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Abstract—Existing drug discovery processes follow a reductionist model of “one-drug-one-gene-one-disease,” which is inadequate to

tackle complex diseases involving multiple malfunctioned genes. The availability of big omics data offers opportunities to transform

drug discovery process into a new paradigm of systems pharmacology that focuses on designing drugs to target molecular interaction

networks instead of a single gene. Here, we develop a reliable multi-rank, multi-layered recommender system, ANTENNA, to mine

large-scale chemical genomics and disease association data for prediction of novel drug-gene-disease associations. ANTENNA

integrates a novel tri-factorization based dual-regularized weighted and imputed One Class Collaborative Filtering (OCCF) algorithm,

tREMAP, with a statistical framework based on RandomWalk with Restart and assess the reliability of specific predictions. In the

benchmark, tREMAP clearly outperforms the single-rank OCCF. We apply ANTENNA to a real-world problem: repurposing old drugs

for new clinical indications without effective treatments. We discover that FDA-approved drug diazoxide can inhibit multiple kinase

genes responsible for many diseases including cancer and kill triple negative breast cancer (TNBC) cells efficiently (IC50 ¼ 0:87mM).

TNBC is a deadly disease without effective targeted therapies. Our finding demonstrates the power of big data analytics in drug

discovery and developing a targeted therapy for TNBC.

Index Terms—Anti-cancer targeted therapy, big data analytics, data mining, diazoxide, drug discovery, drug repurposing, machine learning,

multi-layered network, tri-factorization, triple negative breast cancer, prediction reliability
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1 INTRODUCTION

THE cost of bringing a drug to market has risen to approxi-
mately 2.6 billion dollars (Tufts Center for the Study of

Drug Development, 2015), and the failure rate is daunting:
only about one-third of drugs in phase III clinical trials reach
the market. The limited success of the conventional drug dis-
covery process is largely attributed to the wide adoption of a
reductionist model of “one-drug-one-gene-one-disease” [1],
[2], [3]. As a matter of fact, the onset and progress of many
complex diseases such as cancer is a systematic process that
involves multiple interacting genes. Thus, it is necessary to
design drugs that target gene interaction networks instead of

a single gene. Moreover, drug repurposing that reuses exist-
ing safe drugs to treat newdiseases has emerged as a newpar-
adigm to accelerate drug discovery and development. As the
safety profile of existing medicines has already been well
documented, the cost of clinical trials can be significantly
reduced.

Recent advances in high-throughput technologies have
generated abundant chemical genomics data on drug actions
and disease genes. These big, complex, heterogeneous data
sets provide unprecedented opportunities for identifying
genome-wide drug-gene-disease associations, thereby facili-
tating multi-targeted drug design and drug repurposing.
However, several challenges remain in mining chemical
genomics and disease association data for drug discovery.
Firstly, chemical genomics data fromhigh-throughput screen-
ing campaigns are not only extremely large but also highly
noisy, biased, and incomplete. Many existing data mining
algorithms cannot be directly applied to model chemical
genomics data. Secondly, drug action is a complex process. It
starts with drug-gene interactions at the molecular level, and
manifest clinical outcomes through biological network. A sin-
gle genomics data set can only capture one part of whole drug
process. Thus, it is necessary to integrate multiple data sets
for chemical-gene interactions, gene-disease associations, and
chemical-disease associations to model the drug action on a
multi-layer. Finally, one of the fundamental problems in bio-
medical data mining has not been fully addressed: how to
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assess the individual reliability of a specific prediction from a
data mining agent under a rigorous statistics framework. The
reliable and unbiased assessment of the prediction quality for
an individual instance is critical for cost-sensitive drug dis-
covery process. For example, the selection of a novel chemical
that is structurally different from patented drugs as a lead
compound from a ranked list of candidate chemicals is a
billion-dollar decision. Information on the individual predic-
tive reliability of a novel chemical entity based on its weak
chemical similarity to existing drugs in terms of bioactivity is
invaluable. Most existing data mining tools can only provide
an average predictive accuracy based on the population of
training data, but not reliability for a specific new case. For
example, in a ranking system, it is not straightforward to
determine what the threshold is to select top-ranked hits. For
a specific case, the top-first ranked hit could be a false positive.
In another scenario, the top-N ðN > 1Þ ranked hits could all
be true positives.

