled by
the Sankoff-Rousseau algorithm, the SCJ Small Parsimony
Gibbs sampler recently introduced [18] can easily be modi-
fied to incorporate prior weights, although there is currently
no proven property regarding its convergence.

3.7 Weighting Ancestral Adjacencies

A first approach to assign weights to ancestral adjacencies
consist in considering evolutionary scenarios for an adja-
cency independently of the other adjacencies. An evolu-
tionary scenario for an adjacency is a labeling of the
internal nodes of the species phylogeny T by the presence
or absence of the adjacency, and the parsimony score of a
scenario is the number of gains/losses of the adjacency
along the branch of T, i.e., the SCJ score for this single
adjacency. For a scenario o, we denote by p(o) its parsi-
mony score. Its Boltzmann score is then defined as
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B(o) = 6_%, where kT is a given constant. If we denote
the set of all possible evolutionary scenarios for the adja-
cency {z,y} by S(z,y), the partition function of the adja-
cency and its Boltzmann probability are defined as

B(o)
Z(x,y) = B(o), Pr(o) = .
(2,y) ;) (), Prlo) = 705

The weight of the adjacency at internal node v is then the
sum of the Boltzmann probabilities of all scenarios where
the adjacency is present at node v. All such quantities can be
computed in polynomial time [16].

Parameter k7T is useful to skew the Boltzmann probabil-
ity distribution: If kT tends to zero, parsimonious scenarios
are heavily favored and the Boltzmann probability distribu-
tion tends to the uniform distribution over optimal scenar-
ios, while when kT tends to oo, the Boltzmann distribution
tends toward the uniform distribution over the whole solu-
tion space. In our experiments, we chose a value of k7" = 0.1
that favors parsimonious scenarios but considers also
slightly suboptimal scenarios.

When aDNA sequence data is available for one or several
ancestral genomes, markers identified in extant species can
be related to assembled contigs of the ancestral genome, as
in [10] for example. For an ancestral adjacency in a species
for which aDNA reads are available, it is then possible to
associate a sequence-based weight to the adjacency-either
through gap filling methods (see Section 4, where we use
the probabilistic model of GAML [25]), or scaffolding meth-
ods such as BESST [26] for example. In comparison to the
weighting approach described above, these weights are
then not directly based on the underlying phylogeny, but
provide an external signal for the confidence of adjacencies
at the respective internal node.

4 RESULTS

We evaluated our algorithm on a simulated dataset and
compared its sensitivity and precision to several other
reconstruction methods. Further, we applied our method to
two real datasets: mammalian and Yersinia genomes. The
mammalian dataset was used in the studies [5] and [18]. It
contains six mammalian species and two outgroups, span-
ning over 100 million years of evolution, and five different
marker sets of varying resolution (minimal marker length).
Our experimental results consider issues related to the com-
plexity of our algorithm, the use of a pure SCJ reconstruc-
tion (obtained when the « parameter equals 0) and the
relative impact of the value of o on both the total evolution-
ary cost and the ancestral gene orders fragmentation. Our
second dataset contains eleven Yersinia genomes, an impor-
tant human pathogen. This dataset contains contigs from
the recently sequenced extinct agent of the Black Death pan-
demic [27] that occurred roughly 650 years ago. We refer to
Supplementary Figs. 9 and 10, available online for the spe-
cies phylogenies of these two datasets.

4.1 Simulations

We created simulated datasets as described in [28]: with a
birth-rate of 0.001 and a death rate of 0, we simulated 20
binary trees with 6 leaves and scaled the branch lengths
such that the tree has a diameter D = 2n, where n is the
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Fig. 1. Average precision and sensitivity (top), and F; and Fj 5 (bottom)
of reconstructions on 20 simulated datasets. Adjacency weights have
been obtained with parameters k7" = 0.1 (left) and 7" = 1 (right).

number of markers in each unichromosomal genome. The
root genome with n = 500 markers is then evolved along
the branches of the tree by applying inversions and translo-
cations with a probability of 0.9 and 0.1 respectively. The
number of rearrangements at each branch corresponds to
the simulated branch length, the total number of rearrange-
ments ranges from 1,242 to 2,296 in the simulated trees. We
compare results of our implementation PHYSCA for differ-
ent values of «€{0,0.3,0.50.8,1} with the tools
RINGO [28], MGRA [29], Fitch-SCJ [30], ROCOCO [31], [32]
(dense approach for signed adjacencies) and ANGES [33]
(adjacencies only). We computed adjacency weights as
described in Section 3.7 with the software DeClone [16] and
parameter k7 € {0.1, 1}.

