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Abstract—Finding related nucleotide or protein sequences is a fundamental,

diverse, and incompletely-solved problem in bioinformatics. It is often tackled by

seed-and-extend methods, which first find “seed” matches of diverse types, such

as spaced seeds, subset seeds, or minimizers. Seeds are usually found using an

index of the reference sequence(s), which stores seed positions in a suffix array or

related data structure. A child table is a fundamental way to achieve fast lookup in

an index, but previous descriptions have been overly complex. This paper aims to

provide a more accessible description of child tables, and demonstrate their

generality: they apply equally to all the above-mentioned seed types and more. We

also show that child tables can be used without LCP (longest common prefix)

tables, reducing the memory requirement.
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1 INTRODUCTION

SEQUENCE similarity search remains a fundamental and
incompletely-solved task in bioinformatics. It is also a diverse task:
we may wish to compare two whole genomes (which may be
closely or distantly related), align long error-prone DNA reads to a
genome (or to each other), compare metagenomic DNA to a protein
database (allowing for frameshifts), compare highly biased sequen-
ces such as bisulfite-converted or AT-rich malaria DNA, etc. Differ-
ent sequence types have different characteristics, e.g., transition
mutations (a$g and c$t) are often over-represented, while
sequencing technologies such as PacBio and nanopore have charac-
teristic error patterns.

A general and powerful approach to these tasks is to define a
statistical model, with specific probabilities for each type of sub-
stitution (e.g., g!t), and for opening and extending deletions
and insertions [1]. It is possible to incorporate per-base quality
data (e.g., from fastq files) into such models, for improved
accuracy [2]. In any case, we then seek sequence segment-pairs
with high model-likelihood of being related. There are dynamic-
programming algorithms to find such segment-pairs in an
optimal manner [1], but they are too slow for large datasets, so
heuristic algorithms are used.

2 THE SEED-AND-EXTEND APPROACH

The typical heuristic is seed-and-extend, whereby we first find
“seeds” (simple alignments that can be found quickly), and then
check whether each seed can be extended into a high-likelihood
alignment. Many kinds of seed have been proposed. The simplest
is exact matches of a fixed length, e.g., 7 bases (Fig. 1).

2.1 Spaced Seeds

More sophisticated are spaced seeds, which also have fixed length,
but tolerate mismatches at predefined positions, e.g., positions 3
and 5 out of 8 (Fig. 1). The choice of predefined positions is termed
the pattern. A pattern is commonly described by a sequence of sym-
bols, e.g., 11010111, where 0 indicates positions that tolerate mis-
matches and 1 indicates positions that do not. Spaced seeds are
advantageous for certain types of sequence, e.g., protein-coding
DNA tends to mutate at every 3rd position. Less obviously, they
are often advantageous even for sequences with completely ran-
dom and independent substitutions [3].

2.2 Subset Seeds

Subset seeds are a further generalization and improvement over
spaced seeds. Subset seeds also have fixed length, but tolerate some
mismatches at predefined positions, using reduced alphabets. For
example, one position might use the reduced alphabet ag ct, mean-
ing that a:g and c:tmismatches are allowed, but othermismatches
are not (Fig. 1). This is advantageous for both nucleotides and pro-
teins, where some substitutions aremore frequent than others [4], [5].

Even better performance (sensitivity per run time) can be
achieved by using multiple co-designed seed patterns, where each
pattern tends to find similarities that tend to be missed by the
others [6], [7].

2.3 Variable-Length Seeds

Fixed-length seeds deal poorly with non-uniform composition, a
ubiquitous feature of biopolymers. For example, many genomes are
strikingly depleted in cg dinucleotides, whereas “simple” sequen-
ces such as atatatat are over-represented, and there are many
types of repeated sequence. For instance, if we compare the human
and chimp genomes, each of which has � 106 Alu sequences, we
risk an overwhelming� 1012 matches. In this situation, our practical
aim cannot be to find all significant similarities. Often, what is really
wanted is to find a few top hits to each part of each “query”
sequence. This is accomplished by “adaptive seeds”, defined as fol-
lows: starting at each position in the query, use the shortest seed
with � m occurrences in the reference [8]. Here, m is a tunable
parameter (e.g.,m ¼ 10) meaning “maximum frequency”.