2 CONTRIBUTIONS OF THIS WORK

To address challenges in the predictive modeling of drug-
gene-disease associations as well as unmet needs in the
treatment of complex diseases such as cancer, this work
makes contributions to both methodology development and
translational medicine.

On the side of methodology development, our contribution
is twofold. First, we have developed a novel algorithm
tREMAP based on tri-factorization to optimizematrix comple-
tion problem in which row and column have significantly
different ranks. tREMAP formulates the chemical-gene predic-
tions as a multi-rank dual-regularized weighted and imputed
One Class Collaborative Filtering (OCCF) problem. Under the
formulation of OCCF, negative data is not needed for the train-
ing, which is sparse and even unavailable. By using element-
specific weights and imputation, tREMAP can handle noisy
chemical genomics data in which the label is often uncertain.
Finally, unlike conventional OCCF algorithm that applies a
single rank to all layers, tREMAP assigns a different rank to a
different layer. It is important since different layers can have
dramatically different dimensions thus optimal ranks. For
example, the dimension of a chemical layer is in the order of
millions, while the dimension of a gene layer is only thou-
sands. Our benchmark studies clearly show that tREMAP out-
performs single-rank OCCF method. Second, to tailor the
nature of chemical-gene-disease association data sets where

observed chemical-disease associations are far sparser than
known chemical-gene interactions and few three-way chemi-
cal-gene-disease associations exist, we have developed a
multi-rank, multi-layered framework ANTENNA for infer-
ring novel chemical-gene-disease associations. ANTENNA
has three main components. (1) ANTENNA integrates multi-
ple chemical genomics and disease association data set, and
links them as a multi-layered network [4], as shown in Fig. 1.
(2) ANTENNA uses tREMAP to infer genome-wide novel
chemical-gene associations. (3) Based on the genome-wide
chemical-gene association, ANTENNA applies RandomWalk
with Restart (RWR) and a statistics framework, Enrichment of
Topological Similarity (ENTS) [5], to predict chemical-disease
associations and assess their reliabilities.

Arguably, the most important contribution of this work is
to discover a potentially safe and effective targeted therapy
for triple negative breast cancer (TBNC). Using ANTENNA,
we predicted that an FDA-approved drug diazoxide may
inhibit multiple kinase genes. The malfunction of kinases
is associated with many diseases such as cancer and
Alzheimer’s disease. Among the kinases with the highest
percentage of inhibition by diazoxide, one gene TTK is spe-
cifically over-expressed in the patients with TNBC [6], [7].
Thus, we hypothesized that diazoxide may kill TNBC cells.
Our predictions were supported by multiple experimental
evidence. TNBC is a subgroup of breast cancers, which is
associatedwith themost aggressive clinical behavior. No tar-
geted therapy is currently available for the treatment of
TNBC. Our finding has a great potential for developing a tar-
geted therapy for the effective treatment of TNBC.

3 RELEVANT WORKS

In principle, tensor factorization is a powerful method to
infer three-way relationships. However, observed three-way
chemical-gene-disease relations are extremely sparse. Major-
ity of observed chemical-gene pairs are not associated with
any diseases. Thus, the tensor factorization may be not the
best option for this work. OCCF has been applied to a bipar-
tite graph for predicting drug-target interactions [8], but not
to inferring multiple drug-gene-disease associations. More-
over, existing OCCF algorithm is mainly based on the formu-
lization of matrix factorization that only allows a common
rank for both row and column. FASCINATE is an algorithm
that can jointly infer missing links from a multi-layered net-
work model [4]. However, FASCINATE is based on the for-
mulation of a single rank collective OCCF. Moreover, it can
only rank predicted relations [4]. There is no reliability infor-
mation associated with each individual prediction. This work
will address the drawbacks in matrix factorization, OCCF,
and FASCINATE when applied to inferring chemical-gene-
disease associations.

