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Abstract—Data mining algorithms and sequencing methods (such as RNA-seq and ChIP-seq) are being combined to discover

genomic regulatory motifs that relate to a variety of phenotypes. However, motif discovery algorithms often produce very long lists of

putative transcription factor binding sites, hindering the discovery of phenotype-related regulatory elements by making it difficult to

select a manageable set of candidate motifs for experimental validation. To address this issue, the authors introduce the motif selection

problem and provide coverage-based search heuristics for its solution. Analysis of 203 ChIP-seq experiments from the ENCyclopedia

of DNA Elements project shows that our algorithms produce motifs that have high sensitivity and specificity and reveals new insights

about the regulatory code of the human genome. The greedy algorithm performs the best, selecting a median of two motifs per

ChIP-seq transcription factor group while achieving a median sensitivity of 77 percent.

Index Terms—Motif discovery, ChIP-seq, RNA-seq, biology of disease, ENCODE
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1 INTRODUCTION

HUMAN disease association studies are often gene-centric
and focus on identifying variants in genes. However,

numerous diseases are caused by alterations in the non-
coding, regulatory regions of the genome. Thus, discovery of
genomic regulatory elements is not only important for under-
standing the biology of genomes, it is also critical for under-
standing the biology of disease [1]. RNA-seq, microarray and
ChIP-seq experiments are used to discover disease-associated
changes in gene expression and in transcription factor bind-
ing. Such experiments identify genomic areas (e.g., gene pro-
moters and transcription factor binding regions) wherein
disease-associated regulatory elementsmay be found.

Motif discovery, the de novo computational method for
finding putative regulatory element binding sites, has sev-
eral shortcomings. The specificity problem occurs when motif
discovery methods produce too many motifs, causing a high
false positive rate. The coverage problem occurs when motif
discovery methods fail to find a single motif (or a small set of
motifs) that covers all of the genomic sequences of interest
(e.g., the binding regions from a ChIP-seq experiment).

These issues can be addressed by solving the motif selection
problem, i.e., picking a small set of significant motifs from a
large collection of discovered motifs. Since one might view
each subset of the discoveredmotifs as a hypothesis concern-
ing transcription factor binding or gene co-expression, by the
principle of Occam’s Razor, the simplest such hypothesis is
preferred. Hence, the output of our method is viewed as a
likely genomic mechanism to explain the common regula-
tory (or binding) properties of a sequence set.

In the remainder of this manuscript, the authors formally
define the motif selection problem, present novel methods for
solving the problem, and demonstrate the effectiveness of the
methods by analyzing ChIP-seq data from the ENCyclopedia
of DNA Elements (ENCODE) project [2]. Section 2 provides
the biological motivation for the motif selection problem and
reviews related algorithmic methods. In Section 3, the motif
selection problem is formally defined and algorithms for
the motif selection problem are presented. The effectiveness
of the algorithms is demonstrated in Section 4 by providing
analysis results for the ENCODEdata.

2 BACKGROUND AND SIGNIFICANCE

Transcription factor proteins (TFs) and their DNA binding
sites (TFBSs) are involved in the regulation of gene tran-
scription. Thus, identifying TFBS-TF interactions assists in
deciphering gene regulatory networks. Discovering TFBSs
is considered a challenging problem in the fields of com-
puter science and molecular biology, because the TFBSs are
degenerate, TFBSs vary in length, and TFs work in a combi-
natorial manner [3]. Motif discovery is one of several meth-
ods used to help discover TFBSs.

Motif discovery is the process of finding short DNA pat-
terns that are overrepresented in a set of DNA sequences
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which share a biological function (e.g., promoters of co-
expressed genes) [4] or are bound by the same TF (as deter-
mined by ChIP-seq experiments). Motif discovery methods
are divided into two classes. Generative methods discover
motifs by contrasting their enrichments in a set of sequences
with generated statistical background models (for example,
a Markov background model generated from the input
sequences [5]). Some well-known generative discovery
methods include MEME [6] and Weeder [3].

Discriminative motif discovery methods compare two sets
of sequences to find motifs that are overrepresented in the
genomic regions of interest (the positive set) and are
underrepresented in a different set of sequences (the nega-
tive set) which is provided by the user. The discriminative
motif discovery problem was first introduced by Sinha [7],
where a motif was considered a feature of the input
sequences, and features that best discriminate the two sets
were identified by applying classification techniques. Fea-
tures can be ranked based on their power to discriminate
between members of the two classes. Discriminative motif
discovery methods include xxMotif [5], DECOD [8], DEME
[9], and DME [10].

Tompa et al. [11] found that the sensitivity of motif dis-
covery methods is very low. To address this problem,
Tompa et al. suggested the use of an ensemble of multiple
motif discovery tools. Ensembles implicitly solve the motif
selection problem by choosing a set of motifs produced by a
collection of motif discovery methods. Thus, the remainder
of this section provides a review of motif discovery ensem-
bles, including a description of the motif selection approach
used by each ensemble.

In [12], five motif discovery tools were combined
(AlignACE [13], MDScan [14], MEME [6], Trawler [15], and
Weeder [3]). The motifs are ranked using an enrichment
score that is computed by dividing the number of discov-
ered motif instances by the number of shuffled control motif
instances across the genomic regions studied.

W-ChIPMotifs [16], [17] uses three motif discovery tools
(MEME [6], MaMF [18], and Weeder [3]) to discover motifs
in ChIP-seq data. The candidate motifs are filtered for sig-
nificance using a bootstrap resampling method and using
p-values.

In CompleteMOTIFs [19], three motif discovery methods
(MEME [6], Weeder [3], and ChIPMunk [20]) are used. The
top 10 motifs are selected from each tool based on its scoring
method. The candidate motifs (from all the tools) are
scanned across a background data set generated by shuf-
fling the original input data. CompleteMOTIFs reports the
10 motifs with the strongest q-values.