It is possible to combine adaptive and subset seeds. To do this,
we must define a variable-length pattern. One way is to tandemly
repeat a fixed-length pattern (e.g., 1101!110111011101...), and
use variable-length prefixes of this repeated pattern [8], [9].

2.4 Sparse Seeds

Sparse seeding reduces run time and/or memory use at a cost in
sensitivity. Instead of finding seed hits at all positions in the
sequences, we may only consider hits starting at (say) every 2nd
position in the query, or in the reference. A promising variant of
this is “minimizers”, where we only consider hits starting at posi-
tions that are “minima” in sliding windows of w consecutive posi-
tions [10], [11]. Minima can be defined in various ways, e.g., by
alphabetic order of the sequence starting at each position. The
point is to use minima defined by the same criterion in both query
and reference, so we achieve sparsity in both, while tending to
choose matching positions.

2.5 Seed Summary

All these seeding approaches are orthogonal, and can be combined.
For example, it is possible to use adaptive-subset-minimizer seeds,
and get the combined benefit. To summarize so far, there is a wide
diversity of alignment tasks and seeding schemes. The purpose of
reviewing them here is to emphasize the generality of child tables
(described below),which apply equally to all these seeding schemes.
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3 ARRAY AND RANGE CONVENTIONS

We shall be concerned with linear arrays of numbers (such as the
position table in Fig. 2), and especially with ranges in such arrays.
Let us use in-between coordinates, shown as –0–, –1–, etc. in Fig. 2, as if
a ruler were placed along the array. This makes it very clear which
array elements are encompassed by a range, such as –5– to –7–. To
address individual array elements, let us use zero-based indexing,
so if we have an array a of length n, its first element is a[0] and its
last element is a[n-1]. We shall also denote ranges such as –5– to
–7– by a[5,7). The ) indicates that a[7] is excluded.

4 INDEXING

The typical way of finding seeds is to first construct an index of the
“reference” sequences, and then scan through the queries, looking
up seed matches in the index. An index fundamentally represents
positions in the reference, to allow fast lookup of reference positions
matching a seed.

An example index, for exact-match seeds of length 2, is shown
in Fig. 2. Unsurprisingly, it includes a “position table”, which
groups all positions for each 2-mer. For example: one group con-
tains 2 and 7, which are all the positions where ct occurs; another
group contains 1 and 6, which are all the positions where cc

occurs; etc. There is also a 2-mer table, which enables us to look up
the part of the position table corresponding to each 2-mer. For
example, given the query 2-mer gc, we can look up the corre-
sponding 2-mer table entries (shown above and below gc in
Fig. 2), 5 and 7, which indicate the start and end of a range in the
position table. This range contains 0 and 5, which are indeed the
positions of gc.

This index structure can bemodified straightforwardly for sparse
seeds (simply omit some positions from the position table), and for
spaced or subset seeds. Its main limitation is that it works only for
short fixed-length seeds. The k-mer table has ak þ 1 entries, where a
is the alphabet size, so it consumes too much memory for larger k.
We are now in a position to understand what a child table does: it is
an alternative to the k-mer table that can be used for all values of k.

5 SUFFIX ARRAYS

The suffix array [12] (which has been used at least since the 1970s
[13]) is a generalization of the position table from Fig. 2, for arbitrary-
length seeds. It is a table of positions, sorted in alphabetical order of
the sequence (i.e., suffix) starting at each position. An example is
shown at the left of Fig. 3. Note that it has the same length as the ref-
erence sequence, and is similar to the position table in Fig. 2.

From here on, we will assume that the reference ends in a spe-
cial delimiter character, $, which never occurs in any query. This
delimiter, defined to be alphabetically greater than other letters,
simplifies some algorithms.

5.1 Binary Search in Suffix Arrays

We can look up arbitrary-length seeds in a suffix array, without
any k-mer table or child table, by binary search. Given a query
k-mer such as ccta, we first compare it to the position in the mid-
dle of the suffix array, in this case position 7, which points to cta$.
Because ccta is alphabetically less than cta$, its matching range
must be in the top half of the suffix array. So we continue binary
search in the top half.

Classic binary search finds a single position in a sorted array,
but here we wish to find a range. This can be done by a variant of
binary search: the equal range algorithm (e.g., in the C++ standard
library).