The methods RINGO and MGRA are global approaches
minimizing the DCJ-distance in the tree, while ANGES
reconstructs specific ancestors locally in the tree and is
applied for each node separately. For « = 0, our objective is
finding a consistent, most parsimonious solution and equals
the objectives of Fitch-SCJ and ROCOCO, where Fitch-5CJ
always finds the most fragmented solution whereas
ROCOCO and our method aim at reporting least frag-
mented reconstructions.

We measured sensitivity and precision of the reconstruc-
tions based on the comparison of simulated and recon-
structed adjacencies by the different methods. A high
sensitivity indicates the ability to recover the true marker
order of ancestors in the phylogeny, while a high precision
denotes few wrongly reconstructed adjacencies. As shown
in Fig. 1, our method reaches a high precision of 0.99 for all
values of « > 0.5, while increasing the sensitivity in compar-
ison to the pure Fitch-SC] solution by reducing the
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fragmentation of the reconstructed scaffolds. For higher val-
ues of «, the influence of the weighting becomes apparent:
for KT' = 0.1, the precision only decreases for o = 1, while
for kT = 1, the precision decreases also for lower values of
a, however leading to more complete reconstructions. In
comparison, both DCJ-based methods RINGO and MGRA
produce less fragmented solutions by recovering more true
adjacencies under the jeopardy of also reconstructing more
false adjacencies. The sensitivity and precision of Fitch-SCJ,
ROCOCO and ANGES are comparable to our method for
low to medium values of a.

The F score assesses the relation of sensitivity and preci-
sion with equal importance. RINGO achieves a better F;
score than all other methods. The Fj 5 score emphasizes the
precision of a method over its sensitivity. With this mea-
sure, our method with £T" =1 and « = 0.5 outperforms the
other tools, while ROCOCO and ANGES also reach similarly
good scores.

In general, it can be seen that the equal contribution of
global evolution and local adjacency weights in the objec-
tive function provides a reliable reconstruction and further
a useful tool to explore the solution space under different
values of a.

4.2 Mammalian Dataset

We used the markers computed in [5] from whole-genome
alignments. The extant species contain a diverse number of
chromosomes ranging from 9 chromosomes in opossum to
39 chromosomes in pig. Unique and universal markers were
computed as synteny blocks with different resolution in
terms of minumum marker length. Note that all rearrange-
ment breakpoints are therefore located outside of marker
coordinates. It results in five different datasets varying from
2,185 markers for a resolution of 100 kb to 629 markers for a
resolution of 500 kb.

We considered all adjacencies present in at least one
extant genome as potentially ancestral. To weight an adja-
cency at all internal nodes of the tree, we relied on evolu-
tionary scenarios for each single adjacency, in terms of
gain/loss, independently of the other adjacencies (i.e., with-
out considering consistency of ancestral marker orders). We
obtain these weights using the software DeClone [16], and
we refer to them as DeClone weights. We considered two val-
ues of the DeClone parameter k7', 0.1 and 1, the former
ensuring that only adjacencies appearing in at least one
optimal adjacency scenario have a significant DeClone
weight, while the latter samples adjacencies outside of opti-
mal scenarios. For the analysis of the ancestral marker
orders obtained with our algorithm, we considered the data
set at 500 kb resolution and sampled 500 ancestral marker
orders for all ancestral species under different values of «.

