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Abstract—The human genome contains a large number of protein polymorphisms due to individual genome variation. How many of

these polymorphisms lead to altered protein-protein interaction is unknown. We have developed a method to address this question.

The intersection of the SKEMPI database (of affinity constants among interacting proteins) and CAPRI 4.0 docking benchmark was

docked using HADDOCK, leading to a training set of 166 mutant pairs. A random forest classifier based on the differences in resulting

docking scores between the 166 mutant pairs and their wild-types was used, to distinguish between variants that have either

completely or partially lost binding ability. Fifty percent of non-binders were correctly predicted with a false discovery rate of only

2 percent. The model was tested on a set of 15 HIV-1 – human, as well as seven human- human glioblastoma-related, mutant protein

pairs: 50 percent of combined non-binders were correctly predicted with a false discovery rate of 10 percent. The model was also

used to identify 10 protein-protein interactions between human proteins and their HIV-1 partners that are likely to be abolished by rare

non-synonymous single-nucleotide polymorphisms (nsSNPs). These nsSNPs may represent novel and potentially therapeutically-

valuable targets for anti-viral therapy by disruption of viral binding.

Index Terms—Interface, machine learning, mutant, non-synonymous polymorphism, PPI, protein docking
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1 INTRODUCTION

PROTEINS in human populations display a wide array of
sequence polymorphisms. However, these sequence

changes do not always affect the biological activity of spe-
cific proteins. In fact, it remains difficult to determine a priori
whether changes in protein sequence will affect a protein’s
activity such as protein-protein interactions (PPIs). Alth-
ough a number of tools have been developed to predict the
functional effects of SNPs [1], these tools mainly focus on
protein stability, rather than protein interaction. Estimates
of the proportion of total nsSNPs involved in disease via
altered PPI range from 4 percent [2] to 10 percent [3]. Here
we describe a novel tool that predicts whether a change in
amino acid sequence leads to loss of PPI. We developed this
model using the SKEMPI database of kinetic mutants (with
experimentally-determined kD) [4], and tested it using a set
of relatively well characterized HIV-1 – human protein
interactions, as well as a second set of human - human inter-
actions known to play a role in glioblastoma.

HIV-1 was chosen because it provides one of the clearest
examples of the effect of a single SNP on disease. Interest-
ingly, certain individuals are completely resistant to HIV- 1.

These individuals possess a truncated version of the HIV-1
surface receptor CCR5, which is found on the surface of
CD4þ T- helper cells and macrophages. This non-functional
CCR5D32 variant prevents HIV-1 entry [5]. Of particular
interest is that resistance to HIV can be engineered by trans-
planting stem cells containing CCR5D32 into patients [6].
This raises the possibility that other loss-of-binding variants
in the human population may confer HIV-1 resistance.
Indeed, HIV-1 interacts with around 1,000 human proteins,
including the alternative receptor CXCR4, that have been
shown to have one or more sequence variants. HIV-1 was
also chosen because of the extent of its structural characteri-
zation. For instance, the Subramanian group has used cryo-
electron microscopy to produce structures of HIV-1 proteins
in multimeric form [7], investigated the strain-specificity
of such complexes [8] and probed the dynamics of HIV –
human protein complexes under a variety of environmental
and cellular conditions [9]. The glioblastoma test set was
chosen because many forms of cancer are cause by altered
PPIs, and kinetic interaction data is available for glioblas-
toma in particular.

The relative lack of computational tools to predict altered
interactions is due in part to the range of interactions in
which proteins can be involved (long-term versus transient,
in complex or binary), and also ways in which these interac-
tions can be altered (modulated by post-translational modi-
fication/cofactor binding, increased or decreased in affinity
by mutation). However, recent surveys indicate that the
physical distribution of disease-nsSNPs is unique. Disease-
nsSNPs often cluster together at the protein surface [10].
Such clusters of disease-nsSNPs tend to be found at protein
interaction interfaces [11], [12] and to be involved in the
same disease; neither is true for non-disease-causing
nsSNPs. These studies suggest that a model of altered inter-
action based on direct physical changes at the interface
could explain the mechanism of many disease-nsSNPs.
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It is unlikely, however, that such a model would succeed
by using only static structures of proteins. As revealed by the
instrumental evolutionary trace (ET) method of Lichtarge,
interfaces are highly modular: families of related proteins
often contain an ancestral core of interface residues about
which additional functional clusters have arisen over the
course of evolution [13]. In fact, the majority of observed con-
tacts (pairs of residues within binding distance, typically 6A