Binary search is slower than lookup with a k-mer table. It
requires OðlognÞ steps, where n is the suffix array length. For a
fixed-length k-mer, each step compares up to k letters, for a worst
case Oðk lognÞ letter comparisons. This can be improved to
Oðkþ lognÞ, at a cost in memory, by supplementing the suffix
array with an additional data structure [12]. In practice, however, a
carefully-implemented binary search is often faster without this
extra structure [14].

5.2 Suffix Array Generalizations

Suffix arrays can be generalized for sparse seeding and/or subset
seeds.

For sparse seeding, we simply omit some positions, and sort the
remaining ones alphabetically as usual (Fig. 3 middle column).
Sparse suffix arrays are promising for huge datasets (hundreds of
gigabytes), where a full suffix array might be unsuitable.

For subset seeding, we must define a variable-length pattern,
which can again be done by tandemly repeating a fixed-length pat-
tern. Here, the suffix array is a table of positions sorted in a modified
alphabetical order (Fig. 3 right column) [8], [9]. In this example, the
first seed position uses a purine (a+g) / pyrimidine (c+t) reduced

Fig. 1. Three types of “seed” for sequence similarity search. For each case, an example pattern is shown above, and an example match using this pattern is shown below.
The subset seed has four (boxed) positions, where each position allows mismatches between grouped letters. For example, the first position allows a:g and c:t mis-
matches, but not other mismatches.

Fig. 2. Example of an index, for exact-match seeds of length 2, for the DNAsequence
shown at the top. The position table groups all positions for each 2-mer: the horizontal
lines indicate boundaries between the groups. Lookup of gc is shown in red.
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alphabet, so we want all the purines to sort next to each other, and
likewise all the pyrimidines. (A detail is that the reduced alphabets
always leave $ as a distinct character.)

6 CHILD TABLES

Child tables were introduced in [15], but their original description
is overly complex. An improved variant of child tables (with a
description more similar to the present one) was published in [16],
and there is a textbook description for readers comfortable with
rigorous computing theory [17]. The present description is aimed
at informaticians without a formal computing theory background.

A child table allows us to replace binary search with “guided
binary search”. An example, using the same suffix array as the left
column of Fig. 3, is shown in Fig. 4. Let us search for the same
query k-mer as before, ccta. We start by getting the topmost ele-
ment of the child table, in this case 6, which points to the location
indicated by –6– in the suffix array. This is the boundary between
positions starting with c and those starting with g. Because ccta

is alphabetically less than g, its matching range must be before this
boundary, so we continue searching in the suffix array range [0,6).
Next, we get the child table element immediately above –6–, which
is 2: this points to the boundary between positions starting with a

and those starting with c.
In summary, searching with a child table is similar to binary

search, except that the child table guides us to the key boundaries
in the suffix array. Although Fig. 4 uses a standard suffix array,
child tables are not specific to this case. They apply equally well to
any arbitrary set of sorted strings. For example, child tables have
been used with sparse suffix arrays [18].

6.1 LCP Arrays

Before defining child tables precisely, it helps to first describe LCP
arrays. An LCP array holds the length of the longest common prefix
between sequences pointed to by adjacent suffix array elements. For
example, in Fig. 4, the first two suffixes are agccta$ and a$, and
their longest common prefix has length 1. More precisely, LCPar-
ray[i] is the length of the longest common prefix between the
sequences starting at suffixArray[i-1] and suffixArray[i].

6.2 Child Table Definition

A child table points to minima of the LCP array, which are the “key
boundaries” of the suffix array. Initially, a child table stores one
number (6 in Fig. 4), which points to an LCP minimum, and defines

a split (at –6–) into upper and lower intervals. For each of these two
intervals, it again stores one number that points to an LCP mini-
mum within that interval and splits it into upper and lower sub-
intervals. This continues recursively, stopping at un-splittable
length=1 intervals.

As can be seen in Fig. 4, a child table stores its entries at the
lower ends of upper intervals, and at the upper ends of lower inter-
vals. Thus, each entry is stored adjacent to the split in the middle of
the parent interval. Since we only store entries for intervals of
length > 1, there is no danger of entries over-writing each other.

We have not yet discussed tie-breaking, when an interval has
more than one LCP minimum. Actually, we can break ties however
we wish, to produce different child table variants. The original
child table breaks ties by choosing the first minimum [15], which
leads to worst-case search time proportional to the alphabet size.
The newer child table of Kim et al. chooses a “middle” minimum,
with search time proportional to log(alphabet size) [16].