4.2.1 Complexity

The complexity of our algorithm is dependent on the size of
the largest connected component of the global adjacency
graph. In order to restrict the complexity, we kept only adja-
cencies whose weights are above a given threshold z. Fig. 2
shows the expected decrease in computational complexity
correlated to threshold « for the five different minimal
marker lengths. In most cases, all connected components
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Fig. 2. Number of different labels for the largest connected component in
each of the mammalian datasets. This statistic provides an upper bound
for the actual complexity of our reconstruction algorithm.

are small enough to be handled by our exact algorithm in
reasonable time except for very large components in the
marker sets with higher resolution under a low threshold z.
For the 500 kb dataset with = 0.2 and k7" = 1, the compu-
tation of one solution takes on average 200 s on a 2.6 GHz i5
with 8 GB of RAM. It can be reduced to 30 s when DeClone
weights are based on k7" = 0.1. This illustrates that our algo-
rithm, despite an exponential worst-case time complexity,
can process realistic datasets in practice.

4.2.2 Optimal SCJ Labelings

Next, we analyzed the 500 optimal SCJ labelings obtained
for @ = 0, i.e.,, aiming only at minimizing the SCJ distance,
and considered the fragmentation of the ancestral gene
orders (number of CARs) and the total evolutionary dis-
tance. Note that, unlike the Fitch algorithm used in [15], our
algorithm does not favor fragmented assemblies by design
but rather considers all optimal labelings. Sampling of co-
optimal solutions shows that the pure SCJ criterion leads to
some significant variation in terms of number of CARs
(Fig. 3). In contrast, Table 1 shows that most observed ances-
tral adjacencies are present in all sampled scenarios. About
5 percent of adjacencies, mostly located at nodes higher up
in the phylogeny, are only present in a fraction of all sam-
pled scenarios, indicating that there is a small number of
conflicts between potential adjacencies that can be solved
ambiguously at the same parsimony cost.

The optimal SCJ distance in the tree for o =0 is 1,674,
while the related DCJ distance in the sampled reconstruc-
tions varies between 873 and 904 (Fig. 4). In comparison, we
obtained a DCJ distance of 829 with GASTS [22], a small
parsimony solver directly aiming at minimizing the DC]
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Fig. 3. Number of reconstructed CARs at each internal node in 500 sam-
ples for the mammalian dataset with 500 kb resolution, x = 0.2 and
oa=0.

Frequency of Adjacencies in 500 Samples with « = 0 as

Percentage of Optimal Labelings They Appear in

Ancestor Frequency f
f=100% 100% > f > 50% f < 50%

Boreoeutheria 94.66 1.07 427
Euarchontoglires 95.42 0.88 3.79
Ferungulates 96.53 0.55 292
Primates 98.82 0.34 0.84
Rodentia 99.49 0.34 0.17
Theria 97.67 0.89 1.43
root node 92.23 1.23 6.53

distance. More precisely, over all ancestral nodes, 70 adja-
cencies found by GASTS do not belong to our predefined
set of potential ancestral adjacencies and another 147 appear
in the 500 samples with a frequency below 50 percent. This
illustrates both a lack of robustness of the pure SCJ optimal
labelings, and some significant difference between the SCJ
and D(CJ distances.

Finally, we compared the Boltzmann probabilities of
ancestral adjacencies (DeClone weights) with the frequency
observed in the 500 samples. There is a very strong agree-
ment for DeClone weights obtained with k7" = 0.1 as only
14 ancestral adjacency have a DeClone weight that differs
more than 10 percent from the observed frequency in the
samples. This shows that, despite the fact that the DeClone
approach disregards the notion of conflict, it provides a
good approximation of the optimal solutions of the SCJ
Small Parsimony Problem.

4.2.3 Ancestral Reconstruction with DeClone Weights
and Varying Values of o

For @ > 0, our method minimizes a combination of the SCJ
distance with the DeClone weights of the adjacencies dis-
carded to ensure valid ancestral gene orders. Again, we
sampled 500 solutions each for different values of a with
the 500 kb data set. We distinguish between DeClone
parameter k7' = 0.1 and k7 = 1. Figs. 4 and 5 show the
respective observed results in terms of evolutionary dis-
tance and fragmentation.