�
)

in co-crystal complexes present in the Protein Data Bank do
not actually contribute to binding. Studies (e.g., [2]) also sug-
gest that themajority of nsSNPs, even those present at interac-
tion interfaces, are not likely to affect interaction. Flexible
protein-protein docking tools such as HADDOCK are there-
fore necessary to more accurately capture the key residues
responsible for binding kinetics, within the broader interface.

Although docking tools do not always produce accurate
results, ongoing community benchmarking efforts such as
Critical Assessment of Predicted Interactions (CAPRI), cur-
rently in its 4th iteration [14], are accelerating algorithmdevel-
opment e.g. through the development of advanced rescoring
methods. Therefore, docking tools are likely to become
increasingly relevant to predictive models of altered binding.
CAPRI 4.0 consists of 144 structurally well-defined protein
pairs (known crystal structure of proteins in both bound and
unbound forms) of various functions encompassing most
known binding modes. The recently-released SKEMPI data-
base is also likely to hone the predictive capabilities of dock-
ing tools [4]. SKEMPI provides by far the largest publically-
available resource to date of kinetic information for protein
mutants, with over 3,000 mutants across 169 protein pairs [4].
Free energy of binding (DG) values are provided for all
mutant-containing protein pairs, aswell as all wild-type pairs.
This allows mutant pairs to be sub-divided into classes,
e.g. “binders” (unaffected or mildly weakened) versus “non-
binders” (severely weakened). Comparison of docking-
derived energy and other physical features to experimentally-
determined values is likely to improve the accuracy of dock-
ing tools in the near future.

We apply a model, first described in [15], to discover
novel nsSNPs that may abolish interaction between HIV-1
and human proteins. The model [15] uses physical and
energy scores from HADDOCK docking [16], which dis-
played superior performance in recent CAPRI rounds [17],
to train a machine-learning algorithm (validated using
SKEMPI mutants) to differentiate between a class of binders
and a class of non-binders.

The proposed model also continues the development of
“double delta” or “DD” energy scores (Fig. 1, see Methods
for details). Moal and Fern�andez-Recio (2013) used statisti-
cal pairwise amino acid potentials to predict DDG of
SKEMPI mutants [18], while Demerdash and Mitchell
(2013) [19] developed a hybrid model containing energetic
and non-energetic terms in order to re-rank docking results
and select “native” poses from thousands of decoys. In com-
parison to these methods, the proposed model uses more
extensive structural information, since it is based on entire
docked complexes. SKEMPI mutant pairs as well as SKEMPI
wild-type pairs are docked, D scores for energetic effects
across the entire interface or complex are calculated in each
case, and then D scores are compared to generate DD scores.
The use ofDD scores allows the proposedmodel tomake pre-
dictions for a range of protein pairs (enzyme-inhibitor,
ligand-receptor, or virus-host), especially when normalized
as a proportion of the wild-type. Use of the entire complex
allows for effects such as the strain imposed on bonds and
angles underlying mutated residues to be measured, which
is not possible for pairwise potentials. Future users would
need only to submit a pair of wild-type proteins (with contact
information), and one or more mutant-containing pairs of
proteins to theHADDOCKwebserver [20].