The recursive definition of a child table just described is per-
formed by the algorithm in Fig. 5, which should be invoked for the
outermost interval like this:

makeChildTable(0, suffixArray.length, 0)

Fig. 3. A standard suffix array, a sparse suffix array, and a subset suffix array, for the DNA sequence shown at the top. In each case, the suffix array is a table of positions,
sorted in alphabetical order of the sequence (i.e., suffix) starting at each position. The sparse suffix array omits some positions (in this example, every 2nd position). The sub-
set suffix array uses amodified alphabetical order, defined by reduced alphabets, according to a subset seed pattern. This example uses the pattern T101, which is consid-
ered to tandemly repeat (so it becomes T101T101T101...). The T indicates that “transition” mutations are allowed, i.e., mismatches between a and g (purines, R) or
between c and t (pyrimidines, Y). The suffixes are shown in the reduced alphabets defined by this pattern: ag!R and ct!Y in T positions, and acgt!. in 0 positions.

Fig. 4. Example of a child table, with a standard suffix array, for the DNA sequence
shown at the top. The “indented child table” is displayed in a way that indicates its
hierarchical structure: the 6 defines an initial split (at –6–) into upper and lower
intervals, then the 2 and 8 split these intervals into subintervals, etc.
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(We arbitrarily define the outermost interval to be a “lower”
interval, so its entry is stored at the start, not the end. The opposite
definition would work equally well.)

6.3 Relationship to Tree Data Structures

A child table is an array representation of a bifurcating tree, which
recursively cuts the suffix array in two, at LCP minima. A tree that
bifurcates at minima has arisen in other contexts, and is named a
“Cartesian tree” [19]. It is also related to the suffix tree, an older
index data structure. The difference is that a suffix tree is multifur-
cating: when an interval has tied LCP minima, the suffix tree splits
at all of them simultaneously. A child table can be regarded as a
space-efficient implementation of a suffix tree (which implements
a multifurcation by several bifurcations), thus a child table-based
index has been termed a “linearized suffix tree” [16].

6.4 Child Table Search

An algorithm to search for a query k-mer using a child table is pre-
sented in Fig. 6. It finds the suffix array range matching the first
query letter (depth = 0), then the sub-range matching the next let-
ter (depth = 1), and so on until it has matched the whole query.

The algorithm establishes two invariants: that query[0..

depth] is not alphabetically earlier than the start of the current
suffix array range, and not alphabetically later than the end of the
current range. If ever these invariants do not hold, there are no
matches and the algorithm returns NULL.

Given these invariants, if the positions at the start and end of the
current suffix array range point to equal (depth+1)-mers, then we

have found the range matching query[0..depth], so we incre-
ment depth and proceed to the next query letter. Otherwise, we
update the current range to the upper or lower sub-interval from
the child table.

To the best of our knowledge, all previously-published child
table search algorithms use an LCP array. This one does not, which
saves memory. (It finds the depth of each dividing point in the
child table by comparing the suffixes pointed to by the start and
end of the suffix array interval.)

This algorithm works for all child table variants, no matter how
they break ties. If we restrict ourselves to a particular tie-breaking
method, a simpler algorithm may be possible. Specifically, Fig. 7
shows an algorithm for a child table that always selects the first
minimum.

6.5 Search Algorithm Variants

The algorithms in Figs. 6, 7 find fixed-length exact matches, but are
easily generalized to other cases.

To find adaptive seeds, replace if depth == query.length

with if end - beg <= maxHits. To avoid running off the end of
the query, we assume here that the query ends with a unique senti-
nel character.

To find subset seeds, replace query[...] with subset

(depth, query[...]) and text[...] with subset(depth,

text[...]). Here, subset is a lookup table which maps each
letter in the original alphabet to a letter in a reduced alphabet. This
mapping may vary by position, i.e., depth.

7 REMARKS ON CONSTRUCTION

Making a suffix array by na€ıve sorting may be slow: sorting typi-
cally uses Oðn lognÞ comparisons, and for strings each comparison
is OðnÞ. There exist OðnÞ suffix array construction algorithms [20],
[21], which can be adapted for subset seeding [9], [21]. For sparse
seeding, one route is to first construct a non-sparse suffix array and
then sparsify.