GimmeMotifs [21] incorporates nine motif discovery tools
to discover motifs across ChIP-seq data. The tools are: Bio-
Prospector [22] , GADEM [23], Improbizer [24], MDmodule
[25], MEME [6], MoAn [26], MotifSampler [27], Trawler [15]
and Weeder [3]. The input data are divided into a prediction
set (20 percent of the original input set selected randomly)
and a validation set. Additionally, two background data sets
are generated to calculate motif statistical significance. One
background data set is randomly generated from the input
data while maintaining the dinucleotide frequency, and the
second backgrounddata set is selected from the genome stud-
ied. The statistical significance of the non-redundant motifs is

then calculated using the validation set and the background
data sets. The following statistical scores are calculated: abso-
lute enrichment, hypergeometric p-value, ROC-AUC graph,
and the Mean Normalized Conditional Probability. Finally,
all the candidate motifs are clustered using a Weighted Infor-
mation Content similarity score and the non-redundant
motifs are reported.

The SCOPE ensemble [28], [29] uses three motif discovery
algorithms (BEAM, PRISM, and SPACER), and a scoringmet-
ric, Sig, is used to rank the motifs. Sig is a statistical signifi-
cance score that is based on three objective functions (motif
overrepresentation, motif coverage, and motif positional
bias). Themotif coverage score is used to determine the statis-
tical significance of only a single motif to assist in ranking the
predicted motifs. This score compares the number of regions
in the input set that contain the motif to the total number of
regions in the entire genome that contain themotif.

Another motif ensemble method is MotifLab [30],
wherein motif discovery is performed by popular tools
chosen by the user and a p-value for over-representation is
calculated for the top motifs produced by each tool.

In Ensemble Motif Discovery (EMD) [31], five motif dis-
covery tools are used (AlignACE [13], Bio-Prospector [22] ,
MDScan [14] , MEME [6] , and Motif-Sampler [27]). The
ensemble approach for selecting motifs consists of five
steps: collecting, grouping, voting, smoothing, and extract-
ing. EMD runs the tools multiple times, where some tools
are run with different parameters each time to produce dif-
ferent sets of motifs per run. The motifs are collected and
grouped based on their scores, the groups are mapped onto
the input sequences, and votes for each position across the
sequences are counted. The final sites reported are the ones
with the largest numbers of votes.

In MotifVoter [32], 10 motif discovery methods are used:
MITRA [33], Weeder [3], SPACE [34], AlignACE [13], ANN-
Spec [35], BioProspector [22], Improbizer [24], MDScan [14],
MEME [6] and MotifSampler [27]. MotifVoter includes two
stages:motif filtering and sites extraction. In themotif filtering
step, similarmotifs are clustered. In the site extraction step the
goal is to identify the binding siteswith the highest confidence
based on how many motif methods report the site, where a
binding site should be shared by at least two motif discovery
methods. The final high confidence selected binding sites are
aligned usingMUSCLE [36] and a PWM is generated.

While motif discovery ensembles have been developed
to address the problems identified by Tompa et al. [11],
they tend to exacerbate the specificity problem and they
do not consider the coverage problem. These challenges
are addressed by explicitly defining and solving the motif
selection problem, which incorporates both objectives.

3 METHODS

Whether using a single motif discovery method or an
ensemble of motif discovery methods, one faces the
challenge of selecting a biologically important subset of
motifs from a large set of candidate motifs. This section pro-
vides a formal description of the motif selection problem
and presents algorithms that solve the problem. The source
code of the algorithms is available at https://github.com/
RamiOran/SeqCov.git.
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3.1 Formal Problem Definition

Given a set of motifs M ¼ fm1;m2; . . . ;mkg and a set of
sequences S ¼ fS1; S2; . . . ; Sng, the motif selection problem
can be defined as follows:

Minimize
Xk

j¼1

xj: (1)

Subject to:

Xk

j¼1

aijxj � 1; i ¼ 1; . . . ; n; (2)

where xi is defined as:

xi ¼ 1 if mi is part of the solution
0 otherwise,

�
(3)

where A is an n x k matrix representing the coverage of
sequence set S by motif setM:

aij ¼ 1 if Si 2 Smj

0 otherwise,

�
(4)

where Smi
� S is the set of sequences covered by motifmi.

Note that equation (2) guarantees that each sequence in S
is covered by at least one motif mi. Note also that the motif
selection problem can be modeled by the Set Covering
Problem (SCP), and that the SCP decision problem is NP-
complete and the SCP optimization problem is NP-hard [37].

A general solution procedure for the motif selection
problem finds Fmin, a minimally sized set of motifs that cov-
ers all sequences in S. A feature set F � M is generated by
incrementally adding features (motifs) to the set, based on
the heuristic rule of the algorithm used such that if a new
motif mi is added to F , then the corresponding set of
sequences covered bymi are added to SF (the set of sequen-
ces covered by feature set F ). This implies that it is never
beneficial to add any motif that does not increase the size of
SF . The procedure terminates when SF ¼ S.

3.2 Relaxed Integer Linear Programming (RILP)
Approximation Algorithm

The Set Cover Problem as well as the motif selection prob-
lem can be cast as a 0-1 integer linear program, wherein
the goal is to find a 0-1 vector ~x of length m satisfying the

constraints A~x � ~b such that Z ¼~c �~x is minimized, where

1) ~c is a vector of all 1’s of lengthm
2) ~b is a vector of all 1’s of length n.
It is relatively straightforward to prove that the mini-

mum set cover has K sets if and only if Z ¼ K. To see
this, notice that ~x½i� ¼ 1 corresponds to the motif mi

being part of the set cover, and ~x½i� ¼ 0 corresponds to

the set mi being left out of the set cover. Hence, A~x � ~b
if and only if, for each Si 2 S, at least one of the sets mi,
where ~x½i� ¼ 1 contains Si. Hence, if ~x satisfies the con-

straint that A~x � ~b, then ~x corresponds to a valid set
cover. The additional constraint that ~c �~x is minimized
means that the solution to the integer linear program

provides the optimal set cover. Hence, solvers for integer
linear programs, such as those found in the GNU Linear
Programming Kit (GLPK) [38], can be used to find the
optimal solution to the set cover problem. However,
these solvers may take a long time to find the optimal
solution.