For kT = 0.1, the optimal SCJ and DC]J distance over the
whole tree hardly depends on «. Including the DeClone
weights in the objective actually results in the same solu-
tion, independent of « > 0. In fact, while applying a low
weight threshold of z = 0.2, the set of potential adjacencies
is already consistent at all internal nodes except for a few
conflicts at the root that are solved unambiguously for all
values of «. This indicates that building DeClone weights
on the basis of mostly optimal adjacency scenarios (low k1)
results in a weighting scheme that agrees with the evolution
along the tree for this dataset. More importantly, Figs. 4
and 5 show that the combination of DeClone weights fol-
lowed by our algorithm, leads to a robust set of ancestral
gene orders.

In comparison, for k7" = 1, we see an increase in SCJ and
D(C]J distance for higher «, while the number of CARs at
internal nodes decreases, together with a loss of the robust-
ness of the sampled optimal results when « gets close to 1. It
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Fig. 4. SCJ distance (upper half) and DCJ (lower half) distance in the
whole tree for all samples and selected values of « in the mammalian
dataset.

can be explained by the observation that the weight distri-
bution of ancestral adjacencies obtained with DeClone and
kT =1 is more balanced than with 7" = 0.1 as it considers
suboptimal scenarios of adjacencies with a higher probabil-
ity. It further illustrates that, when the global evolutionary
cost of a solution has less weight in the objective function,
the algorithm favors the inclusion of an adjacency of moder-
ate weight that joins two CARs while implying a moderate
number of evolutionary events (for example an adjacency
shared by only a subset of extant genomes). From that point
of view, our algorithm-being efficient enough to be run on
several values of a-provides a useful tool to evaluate the
relation between global evolution and prior confidence for
adjacencies whose pattern of presence/absence in extant
genomes is mixed.

4.3 Yersinia pestis Dataset

We started from fully assembled DNA sequences of seven
Yersinia pestis and four Yersinia pseudotuberculosis genomes.
In addition, we included aDNA single-end reads and 2,134
contigs of length > 500 bp assembled from these reads for
the Black Death agent, considered as ancestral to several
extant strains [27]. We refer to this augmented ancestral
node as the Black Death (BD) node. The marker sequences for
all extant genomes were computed as described in [10],
restricting the set of markers to be unique and universal.
We obtained a total of 2,207 markers in all extant genomes
and 2,232 different extant adjacencies, thus showing a rela-
tively low level of syntenic conflict compared to the number
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selected internal nodes for different values of o reconstructed with
DeClone weights under k7' = 0.1. While the number of CARs differs in
the case of « = 0 where the adjacency weights are not considered, the
fragmentation stays constant for the other values of «.
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Fig. 6. Reconstructed number of CARs in the yersinia dataset with aDNA
weights at the BD node and 0 otherwise, for four ancestral nodes.

of markers, although it implies a highly dynamic rearrange-
ment history over the short period of evolution [10].

As for the mammalian dataset, we considered as poten-
tially ancestral any adjacency that appears in at least one
extant genome. However for this dataset, reducing the com-
plexity by applying a weight threshold = was not necessary.
For the BD node, adjacency weights can be based on the
given aDNA reads for a given potential ancestral adjacency
as follows. First, we used FPSAC [10] to compute DNA
sequences filling the gaps between any two adjacent marker
extremities (obtained by aligning the gap sequences of the
corresponding conserved extant adjacencies and recon-
structing a consensus ancestral sequence using the Fitch
algorithm). Then we computed the weights as a likelihood of
this putative gap sequence given the aDNA reads, using the
GAML probabilistic model described in [25]. Each adjacency
together with its template gap sequence details a proposition
for an assembly A as a piece of the real ancestral sequence,
and given the aDNA read set R, the model then defines a
probability Pr(R|A) =]],.p Pr(r|A) for observing the
reads R given that A is the correct assembly. The probability
Pr(r|A) can be computed by aligning r to the assembly A
while the alignment is evaluated under an appropriate
sequencing error model. We refer to [25] for details.

4.3.1  Ancestral Reconstruction with aDNA Weights

Again we sampled 500 solutions for this dataset. We com-
puted the weights at the BD node based on the aDNA data,
while adjacencies at all other nodes were given weight 0.
Hence we can investigate the influence of including the
aDNA sequencing data in the reconstruction while for the
rest of the tree, the weights do not impact the objective func-
tion. Moreover, this weighting scheme addresses the issue
of potential BD adjacencies with a low weight due to the dif-
ficulty of sequencing ancient DNA.