In practice, we have found that a general sorting method, MSD
(most significant digit) radix sort, is usually fast enough [8] (specifi-
cally, American flag sort [22] accelerated by variants of Dutch flag
sort [23] for small alphabets). This method’s advantages are: it is
simple, it generalizes straightforwardly to subset and sparse seeds,
and most importantly, in all cases it uses little more memory than

Fig. 5. A simple algorithm for making a child table. It is not necessarily the most
efficient way: its purpose is to define precisely what a child table is.

Fig. 6. Algorithm for finding positions in a text sequence that match a query string,
using a child table.

Fig. 7. Algorithm for finding positions in a text sequence that match a query string,
using a child table that always selects the first of tied LCP minima.
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that needed to store the result [22]. MSD radix sort initially sorts by
the first letter of each string, so that all strings starting with a are
placed above those starting with c, and so on. It then sorts the
strings starting with a based on their second letter, then proceeds
recursively to third letters, etc.

A child table can be constructed straightforwardly during MSD
radix sort. This is because each sorting phase yields LCP minima
within the current interval (the boundaries between as, cs, etc).

8 ALTERNATIVES

8.1 k-mer / Bucket Tables

A fast suffix array lookup method should probably use some vari-
ant of the k-mer table from Fig. 2, which is still the fastest way to
look up small k-mers. It cannot be used exactly as shown in Fig. 2,
because suffix arrays are slightly different from position tables: suf-
fix arrays include positions < k bases before delimiters. (In prac-
tice we might have delimiters in multiple places, e.g., between
concatenated sequences, or standing in for unknown or repeat-
masked letters). This means that the end of (say) the at range is
not necessarily the start of the ca range, as it is in Fig. 2. One possi-
ble solution is to add range endpoints to the k-mer table: it is possi-
ble to store the start and end of all k-mers for all k � d, in
ðadþ1 � 1Þ=ða� 1Þ entries, where a is the alphabet size excluding
delimiters: a ¼ 4 for DNA (see the Appendix, which can be found
on the Computer Society Digital Library at http://doi .
ieeecomputersociety.org/10.1109/TCBB.2018.2796064).

With some such k-mer table (termed a “bucket table” in [15]),
we can look up k-mers � d. For a longer k-mer, we can first look up
its length-d prefix, then perform binary search or child-table search
within the range of that prefix.

This leads to a problem. In order to do child table search, we
need to know whether the child table entry for the outermost inter-
val is stored at the upper or lower end of that interval. But if the
outermost interval comes from k-mer table lookup, we do not
know this. Fortunately, it is easy to determine. If the entry is stored
at the lower end, then the upper end must hold an ancestral inter-
val’s entry, which points to � the end of the current interval:

getStorePos(childTable, beg, end):

if childTable[beg] < end: return beg

else: return end-1

8.2 Shrunk Child Tables

To save memory, child tables can be shrunk with a simple heuristic
[15]. Instead of storing the absolute positions of LCP minima in the
child table, we can store offsets to those positions. In other words:

childTable[i] |childTable[i] - i|

These offsets are usually small, so can be stored in fewer bytes
(e.g., 1 or 2 bytes). For larger offsets, we store a dummy value
(such as 0 or �1): when the search algorithm encounters a dummy
value, it knows that the information is missing, and falls back to

binary search. More complex ways of shrinking child tables were
explored in [24].

8.3 Compact / Succinct / Compressed Indexes

There has been extensive research into compact indexes [25], some
of which use compressed child tables [26], [27]. These save memory
by not storing a full suffix array, at a cost in speed [28], [29], [30].
Specifically, they are fast at counting reference positions that match
a query k-mer, but slow at retrieving those positions: it is fastest to
have the positions available contiguously in a suffix array [28],
[30]. “Succinct data structures should therefore only be used where
memory constraints prohibit the use of traditional data structures”
[29]. Even if a full suffix array would be too large, we can consider
a sparse index, and/or distributing the reference sequences into
separately-indexed volumes. Furthermore, these indexes usually
compress standard suffix arrays, and it is unclear how effectively
they can be extended to subset seeding, minimizers, etc [8], [31].

8.4 A Compact Child Table

A child table describes a bifurcating tree: the tree for Fig. 4 is shown
more explicitly in Fig. 8. The search algorithms (Figs. 6, 7) can be
expressed in terms of tree operations (Table 1). Note this requires an
in-order operation, which returns a node’s rank in left-to-right
node order (i.e., its rank in the in-order traversal of the tree).