Now, while 0-1 integer linear programming is also
NP-complete [37], it is possible to relax the constraint
that xi 2 f0; 1g and allow xi 2 ½0; 1�. This relaxation con-
verts the integer linear program into a linear program.
Since linear programming can be solved in polynomial-
time in the worst-case (e.g., the Ellipsoid Method), GLPK
can be used [38] to solve the relaxed version. Further-
more, the relaxed version can be used to provide an
approximate solution via randomized rounding [39]. The
standard randomized rounding approach proceeds as
follows: (i) construct the optimal solution ~x to the
relaxed version of the ILP problem, (ii) select set Si be
part of the cover C with probability x½i�, (iii) repeat
step (ii) until C is a set cover. As shown in [39], this
algorithm produces, with high probability, a set cover
that is within Oðlog nÞ times the size of optimal solution.
This is the approach used here to build good set covers.

3.3 Bounded Exact Search Algorithm

The GLPK toolkit [38] also provides a branch-and-cut
algorithm which attempts to find exact solutions to cer-
tain stated integer linear programming problems by uti-
lizing accepted trial solution methods (such as the
simplex or primal-dual interior-point methods) and then
successively computing cutting planes to reduce the size
of the search space. This technique is applicable to our
problem of interest since the set coverage problem can
be described using only linear constraints, and the search
space is convex. Branch and cut behaves heuristically in
terms of the search space reduction, but provides exact
answers to the linear programming problem. The princi-
ple drawback to branch and cut is that it demonstrates
exponential runtime in the worst case, and therefore
may not return any answer to specific problem instances
within a reasonable time frame. The ILP characterization
is provided in the previous section.

3.4 Greedy Algorithm

Greedy algorithms try to generate good solutions by
employing simple rules. The strategy chosen here is to
employ a “maximum uncovered-first” rule. According to
this rule, a feature set F is constructed by incrementally
adding motifs such that, at every iteration, the motif mi that
covers the largest number of uncovered sequences in S is
added to F .

Two filtering steps are applied during the greedy motif
selection process. The first filtering step is used to avoid
selection of redundant features. During the iteration pro-
cess, if feature mi is similar to a previously selected feature
mk then featuremi is discarded and the search continues for
the next feature. The similarity of two motifs, mi and mk, is
calculated using Tomtom [40], which assigns an E-value
that characterizes the significance of the similarity. The sig-
nificance of similarity between two motifs mi and mk is
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defined as "ðmi;mkÞ. If "ðmi;mkÞ < 0:05, then the two
motifsmi andmk are considered similar.

The second filtering step avoids selecting features which
provide small incremental benefit, choosing features which
add a minimum number of uncovered sequences. Let Su be
the set of uncovered sequences, let jSmi

\ Suj=jSj be the per-
centage of sequences covered by feature mi, and let D be the
minimum percentage of new sequences that must be added
to the set cover. If jSmi

\ Suj=jSj < D, the greedy algorithm

terminates (because no further improvement greater than D
is possible by selecting any of the remaining motifs). This is
beneficial since some features only add a small percentage
of uncovered sequences. Although the filtering steps might
result in partial coverage instead of full coverage, they pro-
duce a feature set which includes non-redundant features
and avoids selection of features that add a small number of
uncovered sequences. Algorithm 1 shows the pseudocode
for the greedy algorithm.

Algorithm 1.Motif SelectionUsing theGreedyAlgorithm.

1: procedure GREEDY ALGORITHM(S;M;D)
2: Su ¼ S
3: F ¼ ;
4: Ms ¼ M
5: j ¼ 0
6: while Su 6¼ ; and j < jMj do
7: Select anmi 2 Ms s.t. jSmi

\ Suj is maximized
8: Ms ¼ Ms �mi

9: j ¼ jþ 1
10: if there existsmk 2 F such that "ðmk;miÞ < 0:05 then
11: continue
12: end if
13: if jSmi

\ Suj=jSj < D then
14: break
15: else
16: Su ¼ Su � Smi

17: F ¼ F [mi

18: end if
19: end while
20: Return F
21: end procedure

4 RESULTS AND DISCUSSION

This section presents the results of applying our motif selec-
tion methods to the ENCODE ChIP-seq data [2]. Our results
are compared to those described in [12].

In [12], the authors grouped 427 ChIP-seq experiments
from the ENCODE project into 84 factor groups (based on
homology and the presence of known motifs). For each
ChIP-seq experiment in each factor group, the ChIP-seq
peaks were divided into two parts, one for motif discovery
by an ensemble of motif discovery tools and one for enrich-
ment score calculation. The top 10 enriched motifs were
selected for each factor group. Of the 84 factor groups, 56
groups have known TFBSs.

Our methods typically selected fewer motifs per factor
group than reported in [12], and the TFBSs selected by our
methods often cover higher percentages of the ENCODE
ChIP-seq binding regions than did the motifs reported
in [12]. Our methods are validated by their ability to

rediscover known binding motifs for 38 factor groups.
Interestingly, our methods rediscovered known motifs for
one factor group (TCF12) for which the method in [12]
failed to find known motifs.