4 EXPERIMENTAL AND COMPUTATIONAL DETAILS

4.1 Overview of Computational and Experimental
Procedure

Our primary purpose is to mine chemical genomics and dis-
ease association data to identify novel targeted therapies for
unmet biomedical problems such as the treatment of TBNC.
As shown in Fig. 2, the input of ANTENNA is the existing
chemical genomics, drug, and disease databases including

Fig. 1. Illustration of multi-layered network model (MULAN) that integra-
tes multiple genomics data sets.
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DrugBank [9], ZINC [10], ChEMBL [11], and CTD [12]. We
first integrate these data sets into a multi-layered chemical-
gene-disease network, MULAN. Then we apply tREMAP, a
multi-rank dual-regularized weighted imputed OCCF algo-
rithm, to infer novel chemical-gene associations. Next, we
used ENTS to predict drug-disease association and to assess
the reliability for each inferred association. The output of
ANTENNA is a list of ranked drug-disease associations
ranked by their statistical significance. Finally, we experi-
mentally validate the top-ranked predictions.

4.2 Construction of Multi-Layered
Chemical-Gene-Disease Network (MULAN)

We integrated heterogeneous data sets from genomics into a
multi-layered networkmodel,MULAN. In theMULAN, each
node is a chemical entity (drugs and other chemicals), a
biological entity (genes or proteins that it encodes), or a phe-
notypic entity (disease and side effect). Nodes in the same
entity class are linked together by similarities (e.g., chemical-
chemical similarity) or interactions (e.g., protein-protein inter-
actions). Nodes that belong to different entity classes reside in
different network layers and are linked by known associa-
tions (e.g., drug-target interactions, disease-gene associa-
tions). Integration of genomics data into a bipartite graph is of
a proven value [13]. The MULAN can be considered as the
unification ofmultiple bipartite graphs; thus, our newmethod
is likely to bemore robust than traditional approaches.

Chemical-gene associations including drug-gene associa-
tions were obtained from the ZINC [14], ChEMBL [15] and
DrugBank [9] databases. To obtain reliable chemical-gene
association pairs, binding assays records with IC50 (concen-
tration of the chemical needed to inhibit 50 percent of the
activity of the target protein) informationwere extracted from
the databases, and the cutoff IC50 value of 10mM was used
where applicable. Chemical-gene pairs were considered
associated if IC50�10mM (active pairs), unassociated if
IC50> 10mM (inactive pairs), ambiguous if records exist in
both ranges (ambiguous pairs), and unobserved otherwise
(unknown pairs). A total of 198,712 unique chemicals and
3,549 unique genes were obtained from the combination of
ChEMBLandZINCwith 228,725 unique chemical-gene active
pairs, 76,643 inactive pairs, and 4,068 ambiguous pairs. Of the
198,712 chemicals, 722 were found to be FDA-approved
drugs. Furthermore, drug-gene relationships were extracted
from the DrugBank and integrated into the ZINC_ChEMBL
dataset above. A total of 199,338 unique chemicals and 6,277
unique genes were obtained from the combination of ZINC,

ChEMBL, and DrugBank with 233,378 unique chemical-gene
active pairs. Drug-disease and gene-disease associations were
directly obtained from the Comparative Toxicology Database
(CTD) [12].

Chemical-chemical similarity scores are one of the re-
quired inputs of tREMAP. Although there are a number of
metrics developed for chemical-chemical similarity, a recent
study showed that Jaccard index-based similarity is highly
efficient for fingerprint-based similarity measurement [16].
The fingerprint of choice in this study is the Extended Con-
nectivity Fingerprint (ECFP), which has been successfully
applied to chemical structure-based target prediction
method, PRW [17]. Jaccard index is used to calculate a simi-
larity score between two chemicals, c1 and c2.

Gene-gene similarity scores are also one of the required
inputs for tREMAP. The similarity between two proteins
encoded by genes was calculated based on their amino acid
sequence similarity using NCBI BLAST [18] with an e-value
threshold of 1� 10�5 and its default options. A similarity
score for query protein p1 to target protein p2, dbit ðp1; p2Þ, was
calculated by the ratio of a bit score for the pair compared to
the bit score of a self-query. To be specific, for the query pro-
tein p1 to the target protein p2, protein-protein similarity
score was defined such that Tðp1;p2Þ ¼ dbit ðp1; p2Þ=dbit ðp1; p1Þ.