2 METHODS

2.1 Docking

Thirty nine wild-type systems (i.e., protein pairs) from
CAPRI 4.0 and their 496 associated mutants located within
the interaction interface from SKEMPI were submitted to the

Fig. 1. Procedure to distinguish binding from non-binding protein mutants. The experimental design is illustrated by Subtilisin BPN and its inhibitor in
Streptomyces (PDB 1SUP and 3SSI, respectively; co-crystal complex: PDB 2SIC). One mutant (M73D) of the inhibitor (green spheres) was classi-
fied as a non-binder using the conservation score and contact energy. However, docking scores revealed significant residual binding, potentially
explaining why the mutant has not completely lost binding, and also correctly predicts the mutant as a binder.
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HADDOCKwebserver for docking, although only a fraction
of these (12 pairs and 166 associated mutants) passed quality
control measures described below, andwere ultimately used
in the training set (See Section 2.2). Surface contacts were
used as ambiguous interaction restraints (AIRs). Contacts
and interface residues were derived from the bound struc-
tures (co-crystal complexes) in the CAPRI 4.0 benchmark
using CAPRI definitions (all residues � 6.0 and 10.0 A

�
,

respectively, from the opposite chain) (Janin, 2010). Surface
residues were calculated in NACCESS [21] using a threshold
of> 50% solvent accessibility of either the main or side chain
in the unbound structure. The mutant proteins for docking
were created in Chimera 1.8.1 [22] using the Dunbrack
rotamer library [23] (no optimization of the global protein
structure was performed). All hetero-atoms (non-protein
atoms such as water or crystallization factors), and addi-
tional chains were removed prior to docking.

The performance of the classifier depends on the quality
of docking results, and therefore stringent quality-control
measures were taken. Wild-type protein pairs and all asso-
ciated mutants were discarded if the wild-type could not
successfully be docked. All wild-type results were com-
pared to their co-crystal complexes to ensure their poses
were biologically acceptable. The fraction of native contacts
(fnc), the ligand RMSD (l-RMSD), and interface RMSD (i-
RMSD) were calculated and star ratings were given accord-
ing to standard CAPRI protocol [24]. Pairs with less than
one star were discarded, along with associated mutants.
Finally, all scores were averaged over the top 10 poses from
the highest-ranking HADDOCK cluster, a common refine-
ment step for docking algorithms [25] that has been
reported to improve the quality of docking results [26], [27].

2.2 Training

Mutants with kD < 1/10 wild-type were labelled as
“binders”, while those with kD > 1000x wild-type were
labelled as “non-binders”. These cut-offs were determined
by observing natural peaks in the distribution of kD-fold for
the initial 496 mutants in the SKEMPI / CAPRI 4.0 overlap
(not shown). Mutants with kD between 10- and 1,000-fold
were also discarded, along with associated wild-type pairs.
The final training set consisted of 12 wild-type protein pairs
and 166 associated mutants (87 binders, 79 non-binders).

Binders and non-binders were analyzed based on physico-
chemical class (hydrophobic, aromatic, etc.) as well as size
change (Fig. 2).

Initially, 21 features were calculated from the HADDOCK
docking runs (Fig. 3). Except for the conservation score, an
external metric and common tool for predicting loss of bind-
ing, all scores were DD energy or DD physical scores. DD
scores are based on D scores, which themselves are used by
docking programs to score poses (change in energy / physi-
cal parameter upon binding). DD scores are the difference
(mutant – wild-type) in D scores, comparing the “quality” of
binding in the mutant, with reference to its original wild-
type complex (Fig. 1, right). All DD scores except for two resi-
due-residue contact potentials (see paragraph below) were
normalized as a proportion of the wild-typeD score. Physical
DD scores included differences in the buried surface area
(BSA) and conformational rearrangement during binding.
Energetic DD scores included differences in electrostatic,
Van der Waals, or covalent bond energies at various sites in
the complex, such as the interface, internal regions (core),
entire complex, or entire complex pluswater solvent (Fig. 3).