The remainder of this section summarizes our key
results. First, our evaluation pipeline is described and our
evaluation metrics are defined. Focusing on the aforemen-
tioned 38 factor groups, the effectiveness of our motif selec-
tion methods is compared to the effectiveness of the method
of Kheradpour and Kellis [12], as well as to the motif selec-
tion method used in a motif discovery ensemble (W-ChIP-
Motifs [16]). Finally, we present new putative functional
genomic elements discovered by our methods.

4.1 Evaluation Methodology

Fig. 1 shows the pipeline used for evaluating the motif
selection methods. For each ChIP-seq experiment in each
factor group, 1,000 randomly selected peaks were used
as training data and 1,000 randomly selected peaks were
used as testing data. The sets of all discovered motifs for
each TF group were obtained from [12], and were pro-
vided as input to our motif selection algorithms and to
the motif selection algorithm of W-ChIPMotifs. Filtering
thresholds of D >¼ 5% and "ðmi;mkÞ < 0:05 were used
for the greedy algorithm.

The motif selection methods were evaluated in terms of
the following metrics:

1) Number of features selected (N): This measure indicates
the number of motifs chosen by a motif selection
method.

2) Sequence sensitivity (sSn): This measure indicates the
percentage of input sequences (ChIP-seq peaks) that
were identified by the selected set of features
reported by a method. Sequence sensitivity, sSn, is
defined as sSn ¼ TPs/(TPs þ FNs), where the number
of true positives, TPs, is the number of sequences
containing at least one selected motif (determined by
using FIMO [41]) and the number of false negatives,

Fig. 1. Evaluation pipeline applied to the ENCODE ChIP-seq data. One
thousand random peaks were selected per experiment per factor group
for the training and testing data. Peaks selected for training data were
not included in the testing data. The discovered motifs were reported in
[12] using an ensemble of motif discovery tools. FIMO [41] was used
for motif scanning.
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FNs, is the number of sequences with no occurrence
of any selected motif.

3) Sensitivity in recovering knownmotifs (mSn): For each of
the 56 TF groups with known motifs (see [12]), the
known motifs were compared to the selected motifs.
Motif sensitivity, mSn, is defined as mSn ¼ TPm/
(TPmþ FNm), where TPm is the number of TF groups
with known motifs that are covered by the selected
motifs, and FNm is the number of known motifs not
matched by the predicted motifs (determined using
Tomtom [40], with E-value threshold¼ 0.05).

4.2 Evaluation Results

Table 1 provides a summary comparison between the
methods, in terms of the number of features selected.
The greedy algorithm produces the smallest average
number of features, followed by the enrichment method.
The other three algorithms produce much larger feature
sets. Fig. 2a provides a comparison between the greedy,
enrichment, and W-ChIPMotifs methods, where it is
clear the greedy has the lowest median number of fea-
tures. The small number of features selected by the
greedy algorithm and the concurrent high sSn indicate
the strong specificity of the selected motifs.

The sSn measure is used to find the percentage of ChIP-
seq peaks covered by the selected motifs. Table 3 shows a
high-level comparison of all methods, and Fig. 2b shows a
comparison between the greedy, enrichment, and W-ChIP-
Motifs methods. In terms of sSn, the RILP and bounded
exact search algorithms performed the best. However, the
higher sensitivity was obtained at the expense of selecting a
very large number of motifs (see Table 1). The greedy algo-
rithm and the enrichment method have much better motif-
to-sensitivity ratios, and the greedy algorithm has the most
favorable ratio overall. Table 2 shows the number of fea-
tures and sSn values across the 38 TF groups.

The enrichment method reported known motifs for 37 TF
groups (mSn ¼ 66.1%). The RILP and bounded exact search
algorithms reported known motifs for 38 TF groups (mSn ¼
67.9%). The W-ChIPMotifs method reported known motifs
for 35 TF groups (mSn ¼ 62.5%). The greedy algorithm
achieved 64.3 percent mSn (reporting known motifs for 36
TF groups). All methods performed similarly with respect
to the gold standard.

It is important to note that the greedy algorithm
achieved this performance with fewer motifs, on average,
than the other algorithms. In terms of running time, the
greedy algorithm was the fastest with average run time

of 103 seconds. The median was 57 seconds and the stan-
dard deviation was 123. The RILP and the bounded
exact search algorithms had an average run time of 141
and 129 seconds, respectively. The median was 90 and
85 seconds and the standard deviation was 153 and 136
seconds, respectively.

4.3 Putative Functional Genomic Elements
Discovered by Our Methods

The greedy method identified a number of putative regula-
tory elements. First, we present our findings for the TCF12
factor group, for which the previous study (see [12]) failed
to rediscover a known motif. This is followed by a presenta-
tion of previously unreported motifs for the remaining 37
factor groups for which our methods were validated with
respect to the gold standard.

The TCF12 TF (other names include HTF4 and HEB) is a
member of the basic helix-loop-helix (bHLH) protein family
and a member of the E-protein class which binds to the
E-box sequence CANNTG [42], [43], [44].

The greedy algorithm reported three motifs for TCF12
group, with a sSn of 69.6 percent. The RILP, bounded exact
search algorithms reported 29 motifs with a sSn of 96.2 per-
cent. The W-ChIPMotifs method reported four motifs with
a sSn of 55.3 percent. In [12], the enrichment method
reported six motifs with a sSn of 72.3 percent.

Fig. 3 shows the matches found by comparing the pre-
dicted motifs by the greedy algorithm for TCF12 against the
JASPAR database. In Fig. 3, the second selected motif
matches other TFs from the JASPAR database which are
likely co-factors of TCF12.

To study this factor group further, motif selection was
performed on each of the TF ChIP-seq experiments individ-
ually, to identify cell line specific TFBSs. The TCF12 factor
group consists of three experiments across three cell lines
(HepG2, H1-hESC, and GM12878). Fig. 4 shows the motifs
selected by the greedy algorithm for each experiment. The
TCF12 binding regions of the two normal cell lines
(GM12878 and H1-hESC) contain similar motifs, but the
motifs selected for the binding regions of the hepatocellular
carcinoma cell line (HepG2) are different. This suggests the
presence of genomic regulatory elements that may be linked
to hepatocellular carcinoma.