Disease-disease similarity is required for tREMAP to
infer chemical-disease associations and can be calculated
using distributed word representations [19]. In this work,
we do not infer the chemical-disease association directly
using tREMAP, since only less than 0.4 percent of chemicals
have observed associations with one or more diseases.
Instead, we use ENTS and target binding profile of a chemi-
cal, which is derived from tREMAP, to infer the chemical-
disease associations.

4.3 tREMAP Algorithm

Ourpredictionmethod tREMAP is based on a tri-factorization
one-class collaborative filtering algorithm. In the case of
chemical-gene association, it assumes that similar chemicals
will interact with similar genes, and unobserved associations
are not necessarily negative. Assuming that a fairly low num-
ber of factors (i.e., smaller number of features than the number
of total chemicals or genes) may capture the characteristics
determining the drug-gene associations, two low-rank matri-
ces, F (drug side) andG (gene side), were approximated such
that

Pn
i

Pm
j fR� ðF � S �G0Þg is minimized where R is the

matrix for known drug-gene interactions and G0 is the trans-
position of the gene side low-rank matrix G. The two low
rank matrices, Fn�r1 with the rank of r1 and Gm�r2 with the
rank of r2, and their connectivity matrix Sr1�r2 are obtained
by iterativelyminimizing the objective function.

min
F;S;G�0

X
u;ið Þ

W u;ið Þ R u;ið Þ þ P u;ið Þ � FSG0ð Þ u;ið Þ
� �2
þ �r Fk k2 þ Sk k2 þ Gk k2

� �
þ �F tr F 0 DM �Mð ÞFð Þ
þ �Gtr G0 DN �Nð ÞGð Þ

(1)

Here, Wðu;iÞ is the penalty weight on the observed and
unobserved associations which indicate the reliability of the

Fig. 2. Workflow of drug discovery process using ANTENNA, a multi-lay-
ered recommender system.
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assigned probability of true association, Pðu;iÞ is the imputed
value (i.e., the probability of unobserved associations as real
associations), M and N is the symmetric chemical-chemical
similarity matrix and gene-gene similarity matrix, respec-
tively. DM and DN are the degree matrix of M and N ,
respectively. �r is the regularization parameter to prevent
overfitting, �F is the importance parameter for chemical-
chemical similarity, �G is the importance parameter for
gene-gene similarity, and tr(A) is the trace of matrix A.
The weight and imputation values can be determined by a
priori knowledge or from the prediction of other machine
learning algorithms. The first term in (1) forces the approx-
imation FSG0 to be close to the observation matrix R: The
second term is regularization term preventing overfitting.
The third and fourth terms force the low-rank feature vec-
tors close to each other according to their chemical-chemi-
cal or protein-protein similarity score. Thus, the optimal
low-rank matrix F was obtained after minimizing the sum
of Euclidean distances for each row weighted by the chem-
ical-chemical similarity score. The derivation of the for-
mula can be found in [20].

Similar to the bi-factorization problem in [20], the optimi-
zation problem defined in (1) is non-convex. Thus, we seek
to find a local optimum by the block coordinate descent
method. In (1), DM , M, DN , and N are non-negative matri-
ces. The derivative of (1) with regard to F , G, and S with
the non-negativity constraint has a fixed-point solution. To
scale up tREMAP in terms of both time and storage, we pro-
pose efficient multiplicative updating rules as follows:

F u;rð Þ  F u;rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wpð ÞRGS0 þ wp1m�nGS0 þ �FMF½ � u;rð Þ

1� wð ÞfR1GS0 þ wFðSG0GS0Þ þ �rFþ �FDMF
h i

u;rð Þ

vuuut
(2)

G i;sð Þ  G i;sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wpð ÞR0FSþ wp1n�m FSð Þ þ �GNG½ � i;sð Þ