Ultimately, four features were retained for the model.
These were: “Conservation” or “Cons”, “DDBond”, “DDG”,
and “DDBSA”. Cons is an external metric that was found to
increase the performance of the other three features, when
combined in the model (its standalone performance is also
compared to that of the model). This score approximates the
disruptiveness of a mutation, and is defined as the inverse of
the value from the 2008 Le and Gascuel amino-acid replace-
ment matrix [28]. This replacementmatrix estimates the prob-
ability of a substitution using the equation P ðtÞ ¼ eQt, where t
is time, e is the natural log, andQ is mutation rate observed in
seed sequences for Pfam families. Inverses were used because
this matrix gives higher scores for more common substitu-
tions, rather than rarer andmore disruptive ones. Formultiple
and compoundmutants (>1mutation in one or both proteins,
respectively), scores for individual mutations were summed.
No difference in calculation was performed for multiple and
compound mutants. DDBond is the difference in mutant and
wild-type D Bond, where DBond is the difference in docked
andnon-docked covalent bond energies.DDG is the difference
in mutant and wild-type DG. DDBSA is the difference in
mutant andwild-type buried surface area, or BSA. Because by
definition the BSA for undocked protein pairs is 0, DBSA (the
difference in docked and non-docked BSA) is equivalent to
BSA and the two terms are used interchangeably in the pres-
ent study. It is important to note that scoring functions for
docking tools have been optimized for directing docking,
rather than producing realistic energy values. Therefore,
although HADDOCK is among the few docking tools with a
realistic force field, the “energy” scores used in the present
work should be interpreted as parameters of docking rather
than physical values. For example, DG possesses an entropic
component, which is typically evaluated using normal mode
analysis (e.g., by molecular dynamics software). Because this
is a computationally very costly analysis, docking tools gener-
ally use the number of rotatable bonds as an approximation of
entropy [29].

As a second external metric commonly used to predict
loss of binding, residue-residue (pairwise) contact poten-
tials were calculated. These were calculated by combining

Fig. 2. Size shifts are more negative for non-binders than for binders, in
the training set. Mutations of aromatic to small hydrophobic residues, as
well as mutations involving multiple residues, were common among
non-binders (see text for details).
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DD HADDOCK Van der Waals and electrostatic scores at
the level of individual contact residues (Fig. 3, green bars),
rather than for the whole interface. Finally, a combined
external model (CEM) was created using both external met-
rics (conservation and pairwise contact potentials).

Weka is a flexible, Java-based environment for machine
learning algorithm development [30]. In the current version
(3.7), Weka supports a number of feature-refinement proto-
cols, including CfsSubsetEval, whichminimizes redundancy
among features, and BestFirst, which maximizes the infor-
mativeness (predictive value) of features. 4 features, present
at least 80 percent of the time during tenfold cross-validation,
using the CfsSubsetEval Attribute Evaluator with the Best-
First Search Method in Weka 3.7, were kept in the final
model. Random forests, formalized by Breiman (2001) [31],
are a family of ensemble classification methods that are par-
ticularly suitable when a number of distinct combinations of
features and threshold values may be predictive of the same
class. Random forests were found to outperform other popu-
lar classifiers, including artificial neural networks (ANNs),
Bayesian networks (BNs), and Support Vector Machines
(SVMs), although overall performance was comparable for
BNs. The model presented in this study consists of a random
forest classifier (N ¼ 100) created in Weka 3.7 using a core of
the 4 most informative features (Fig. 3, blue bars). This classi-
fier was trained according to the class labels of “binding”
and “non-binding”, defined as above, and tested in tenfold
cross-validation. The following pseudo code summarizes
the procedure used to create themodel.

for wild-type protein pair in SKEMPI / CAPRI 4.0 overlap:
calculate surface contacts from co-crystal structure
redock in HADDOCK using unbound wild-type structures
compare docking result to co-crystal structure
if docking fails:

discard protein pair and associated mutants
if docking result < 1 star:

discard protein pair and associated mutants

extractD scores from docking files ðscoreboundwt � scoreunbound
wtÞ

average D scores from top 10 decoys of top cluster
for mutant protein pair:

if kD < 10�wild-type kD:
label as binder

if kD > 1,000�wild-type kD:
label as non-binder

if binder or non-binder:
create mutant unbound structure(s) in Chimera v1.6
dock in HADDOCK using same parameters as for wt
extract D scores (score boundmut - scoreunboundmut)
average D scores from top 10 decoys of top cluster
calculate DD scores (D scoremut - D scorewt)

load DD scores (features) into Weka v3.7
refine non-redundant, highly-informative set of features
train RandomForest classifier using mutant class labels

2.3 External Test Sets

In addition to tenfold cross-validation, the classifier was
tested on a set of 15 mutant-containing HIV-1-human pro-
tein pairs (10 binders, five non-binders): six Capsid – Cyclo-
philin A mutants from SKEMPI [4], three Vpr – TFIIB
mutants [32], and seven integrase – LEDGF mutants [33].
For the HIV-1 test set, mutations were approximately evenly
distributed among HIV-1 and human proteins. Finally, the
classifier was tested on a set of 7 human mutant-containing
protein pairs thought to play a role in the development of
glioblastoma by losing interaction [34]. The glioblastoma set
was used because, unlike the majority of the HIV-1 set,
quantitative information (DDG) on loss of binding affinity
was available.