There are several ways to represent a tree with t nodes using
only 2tþ oðtÞ-bits [25], not all of which support a fast in-order
operation. One way that does is an array B of balanced parentheses
(BP) [25], [32]. Given a binary tree, B is generated recursively, start-
ing from the root, in the following manner: write (; write BP repre-
sentation of the subtree rooted on left child; write the matching );
write the BP representation of the subtree rooted on right child.
Fig. 8 shows an example.

Our search algorithms can use B as follows. We identify a node
by the position of its ( in B, e.g., in Fig. 8, 0 is the root, 5 is the node
labeled 4, etc. We define two basic operations: close takes a posi-
tion containing a ( and returns the position of its matching ), and
rank(p) returns the number of occurrences of ) in B[0,p]. For
example in Fig. 8, close(0)=11 and rank(8)=4. The in-order
number of a node is the rank of its ). Our search algorithms can be
implemented as shown in the last column in Table 1. With addi-
tional oðnÞ-bit data, both rank and close can be performed in
constant time [32]. Unfortunately, close is complex and slow in
practice [33].

A slightly different BP representation appears in [27], but it
relies on an LCP array for both construction and traversal. Recon-
necting to our earlier observation that an LCP array is not required
for searching, an interesting direction is to explore the direct con-
struction of BP and its usage alongside a (compact) suffix array.

8.5 Multiple Seed Patterns

If we wish to use multiple co-designed seed patterns, the simplest
way is to use a separate index (with separate child table) for each
pattern. It is possible to use just one index, however, for “neighbor

Fig. 8. A Cartesian tree (middle) of the LCP array (top), and its BP representation
(bottom). Above each parenthesis is the label of the corresponding node. The
labels are shown here for illustrative purposes only – they are not stored.

TABLE 1
Array, Tree, and BP Operations for Child Table Search

Array Tree BP

storePos 0 v root v 0

mid mid in-order(v) w close(v)

childTable[storePos] mid rank(w)

storePos mid-1 v leftChild(v) v v+1

storePos mid v rightChild(v) v w+1

The child table search algorithms (Figs. 6, 7) can be modified to use the tree or
BP representation, by replacing the four lines shown here.
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seeds” [34]. It is also possible to compress a spaced-seed suffix
array relative to a normal suffix array [31].

9 TESTS

9.1 Subset Seeding for Bisulfite-Converted DNA

As an example, the child table implementation in LAST (http://
last.cbrc.jp/) was used to align bisulfite-converted human DNA
reads (with many c!t substitutions; the first million length=85
reads from SRR094461 [35]) to a human genome:

lastdb [opt] -uBISF myDB hg38_no_alt_analysis_

set.fa

lastal -Q1 -s1 -e120 myDB queries.fastq > outfile

lastdb makes an index (named myDB) of the genome, and
lastal aligns the queries. Option -uBISF specifies sparse seed-
ing in the reference (every 2nd position) with subset seed pattern
bbbbbb0b0bb00, where b positions allow c:t mismatches and 0

positions allow all mismatches [36]. The [opt] parameters were
varied to try full or shrunk child tables, and different values of the
bucket depth d (Table 2). In each case, index construction took <
17 minutes.

Here, alignment is fastest using a bucket table with d ¼ 23 (the
default for this index size) plus a shrunk 2-byte child table, which
is slightly faster than a full child table. A 1-byte child table results
in speed and memory intermediate between a 2-byte child table
and no child table. Another way to trade memory for speed is to
increase the bucket depth, but here this is less effective than using
a child table. On the other hand, a child table without any bucket
table is slow.

Of course, this is just one example, for a particular implementa-
tion, dataset, and seeding strategy (with adaptive seeds). Child
tables may provide greater or lesser speed-up in other cases. In a
previous test with fixed-length seeds, child tables boosted speed
for short seeds [14]. This is because the run time of child table
search depends on the seed length but not on the index size,
whereas binary search does depend on the index size.

9.2 Sparse Seeding with Human DNA

Child tables combine well with sparse seeding. To show this, we
used LAST to align human DNA reads (the first million length=101
reads from SRR1514950_1 [37]) to a human genome:

lastdb [opt] -uNEAR myDB hg38_no_alt_analysis_

set.fa

lastal -f0 -Q1 -j1 myDB queries.fastq > outfile

The [opt] parameters were varied to try full or shrunk child
tables, and two kinds of sparse index. First, we used -w16, to index

every 16th position. Greater sparsity reduces the memory use, but
the interesting point is that it reduces the percentage of that mem-
ory used by child tables (Table 3). This is because the memory use
becomes dominated by the genome sequence rather than its index.