1� wð ÞgR1 FSð Þ þ wGðS0F0FSÞ þ �rGþ �GDNG
h i

i;sð Þ

vuuut
(3)

S r;sð Þ  S r;sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wpð ÞF0RGþ wpðF0 1m�nð ÞGÞ½ � r;sð Þ

1� wð ÞF0fR1Gþ wF0ðFSG0ÞG
h i

r;sð Þ
þ �rS

vuuut ; (4)

Where w and p are weighted and imputed value, respec-
tively. They are either set based on a priori knowledge (e.g.,
the false positive rate of high-throughput screening experi-
ments) or can be tuned as hyper-parameters. fR1ðu;iÞ is the
sparse matrix in which the value of elements is predicted by
F and G on the observed cases Q in R, i.e.,

fR1 u;ið Þ ¼
FSG0u;ið Þ if u; ið Þ 2 Q

0 otherwise:

�
(5)

We use a block-coordinate descent algorithm to itera-
tively update F , G, and S.

The raw predicted score for the ith chemical to bind the
jth protein can be calculated by Pði;jÞ ¼ Fði;:Þ � S �G0ðj;:Þ. Also,
the matrix Fn�r1 is referred to as a low-rank drug profile
since its ith row represents the ith drug’s behavior in the
drug-gene association network as well as drug-drug simi-
larity spaces compressed to r1 number of features.

4.4 ENTS Algorithm

The rationale of ENTS is that when clusters of instance share
common features, a cluster ranked closely together is more
likely similar to the new instance than a cluster ranked ran-
domly or spread out across the ranking. In addition, net-
work topological similarity provides more robust and
accurate global ranking across an entire hypothesis space
than pairwise similarity does. Unlike conventional local
ranking (e.g., k-nearest neighbors), global instance ranking
can support statistical enrichment analysis because it draws
valuable information on the ranking for all instances in a
cluster from lower, non-randomly ranked cases.

4.4.1 Classification or Clustering of Database Instances

To initialize ENTS, part or all of the instances in the data-
base (training set) are classified based on target feature T. In
ANTENNA, the T is the disease associated with a drug. If
database instances are not pre-classified, clusters of training
data are assembled using T features under unsupervised
clustering techniques [21] such as k-means [22], mean-shift
[23], affinity propagation [24], or p-median model [25] etc.
After the classification or clustering, each instance cluster
will be assigned with a unique label (i.e., a specific disease
in ANTENNA). These instance clusters are applied to the
next step. It is noted that the instance clusters are not neces-
sarily disjointed. They can overlap.

4.4.2 A Weighted Graph Represents Training Instance

Similarity by T-Features

After the initialization, ENTS builds a database instance
graph; a weighted graph with one node for the T-feature of
each training instance and an edge between two nodes only
if their pairwise similarity exceeds a certain threshold. The
threshold depends on the features and the pairwise similar-
ity metric. Any similarity metric (e.g., Euclidean distance,
Jaccard index, Hidden Markov Model, kernel-based similar-
ity etc.) can be applied here. In ANTENNA, we use cosine
similarity of low-rank profile of drugs to measure the dis-
tance between drugs.

4.4.3 Network Topological Similarity

Given a query with known K-feature and the goal to predict
its unknown T-feature, ENTS first links the query to all
nodes in the training instance graph, where new edges are
not found in the training instance graph. The weights of
these new edges are only based on K-feature similarity.
Then Random Walk with Restart (RWR) is applied to per-
form a probabilistic traversal of the instance graph across
all paths leading away from the query, where the probabil-
ity of choosing an edge will be proportional to its weight.
The algorithm will output a list of all instances in the graph,
ranked by the probability that a path from the query will
reach the node. In this way, RWR can capture global rela-
tionships that may be missed by pair-wise similarity [26].