We examined the TCF12 for any overlapping Single
Nucleotide Polymorphisms (SNPs), using the RegulomeDB

TABLE 1
Number of Features Used (Mean, Median, and SD)

across 38 TF Groups

Method Mean Median SD

Greedy 2.5 2 0.86
Enrichment 4 3 2.2
W-ChIPMotifs 8.2 6 6.5
RILP 30.7 30 15.2
Bounded 30.7 30 15.2

Fig. 2. Number of features and sequence sensitivity comparison.
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database [45], [1]. The first motif had 63 overlapping
SNPs, the second motif had 164 overlapping SNPs, and
the third motif had 23 overlapping SNPs. The second
motif had one match in the genome-wide association
study (GWAS) catalog: rs2293152 [46]. The disease associ-
ated with this SNP is multiple sclerosis [46] and the asso-
ciated gene is STAT3.

For the remaining 37 factor groups, Tables 4, 5, 6, and 7
show the motifs that were selected by the greedy algorithm
but were not selected by the enrichment method.

TABLE 2
Number of Features and sSn for Five Motif Selection Methods Across the 38 TF Groups

Greedy RILP and
Bounded

W-ChIPMotifs Enrichment

TF Group(P)(P(%)) N sSn(%) N sSn(%) N sSn(%) N sSn(%)

EGR1(2600)(97.0) 1 82.8 29 96.4 9 91.3 7 86.8
NRF1(4200)(98.9) 1 91.5 22 98.6 16 97.3 3 95.6
ATF3(2400)(89.5) 2 74.3 33 89.2 7 70.6 4 70.5
BHLHE40(1000)(81.2) 2 63.0 11 79.0 2 53.3 2 58.8
CEBPB(4000)(90.0) 2 64.7 32 88.5 4 60.5 2 30.6
E2F(8000)(98.8) 2 86.9 51 98.8 11 93.8 8 91.5
ELF1(3000)(93.3) 2 78.8 23 91.9 6 78.7 3 76.3
ETS(8200)(98.2) 2 87.5 55 97.8 18 89.8 9 90.1
FOXA(5000)(92.0) 2 63.0 35 92.3 6 63.0 5 58.4
HNF4(3000)(96.5) 2 76.1 26 96.1 4 72.5 5 77.1
MAF(4000)(97.2) 2 77.7 28 97.2 8 82.7 2 59.5
NFE2(1200)(96.1) 2 93.3 11 96.1 4 88.5 4 87.3
NFKB(10200)(97.3) 2 73.3 54 96.6 20 85.8 4 68.9
NFY(2000)(96.8) 2 93.2 13 97.3 4 92.0 1 83.2
POU2F2(4000)(85.5) 2 59.3 35 85.2 5 60.7 2 55.2
POU5F1(1000)(88.4) 2 76.4 7 86.0 3 68.1 2 74.6
PRDM1(1000)(91.1) 2 79.7 6 91.8 2 28.6 2 73.6
REST(10000)(97.4) 2 81.1 56 96.8 31 94.2 10 92.1
SPI1(3000)(98.7) 2 87.7 20 98.9 7 94.1 3 84.1
SRF(5000)(91.1) 2 70.3 40 90.7 11 81.3 2 57.5
TFAP2(2000)(96.8) 2 85.8 17 97.0 3 88.0 2 83.8
YY1(9200)(95.4) 2 79.1 49 95.2 18 88.0 5 83.1
ZEB1(1000)(85.9) 2 72.8 13 88.8 2 51.5 1 40.6
EBF1(2000)(87.0) 3 75.6 17 87.9 4 68.0 2 59.5
MEF2(2000)(86.0) 3 64.0 18 85.2 4 57.9 3 50.5
MXI1(2000)(88.2) 3 75.4 20 89.3 4 47.1 2 39.1
NR2C2(1600)(93.6) 3 86.8 20 92.5 5 56.6 3 67.9
PAX5(4000)(96.2) 3 74.7 41 95.7 8 77.0 5 71.4
RFX5(3200)(92.0) 3 76.1 33 92.1 6 67.9 3 54.1
SP1(4000)(88.5) 3 73.6 34 88.0 10 75.9 3 68.3
TCF12(2200)(96.3) 3 69.6 29 96.2 4 55.3 6 72.3
ESRRA(4200)(90.4) 4 65.4 44 89.2 9 74.5 4 62.3
GATA(8000)(99.0) 4 77.1 53 98.9 18 88.1 6 66.7
IRF(2650)(97.9) 4 80.5 31 97.7 4 75.5 6 85.3
NR3C1(4250)(95.7) 4 78.7 47 95.4 5 67.9 6 72.6
RXRA(3050)(94.5) 4 71.8 40 94.3 6 65.1 5 61.0
STAT(7200)(99.0) 4 77.4 60 98.7 20 86.6 7 79.6
TCF7L2(2000)(90.1) 4 83.0 12 90.9 4 75.1 2 45.6

P is the total number of peaks selected per TF group and P (percent) is the percentage of peaks with motif occurrences. N is the number of features selected by each
method.

Fig. 3. Motifs selected by the greedy algorithm for factor group TCF12
with JASPAR matches.

TABLE 3
Sequence Sensitivity (Mean, Median, and SD)

across 38 TF Groups

Method Mean Median SD

RILP 93.1 94.7 4.8
Bounded 93.1 94.7 4.8
Greedy 77.0 76.7 8.5
W-ChipMotifs 74.0 75.3 15.8
Enrichment 69.4 70.9 15.9
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We believe that these previously unreported motifs are
important functional elements of the human genome, due
to their ability to provide the simplest explanations for
the ChIP-seq binding experiments.