Next, we used -W31, to specify “minimizer” sparsity with slid-
ing windows of length 31. This selects each position (in reference
and query sequences) that is the minimum within any window,
according to alphabetic order of the sequence starting at each posi-
tion. Thus, it often selects positions with a and rarely selects posi-
tions with t. The interesting result here is that child tables
produced a greater percentage speed-up (Table 3). E.g., the run-
time of 81.2 sec was cut by 25 percent with a 2-byte child table,
whereas the -w16 run-time of 493 sec was cut by 16 percent. The
likely reason is that the search tree is unbalanced: we have to
search more deeply to find adaptive seeds (� m occurrences in the
index) starting with a. Note the bisulfite subset seeds are also
unbalanced, and in that case a 2-byte child table also cut the gap-
less alignment time by 25 percent (Table 2).

9.3 CPU Cache Misses

The run time of index-lookup algorithms is often dominated by
cache misses. Memory access is orders-of-magnitude slower than
CPU arithmetic in modern CPUs, and CPUs try to accelerate
memory access by prefetching and caching memory locations
near recently-accessed locations. Unfortunately, binary search
and child table search access widely-scattered elements of large
arrays, which does not benefit from this caching. As the search
narrows down, the accesses into the suffix array and child table
become more and more localized, so we can hope they are in
cache, especially if the early search steps are skipped using a
bucket table. However, the accesses into the text do not become
more localized.

Tables 2, 3 suggest that cache misses are indeed key. The faster
run times with child tables correspond to only small reductions in
CPU instruction counts, but large reductions in cache misses.

9.4 Cache-Friendly Layouts

If cache misses are key, we should consider cache-friendly data lay-
outs. We can reduce scattered access into the text, at a cost in mem-
ory, by storing copies of text characters alongside the suffix array
[38]. Such copied characters have been termed a “fringe” [39] or
“discriminating characters” [24].

Binary search is classically performed on sorted arrays, but it
can instead be performed on arrays whose elements are in a differ-
ent order, e.g., the ahnentafel order used in binary heaps [40]. Such
layouts can result in faster search [40], so would be intriguing to
try with suffix arrays. However, we wish to not only find a suffix
array range but also retrieve the elements in the range: with non-
sorted layouts these elements are not contiguous, so more costly to
retrieve.

TABLE 2
Memory and Alignment Time for Various Indexing Strategies

child bucket memory alignment time (s) CPU cache

table depth d (GB) gapped gapless instructions misses

none 23 9.97 493 273 596G 5.64G

1-byte 23 11.4 471 239 576G 4.81G

2-byte 23 12.9 438 204 563G 3.15G

full 23 15.8 449 213 561G 3.14G

none 24 11.5 484 250 586G 4.69G

none 26 14.6 482 255 581G 4.73G

full 0 14.8 705 474 890G 5.92G

Gapless alignment was done by adding -j1 to the lastal options. Each time
(in seconds) is the sum of user and sys from the time command, and is the
median of 5 replicates. Instructions and cache misses for gapless alignment
were counted by perf stat. “G” means billion. CPU: Intel(R) Xeon(R) E5-
2695 v3 @ 2.30 GHz. LAST version: 744.

TABLE 3
Memory and Alignment Time for Sparse Indexing

sparsity
option

child
table

memory
(GB)

alignment
time (s)

CPU
instructions

cache
misses

-w16 none 3.99 493 1327G 10.6G
1-byte 4.17 478 1296G 8.79G
2-byte 4.36 414 1280G 7.61G
full 4.72 456 1272G 7.71G

-W31 none 4.15 81.2 216G 1.73G
1-byte 4.37 72.4 211G 1.33G
2-byte 4.60 61.3 207G 0.87G
full 5.04 65.4 206G 0.88G

In these tests, the bucket depth was left at its default setting (which was 14 in
all cases). LAST version: 912.
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10 CONCLUSION

We hope to have shown that child tables are straightforward, and
very general: they apply equally to diverse sequence matching
strategies, using inexact subset seeds and/or sparse seeds such as
minimizers. They are a practical option to trade greater memory
usage for faster sequence similarity search.
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