We modified the RankProp algorithm [27], a variant of
RWR. The graph is represented as an adjacency list to save
memory and speed up the iterative algorithm. The current
implementation is scalable to a graph with millions of nodes
and hundreds of millions of edges.
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4.4.4 Statistical Significance of Network Topological

Similarity

A network topological search only ranks instances based on
their similarity but gives no information on the reliability of
the ranking. To assess the statistical significance of the rank-
ing of an instance cluster Ci generated previously, ENTS
compares the score distribution of the cluster Ci with that of
a randomly drawn cluster of the same size. When the mean
of global topological similarity scores �X in a cluster is used
as the statistic, an efficient random-set method is used for
the parametric approximation of the null distribution [28].
The random-set method compares an enriched cluster of
size m with all other distinct clusters of size m drawn ran-
domly from a case graph on N nodes. The exact distribution
of �X is intractable, but can be approximated with the nor-
mal distribution with mean and variance as follows:

m ¼ 1

N

XN
j¼1

pj

s2 ¼ 1

m

N �m

N � 1

� �
1

N

XN
j¼1

pj
2

 !
� 1

N

XN
j¼1

pj

 !2
24 35;

Where pj is the global topological similarity score of the
structure j in the graph to the query. The enrichment score
of the cluster Ci is then normalized with Z ¼ ð �X � mÞ=s.

A p-value and Benjamini-Hochber adjusted false discov-
ery rate (FDR) is then calculated for each Z-score.

4.5 Combining tREMAP and ENTS to Predict
Drug-Disease Association

In ANTENNA, we firstly use tREMAP to generate chemical-
side low rank matrix F and gene side low-rank matrix G.
The ith row of F contains the gene association profile for
the ith drug. Then, we calculated drug-drug cosine similari-
ties based on the matrix F , and construct a drug-drug simi-
larity graph. For each row of F for FDA approved drugs,
the cosine similarity of drug c1 and drug c2 can be calculated

by, Scos;ðc1;c2Þ ¼
UUc1 �UUc2ffiffiffiffiffiffiffiffi
jUUc1 j
p ffiffiffiffiffiffiffiffi

jUUc2 j
p . To search for possibly undiscov-

ered uses of the drugs, we focus on drugs that are found to
have high cosine similarity but low chemical structural sim-
ilarity ð< 0:5Þ. Finally, we cluster drugs based on their
directly or indirectly associated diseases annotated in CTD
database [12], and use ENT to assess and rank the statistical
significance of novel drug-disease associations. The final
output of ANTENNA is the ranked list of predicted drug-
disease association based on FDR.

4.6 Experimental Validation

4.6.1 Kinase Binding Assay

Kinase is an enzyme that catalyzes the transfer of a chemical
group phosphate to another biomolecule. It functions as a
molecular switch inmany biological processes. Themalfunc-
tion of kinases is responsible for many diseases such as can-
cer. There are more than 400 kinases in the human genome,
which is termed as kinome. To rigorously validate the perfor-
mance of ANTENNA, we employed a competition binding
assay to detect the binding of selected drugs to a set of 438
kinases (human kinome). The proprietary KinomeScan assay

was performed by DiscoverX (CA). The assay tested the
capacity for a drug to disrupt the binding of each DNA-
tagged kinase to a support which one was in turn bound to
the kinase’s known ligand. If binding between the kinase
and its known ligand was disrupted in the presence of the
drug, this indicated that the drug either competed directly
with the known ligand or allosterically altered the kinase’s
ability to bind to that ligand. DMSO was used as a positive
control and a pico-molar kinase inhibitor was used as a nega-
tive control. Binding levels were quantitated by performing
real-time polymerase chain reaction (qPCR) on the DNA tag
of the ligand-bound kinases. The qPCR is a molecular biol-
ogy technique to amplify a single copy or a few copies of
DNA segment in several orders of magnitudeand tomeasure
the reaction in a real time. The tests were performed at 100
mM concentration of tested drug, and results were reported
as percentControl, calculated as follows, where a lower per-
centControl score indicates a stronger interaction.

test compound signal� positive control signalð Þ
negative control signal� positive control signalð Þ X 100:

4.6.2 Cancer Cell Viability Assay

MCF-7 cells from ATCC and MDA-MB 468 cells (a gift of
Dr. R Sullivan from Queens Community College, the City
University of New York) were used for this study. MCF-7 is
breast cancer cell line. MDA-MB 468 is triple negative breast
cancer cell line which does not express estrogen receptor
(ER), progesterone receptor (PR), and human epidermal
growth factor receptor (Her2/neu). Cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) (Thermo
Fisher Scientific) supplemented with 10 percent fetal bovine
serum (Thermo Fisher Scientific) and 50mg=ml gentamicin
(Thermo Fisher Scientific) at 37	C 5 percent CO2 incubator.