5 CONCLUSIONS

This manuscript presents heuristics that employ the concept
of sequence coverage to solve the motif selection problem,
yielding a small, concise set of motifs with high coverage
of the input sequences. Three motif selection algorithms
were implemented and compared: greedy, relaxed integer
linear programming (RILP), and bounded exact search.
The proposed algorithms were also compared to two exist-
ing motif selection methods. The methods were compared
in terms of the number of features (motifs) selected and
the sequence sensitivity achieved by the chosen motifs.
Even though the RILP and bounded exact search algorithms
achieve the highest sequence sensitivity, that is obtained
at the expense of a high number of motifs selected. Thus,
the greedy algorithm is recommended because it produces

a small set of motifs that provides high sequence coverage,
enhancing the feasibility of laboratory validation of the
reported motifs.

Fig. 4. Cell line specific motifs selected by the greedy algorithm for factor
group TCF12.

TABLE 4
Novel Motifs Discovered by the Greedy Algorithm
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TABLE 6
Novel Motifs Discovered by the Greedy Algorithm

TABLE 5
Novel Motifs Discovered by the Greedy Algorithm

AL-OURAN ET AL.: DISCOVERING GENE REGULATORY ELEMENTS USING COVERAGE-BASED HEURISTICS 1297



ACKNOWLEDGMENTS

The authors wish to thank Pouya Kheradpour who pro-
vided us with the set of discovered motifs and for helpful

discussions. They also thank Yichao Li, Liang Chen, and
Yating Liu from the Ohio University Bioinformatics lab
for helpful discussions. This work was supported by the
Ohio University Graduate Research and Education Board
(GERB).

REFERENCES

[1] M.A. Schaub, A. P. Boyle, A. Kundaje, S. Batzoglou, andM. Snyder,
“Linking disease associations with regulatory information in the
human genome,”Genome Res., vol. 22, no. 9, pp. 1748–1759, 2012.

[2] The ENCODE Consortium, “An integrated encyclopedia of DNA
elements in the human genome,” Nature, vol. 489, no. 7414,
pp. 57–74, Sep. 2012.

[3] G. Pavesi, G. Mauri, and G. Pesole, “An algorithm for finding sig-
nals of unknown length in DNA sequences,” Bioinformatics,
vol. 17, no. suppl. 1, pp. S207–S214, 2001.

[4] F. Zambelli, G. Pesole, and G. Pavesi, “Motif discovery and tran-
scription factor binding sites before and after the next-generation
sequencing era.” Briefings Bioinf., vol. 14, no. 2, pp. 225–37, Mar.
2013.

[5] H. Hartmann, E. W. Guth€ohrlein, M. Siebert, S. Luehr, and J.
S€oding, “P-value-based regulatorymotif discovery using positional
weight matrices,”Genome Res., vol. 23, no. 1, pp. 181–94, Jan. 2013.

[6] T. L. Bailey and C. Elkan, “Fitting a mixture model by expectation
maximization to discover motifs in biopolymers,” in Proc. Int.
Conf. Intell. Syst. Molecular Biol.; Int. Conf. Intell. Syst. Molecular
Biol., Jan. 1994, vol. 2, pp. 28–36.

[7] S. Sinha, “Discriminative motifs,” J. Comput. Biol., vol. 10, nos. 3/4,
pp. 599–615, Jan. 2003.

[8] P. Huggins, S. Zhong, I. Shiff, R. Beckerman, O. Laptenko, C.
Prives, M. H. Schulz, I. Simon, and Z. Bar-Joseph, “DECOD: fast
and accurate discriminative DNA motif finding,” Bioinformatics,
vol. 27, no. 17, pp. 2361–2367, Jul. 2011.

[9] E. Redhead and T. L. Bailey, “Discriminative motif discovery in
DNA and protein sequences using the DEME algorithm,” BMC
Bioinf., vol. 8, p. 385, Jan. 2007.

[10] A. D. Smith, P. Sumazin, and M. Q. Zhang, “Identifying tissue-
selective transcription factor binding sites in vertebrate
promoters,” Proc. Nat. Acad. Sci. US America. vol. 102, no. 5,
pp. 1560–1565, Feb. 2005.

[11] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin,
A. V. Favorov, M. C. Frith, Y. Fu , W. J. Kent et al., “ Assessing
computational tools for the discovery of transcription factor bind-
ing sites,” Nature Biotechnol., vol. 23, no. 1, pp. 137–144, 2005.

[12] P. Kheradpour and M. Kellis, “Systematic discovery and charac-
terization of regulatory motifs in ENCODE TF binding
experiments,” Nucleic Acids Res., vol. 42, pp. 1–12, Dec. 2013.

[13] F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church, “Finding
DNA regulatory motifs within unaligned noncoding sequences
clustered by whole-genome mRNA quantitation,” Nature Biotech-
nol., vol. 16, no. 10, pp. 939–945, 1998.

[14] X. S. Liu, D. L. Brutlag, and J. S. Liu, “An algorithm for finding
protein-DNA binding sites with applications to chromatin-immu-
noprecipitation microarray experiments,” Nature Biotechnol.,
vol. 20, no. 8, pp. 835–839, 2002.

[15] L. Ettwiller, B. Paten, M. Ramialison, E. Birney, and J. Wittbrodt,
“Trawler: De novo regulatory motif discovery pipeline for chro-
matin immunoprecipitation,” Nature Methods, vol. 4, no. 7,
pp. 563–565, 2007.

[16] V. X. Jin, J. Apostolos, N. S. V. R. Nagisetty, and P. J. Farnham,
“W-ChIPMotifs: A web application tool for de novo motif discov-
ery from ChIP-based high-throughput data,” Bioinformatics,
vol. 25, no. 23, pp. 3191–3193, 2009.