As shown in Fig. 6, for selected internal nodes of the phy-
logeny, the pure SCJ solutions at o = 0 result in the highest
fragmentation, while the number of CARs decreases as we
increase the importance of the adjacency weights in the
objective of our method. For the BD node, when including
the aDNA weights, the fragmentation is decreasing while
the reconstructions for each & > 0 are robust. At the other
nodes, the applied sequencing weights also reduce the frag-
mentation except for node6 which is located in the pseudo-
tuberculosis subtree and hence more distant to the BD
node. This shows that the aDNA weights not only influence



1372

the reconstructed adjacencies at the BD node, but also other
nodes of the tree.

5 CONCLUSION

Our main contributions are the introduction of the Small
Parsimony Problem under the SC] model with adjacency
weights, together with an exact parameterized algorithm
for the optimization and sampling versions of the problem.
The motivation for this problem is twofold: incorporating
sequence signal from aDNA data when it is available, and
recent works showing that the reconstruction of ancestral
genomes through the independent analysis of adjacencies is
an interesting approach [15], [16], [18], [34].

Regarding the latter motivation, we address a general
issue of these approaches that either ancestral gene orders
are not consistent or are quite fragmented if the methods
are constrained to ensure consistency. The main idea we
introduce is to take advantage of sampling approaches
recently introduced in [16] to weight potential ancestral
adjacencies and thus direct, through an appropriate objec-
tive function, the reconstruction of ancestral gene orders.
Our results on the mammalian dataset suggest that this
approach leads to a robust ancestral genome structure.
However, we can observe a significant difference with a
DCJ-based ancestral reconstruction, a phenomenon that
deserves to be explored further. Our algorithm, which is
based on the Sankoff-Rousseau algorithm similarly to sev-
eral recent ancestral reconstruction algorithms [16], [18],
[34], is a parameterized algorithm that can handle real
instances containing a moderate level of syntenic conflict.
Our experimental results on both the mammalian and bacte-
rial datasets suggest that introducing prior weights on adja-
cencies in the objective function has a significant impact in
reducing the fragmentation of ancestral gene orders, even
with an objective function with balanced contributions of
the SCJ evolution and adjacency weights. For highly con-
flicting instances, it can be discussed if a reconstruction
through small parsimony is the right approach to solve
these conflicts or if these should be addressed differently.

Our sampling algorithm improves on the Gibbs sampler
introduced in [18] in terms of computational complexity and
provides a useful tool to study ancestral genome reconstruc-
tion from a Bayesian perspective. Moreover, our algorithm is
flexible regarding the potential ancestral gene adjacencies
provided as input and could easily be associated with other
ideas, such as intermediate genomes for example [28].

There are several research avenues opened by our work.
From a theoretical point of view, we know the problem we
introduced is tractable for « = 0 and « = 1, and we show it
is hard for o > 33/34, but it remains to see whether it is
hard otherwise. Further, given that the considered objective
is a combination of two objectives to be optimized simulta-
neously, Pareto optimization is an interesting aspect that
should be considered. Our model could also be extended
towards other syntenic characters than adjacencies, i.e.,
groups of more than two markers, following the ancient
gene clusters reconstruction approach introduced in [31].
As ancestral gene orders are defined by consistent sets of
adjacencies, the principle of our dynamic programming
algorithm could be conserved and it would only be a matter
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of integrating gene clusters into the objective function. From
a more applied point of view, one would like to incorporate
duplicated and deleted markers into our Small Parsimony
Problem. There exist efficient algorithms for the case of a
single adjacency [16], [34] that can provide adjacency
weights, and natural extensions of the SCJ model to incor-
porate duplicated genes. However it remains to effectively
combine these ideas. Finally, again due to the flexibility and
simplicity of the Sankoff-Rousseau dynamic programming
algorithm, one could easily extend our method towards the
inference of extant adjacencies if some extant genomes are
provided in partially assembled form following the general
approach described in [35], [36].

This would pave the way towards a fully integrated phy-
logenetic scaffolding method that combines evolution and
sequencing data for selected extant and ancestral genomes.
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