Cell viabilitywas determined by neutral red assaywhich is
based on the lysosome uptake of neutral red dye [29]. Briefly,
cells (2 x 104 cells per well) were plated onto 96-well plate in a
total volume of 200ml on the day before chemical treatments.
Chemicals were dissolved in dimethyl sulfoxide (DMSO) to
obtain 0.1 M stock solution 15 minutes before chemical treat-
ments. Then, various concentrations ð0:1� 150mM) of chemi-
cals were prepared in fresh media. The final concentration of
DMSO in each well was equal to or less than 0.15 percent
which is considered non-toxic to cells [30].

After 24 hours of chemical treatments, 20ml of 0.33 percent
Neutral Red Solution (Sigma Aldrich) was added onto wells.
After 2 hours incubation at 37	C 5 percentCO2 incubator, dye
solution was carefully removed and cells were rinsed with
200ml Neutral Red Assay Fixative (0.1 percent CaCl2 in
0.5 percent formaldehyde) (Sigma Aldrich) twice. The
absorbed dye was then solubilized in 200ml of Neutral Red
Assay Solubilization Solution (1 percent acetic acid in 50 per-
cent ethanol) (SigmaAldrich) for 10minutes at room tempera-
ture on a shaker. Absorbance at 540 nm and 690 nm
(background) was measured by BioTek Synergy Mx micro-
plate reader.

Each concentration in each experiment was done in at
least triplicate. Multiple experiments were done to obtain
IC50 values for each drug and each cell line. The viability
was determined based on a comparison with untreated cells
which were set as 100 percent cell viability. The IC50 values
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which represent the chemical concentration needed to
inhibit 50 percent cell proliferation were calculated from the
dose-response curve.

5 RESULTS AND DISCUSSIONS

5.1 Performance Evaluation of tREMAP

In our published study [8], single rank REMAP outperformed
state-of-the-art methods: a chemical similarity-based method
(PRW [17]), the best performed matrix factorization methods
so far (NRLMF [31] and KBMF with twin kernels (KBMF2K)
[32]), combination of WNN and GIP (WNNGIP [33]), and
another type of collaborative filtering algorithm (Collabora-
tive Matrix Factorization (CMF) [34]). Here we compare the
performance of tREMAP with that of REMAP using two
benchmarks. The first benchmark includes 3,494 chemicals,
25 G-protein coupled receptors (GPCRs), and 4,494 observed
chemical-GPCR associations. The second benchmark includes
33,684 chemicals, 31 Cytochrome P450 enzymes (CYP450),
and 51,699 observed chemical-CYP450 associations.

As shown in Fig. 3, tREMAP clearly outperforms REMAP
when evaluated by both benchmarks. tREMAP identifies
around 96 percent and 87 percent true associations ranked
on the top 3 for GPCR and CYP450, respectively, while
REMAP can only identify around 78 percent and 60 percent
true hits ranked on top 3 respectively.

When evaluated by the application to sequence-structure
similarity search, ENTS is superior to Hidden Markov
Model and RWR [5].

5.2 Time Complexity of tREMAP

Empirically, the running time of tREMAP is linearly depen-
dent on the number of chemicals and genes, as shown
in Fig. 4. When evaluated in a machine with 2 cores of

2.18 GHz CPU. It takes around 1,000 seconds for a matrix
with 15,000 chemicals, 200 genes, chemical-side rank of
1,000, and gene-side rank of 200 to converge.