[17] B. A. Kennedy, X. Lan, T. H.-M. Huang, P. J. Farnham, and V. X.
Jin, “Using ChIPMotifs for de novo motif discovery of OCT4 and
ZNF263 based on ChIP-based high-throughput experiments,” in
Next Generation Microarray Bioinformatics. New York, NY, USA:
Springer, 2012, pp. 323–334.

[18] L. S. Hon and A. N. Jain, “A deterministic motif finding algorithm
with application to the human genome,” Bioinformatics, vol. 22,
no. 9, pp. 1047–1054, 2006.

[19] L. Kuttippurathu, M. Hsing, Y. Liu, B. Schmidt, D. L. Maskell, K.
Lee, A. He, W. T. Pu, and S. W. Kong, “CompleteMOTIFs: DNA
motif discovery platform for transcription factor binding
experiments,” Bioinformatics, vol. 27, no. 5, pp. 715–717, 2011.

TABLE 7
Novel Motifs Discovered by the Greedy Algorithm

1298 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 4, JULY/AUGUST 2018



[20] I. V. Kulakovskiy, V. Boeva, A. V. Favorov, and V. Makeev, “Deep
and wide digging for binding motifs in ChIP-Seq data,” Bioinfor-
matics, vol. 26, no. 20, pp. 2622–2623, 2010.

[21] S. J. van Heeringen and G. J. C. Veenstra, “GimmeMotifs: A
de novo motif prediction pipeline for ChIP-sequencing
experiments,” Bioinformatics, vol. 27, no. 2, pp. 270–271, 2011.

[22] X. Liu, D. L. Brutlag, J. S. Liu et al., “BioProspector: discovering
conserved DNA motifs in upstream regulatory regions of co-
expressed genes,” in Proc. Pacific Symp. Biocomput., 2001, vol. 6,
no. 2001, pp. 127–138.

[23] L. Li, “GADEM: A genetic algorithm guided formation of spaced
dyads coupled with an EM algorithm for motif discovery,” J. Com-
put. Biol., vol. 16, no. 2, pp. 317–329, 2009.

[24] W. Ao, J. Gaudet, W. J. Kent, S. Muttumu, and S. E. Mango,
“Environmentally induced foregut remodeling by pPHA-4/FoxA
andDAF-12/NHR,” Science, vol. 305, no. 5691, pp. 1743–1746, 2004.

[25] X. S. Liu, D. L. Brutlag, and J. S. Liu, “An algorithm for finding
protein–DNA binding sites with applications to chromatin-immu-
noprecipitation microarray experiments,” Nature Biotechnol.,
vol. 20, no. 8, pp. 835–839, 2002.

[26] E. Valen, A. Sandelin, O. Winther, and A. Krogh, “Discovery of
regulatory elements is improved by a discriminatory approach,”
PLoS Comput. Biol., vol. 5, no. 11, p. e1000562, 2009.

[27] G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. De Moor, P.
Rouz�e, and Y. Moreau, “A gibbs sampling method to detect over-
represented motifs in the upstream regions of coexpressed genes,”
J. Comput. Biol., vol. 9, no. 2, pp. 447–464, 2002.

[28] A. Chakravarty, J. M. Carlson, R. S. Khetani, and R. H. Gross, “A
novel ensemble learning method for de novo computational iden-
tification of DNA binding sites,” BMC Bioinf., vol. 8, no. 1, p. 249,
2007.

[29] V. Martyanov and R. H. Gross, “Using SCOPE to identify poten-
tial regulatory motifs in coregulated genes,” J. Visualized Experi-
ments, vol. 51, pp. 1–7, 2011.

[30] K. Klepper and F. Drabløs, “MotifLab: A tools and data integra-
tion workbench for motif discovery and regulatory sequence ana-
lysis,” BMC Bioinf., vol. 14, p. 9, 2013.

[31] J. Hu, Y. D. Yang, and D. Kihara, “EMD: An ensemble algorithm
for discovering regulatory motifs in DNA sequences,” BMC
Bioinf., vol. 7, no. 1, p. 342, 2006.

[32] E. Wijaya, S.-M. Yiu, N. T. Son, R. Kanagasabai, and W.-K. Sung,
“MotifVoter: A novel ensemble method for fine-grained integra-
tion of generic motif finders,” Bioinformatics, vol. 24, no. 20,
pp. 2288–2295, 2008.

[33] E. Eskin and P. A. Pevzner, “Finding composite regulatory pat-
terns in DNA sequences,” Bioinformatics, vol. 18, no. suppl. 1,
pp. S354–S363, 2002.

[34] E. Wijaya, K. Rajaraman, S.-M. Yiu, and W.-K. Sung, “Detection of
generic spaced motifs using submotif pattern mining,” Bioinfor-
matics, vol. 23, no. 12, pp. 1476–1485, 2007.

[35] C. Workman and G. Stormo, “ANN-spec: A method for discover-
ing transcription factor binding sites with improved specificity,”
in Proc. Pacific Symp. Biocomput., 2000, vol. 5, pp. 464–475.

[36] R. C. Edgar, “MUSCLE: multiple sequence alignment with high
accuracy and high throughput,” Nucleic Acids Res., vol. 32, no. 5,
pp. 1792–1797, 2004.

[37] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, 1st edit ed. San Francisco,
CA, USA: Freeman, 1979.

[38] (2015). GLPK GNU linear programming kit [Online]. Available:
http://www.gnu.org/software/glpk/

[39] V. V. Vazirani, Approximation Algorithms. New York, NY, USA:
Springer-Verlag, 2001.

[40] S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, and W. S. Noble,
“Quantifying similarity between motifs,” Genome Biol., vol. 8,
no. 2, p. R24, Jan. 2007.

[41] C. E. Grant, T. L. Bailey, and W. S. Noble, “FIMO: Scanning for
occurrences of a given motif,” Bioinformatics, vol. 27, no. 7,
pp. 1017–1018, Apr. 2011.

[42] C.-C. Lee, W.-S. Chen, C.-C. Chen, L.-L. Chen, Y.-S. Lin, C.-S. Fan,
and T.-S. Huang, “TCF12 protein functions as transcriptional
repressor of E-cadherin, and its overexpression is correlated with
metastasis of colorectal cancer,” J. Biological Chemistry, vol. 287,
no. 4, pp. 2798–2809, 2012.

[43] J.-S. Hu, E. Olson, and R. Kingston, “HEB, a helix-loop-helix pro-
tein related to E2A and ITF2 that can modulate the DNA-binding
ability of myogenic regulatory factors,” Molecular Cellular Biol.,
vol. 12, no. 3, pp. 1031–1042, 1992.

[44] Y. Zhang, J. Babin, A. L. Feldhaus, H. Singh, P. A. Sharp, and M.
Bina, “HTF4: A new human helix-loop-helix protein,” Nucleic
Acids Res., vol. 19, no. 16, p. 4555, 1991.

[45] A. P. Boyle, E. L. Hong, M. Hariharan, Y. Cheng, M. A. Schaub, M.
Kasowski, K. J. Karczewski, J. Park, B. C. Hitz, S. Weng et al.,
“Annotation of functional variation in personal genomes using
RegulomeDB,” Genome Res., vol. 22, no. 9, pp. 1790–1797, 2012.

[46] T. Burdett, P. Hall, E. Hasting, L. Hindorff, H. Junkins, A. Klemm,
J. MacArthur, T. Manolio, J. Morales, H. Parkinson, and D. Welter.
The NHGRI-EBI catalog of published genome-wide association
studies [Online]. Available: www.ebi.ac.uk/gwas

Rami Al-Ouran received the BS degree in com-
puter engineering from Mutah University, Jordan,
and the MS degree in electrical engineering and
computer science from Ohio University. He is cur-
rently working toward the PhD degree in electrical
engineering and computer science at Ohio Uni-
versity. His research interests include bioinfor-
matics and machine learning.

Robert Schmidt received the BS degree in com-
puter science and engineering from The Ohio
State University in 2012 and is currently working
toward the MS degree in computer science at
Ohio University. His research interests lie in bio-
informatics, specifically in the analysis of geno-
mic data and the identification of functional
elements in genomic data.

Ashwini Naik received the BS degree in com-
puter science from the M.V.S.R Engineering
College, Andhra Pradesh, India, and the MS
degree in computer science from Ohio University.
She is currently a bioinformatics systems analyst
at The Research Institute at Nationwide Child-
ren’s Hospital. Her role involves the research and
development of computational algorithms for the
analysis and interpretation of next generation
sequencing data, including human genome and
exome sequencing and variant analysis, bacterial

genome sequencing, and workflow automation.

Jeffrey Jones received the BS degree in
computer science from Ohio University in 1981,
the MS degree in computer and information sci-
ence from The Ohio State University in 1986, and
the PhD degree in electrical engineering and
computer science from Ohio University in 2015.
He is currently a senior lecturer with The Ohio
State University. Prior to his academic career, he
served for 20 years as a vice president and presi-
dent of Great Northern Consulting Services, Inc.
During his early professional career, he was a

systems engineer for Sun Microsystems as well as a member of techni-
cal staff for AT&T. He enjoys interdisciplinary research, and has current
projects in the areas of high-performance computing and bioinformatics.

Frank Drews is a professor in the Electrical Engi-
neering and Computer Science Department,
Ohio University. He researches high-perfor-
mance computing, real-time systems, and bioin-
formatics. He is an associate editor and member
of the editorial board of the International Journal
of Computational Bioscience, and he was a guest
editor for the Journal of Systems and Software’s
Special Issue on Resource Management for
Real-Time and Distributed Systems.

AL-OURAN ET AL.: DISCOVERING GENE REGULATORY ELEMENTS USING COVERAGE-BASED HEURISTICS 1299

http://www.gnu.org/software/glpk/
www.ebi.ac.uk/gwas


David Juedes received the BS degree in com-
puter science and mathematics from the Univer-
sity of Wisconsin-La Crosse in 1988, and the MS
and PhD degrees in computer science from Iowa
State University in 1990 and 1994. He is a profes-
sor and chair in the School of Electrical Engineer-
ing and Computer Science, Ohio University. He
performs research in algorithms and complexity
theory. He is a senior member of the Association
for Computing Machinery.

Laura Elnitski received the BS degree in molec-
ular and cellular biology at The Pennsylvania
State University (Penn State), with specialty
research in chemical engineering. She received
the PhD degree in biochemistry and molecular
biology, also at Penn State, while pursuing one of
the first projects to look at multispecies compari-
sons of noncoding regulatory elements. She
joined the National Human Genome Research
Institute in 2005 as a tenure track investigator.
She has participated in numerous genome

sequencing projects including mouse, rat, cow, and chicken, as well as
the ENCODE Consortium to elucidate functional elements in the human
genome. Her work specializes in developing tools to identify and discern
the mechanistic action of functional elements in the human genome

Lonnie Welch received the BS, MS, and PhD
degrees in 1985, 1987, and 1990, respectively, in
computer and information science from the Ohio
State University. He is the Stuckey professor of
electrical engineering and computer science at
Ohio University and the director in the Bioinfor-
matics Laboratory at Ohio University. He is a
member of the Board of Directors in the Interna-
tional Society for Computational Biology (ISCB),
is the founder and Steering Committee Chair of
the ISMB Regulatory Genomics SIG, and is the

founder and Steering Committee chair of the Great Lakes Bioinformatics
Conference (an official ISCB conference).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1300 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 4, JULY/AUGUST 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