5.3 ANTENNA Predictions

By combining tREMAP with ENTS, ANTENNA predicted
that 21,921 novel drug-disease associations with Benjamini-
Hochberg adjusted false discovery rate (FDR) less than 0.02.
We selected a drug-disease pair for further experimental eval-
uation based on the following criteria. First, the drugwas pre-
dicted to bind kinases, as the genome-wide binding assay for
kinases is accessible. Second, the associated disease does not
have effective therapy, so that the repurposed drug will have
the biggest clinical impact. Third, the cell-baseddiseasemodel
is available, so thatwe can evaluate the efficacy of the drug.

Based on above criteria, diazoxide, a safe FDA-approved
drug for hypertension, was selected. Diazoxidewas predicted
to interact with protein kinases. Furthermore, ANTENNA
predicted that diazoxide was associated with Triple Negative
Breast Cancer (TNBC)with Benjamini-Hochber adjusted false
discovery rate (FDR) of 0.0108. Thus, diazoxidemay be repur-
posed for the treatment of TBNCwhich is themost aggressive
type of breast cancer and cannot be treated by any existing tar-
geted therapy. It notes that the FDR of predicted diazoxide-
TNBC association is not particular statistically significant. If
this prediction is experimentally validated, we will have
more confidence in predictionswith lower FDRs.

5.4 Kinase Binding Assay

We validated the binding of diazoxide to kinases using
KinomeScan assay. Fig. 5 displays the binding profile of

Fig. 3. Performance comparison of tREMAP with REMAP for GPCR
(top) and CYP450 (bottom), respectively. Performance is measured by
the recall at the top rank K.

Fig. 4. Running time of tREMAP vs the number of items. The computa-
tional time was measured using two cores of 2.18 GHz CPU, for a matrix
with 200 genes and varied number of chemicals. The ranks for chemical
and gene are fixed as 1,000 and 200, respectively

Fig. 5. Binding profile of FDA-approved drug diazoxide (100 mM) on
438 kinases determined by KinomeScanTM assay.
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diazoxide across 438 kinases (kinome). Diazoxide has the
highest percentage inhibition of kinases DRYK1A, IRAK1,
and TTK with 7.0 percent, 8.9 percent, and 15.0 percent con-
trol. It is noted that the lower %Control, the higher inhibi-
tion of kinase activity.

As shown in Table 1, the malfunction of DYRK1A,
IRAK1, and TTK is associated with multiple diseases,
especially cancers and Alzheimer’s disease. To verify our
predictions, we tested the effect of diazoxide on breast
cancer cells.

5.5 Cancer Cell Viability Assay

The cytotoxicity of diazoxide was determined by neutral
red cell viability assay. The IC50 values obtained from
Estrogen positive breast cancer MCF-7 cells and TNBC
MDA-MB-468 cells treated with chemicals for 24 hours
were shown in Table 2. Diazoxide was much more
effective in inhibiting the cell proliferation of TNBC
cancer MDA-MB 468 cells as compared to MCF-7 breast
cancer cells with the values of IC500:87 
 0:39mM and
130:0
 70:0mM, respectively. The IC50 is the concentra-
tion of diazoxide that inhibits the cell proliferation of
50 percent cancer cells. The smaller the IC50 value is, the
stronger anti-cancer activity diazoxide has. It is accepted
that a chemical compound is active when the IC50 is less
than 10mM. Thus, diazoxide could be a highly effective
targeted therapy for the treatment of TNBC at a low
concentration.

6 CONCLUSIONS

In summary, we have developed a reliable and accurate
multi-rank, multi-layered recommender system ANTENNA.
Using ANTENNA, we predicted that FDA-approved safe
medicine diazoxide could bind to kinases whose malfunction
is associated with TNBC. KinomeScanTM assay confirmed
the kinase binding of diazoxide. Cancer cell viability assay
further validated that diazoxide is highly effective in inhib-
iting the proliferation of TNBC cancer cells. These findings
suggest that diazoxide can be repurposed as an effective
targeted therapy for the treatment of TNBC. Furthermore,
diazoxide may be effective in the treatment of other dis-
eases such as hepatocellular carcinoma and Alzheimer’s
disease. We are carrying out experiments to verify these
predictions. This study demonstrates that big data analyt-
ics provides new opportunities for accelerating drug dis-
covery and development, and realizing the full potential of
precision medicines.
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