2.4 Case Study – Predicting HIV-1 Interaction –
Abolishing Human nsSNPs

In order to demonstrate the utility of the classifier for
addressing one of primary biological questions for which
it was designed, predicting the effects of genetic variants

Fig. 3. Docking-derived and conservation features for predicting loss of binding. In all, 21 features candidate features generated during docking were
sampled in Weka (and one external amino-acid replacement score based on sequence conservation). The features selected for the final model are
shown in blue with double-lined edges, while features used to capture residue-residue contact potentials are shown in green with bold edges. The
conservation feature was also used in the combined external model (cons þ green bars).
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on PPIs, a case study involving the known nsSNPs of
biochemically well- characterized human-HIV-1 PPIs was
conducted. These were PPIs for which the exact or approx-
imate interaction interface had been experimentally deter-
mined. While 131 such interactions could be found in the
literature, only around 20 percent of these had crystal
structures in the Protein Data Bank encompassing the
entire interface on both sides of the interaction (i.e., for
both proteins). AIRs were calculated as during training,
using NACCESS to predict surface residues. Predictions
were made for a total of 58 nsSNPs (those contained by the
crystal structures) involving 18 PPIs (18 human proteins
and their nine HIV-1 protein partners) by docking using
the HADDOCK webserver and extracting scores as desc-
ribed above. Mutants were constructed using Chimera
1.8.1 as above, incorporating the rare forms of all nsSNPs
that could be incorporated into the pdb structure. Origi-
nally, 23 PPIs were identified, but five could not be docked
(CCR5-gp120, CCR2-gp120, PKR-Tat, SMUG1-Vpr, and
p53-Nef). In order to ascertain which nsSNPs were most
likely, from a biological perspective, to affect interaction,
proximity to the interaction interface was calculated as
any atom within 10.0 A

�
of an experimentally-determined

interacting residue. 20 of the 58 nsSNPs were proximal to
interfaces.

3 RESULTS

3.1 Docking

Seven of the 39 overlapping SKEMPI / CAPRI 4.0 pairs
could not be docked and were discarded. Exactly half of the
remaining docked wild-type pairs (16) received at least a
one-star rating (six one-star, 10 two-star - not shown) and
were retained. Three wild-type docked pairs received a

one-star rating but were omitted because the interaction
partners were rotated or 180 degree around the interface,
compared to the co-crystal complex. A further four wild-
types pairs were discarded because associated mutants con-
tained no binders or non-binders. The final training set of
docking results consisted of 12 wild-type pairs and their
associated 166 mutant-containing pairs (87 binders, 79 non-
binders) (Table 1).

3.2 Training

Fifty-seven binders (60 percent) contained a mutation from
either a positive, polar, or hydrophobic residue to a residue
of a different class. 66 non-binders (83 percent) contained a
mutation from an aromatic residue to a residue of a differ-
ent class, which in 48 cases (60 percent) was a mutation to a
hydrophobic residue. Overall, non-binders had a greater
tendency to contain substitutions with amino acids smaller
than the originals, as evidenced by a predominantly nega-
tive distribution of D size (mutant – wild-type) (Fig. 2).
Often, these non-binding mutations consisted of an aro-
matic or other large residue replaced with a smaller residue.
Multiple mutations were also more common among non-
binders (not shown). The distribution for binders was cen-
tered around 0.

There was some redundancy among the final 12 protein
pairs (Table 1). Ras and Rac, present in complexes 1LFD
and 1E96, respectively, are both part of the Ras superfamily
of small GTPases and share 30 percent sequence identity.
Ras is also present in complex 1HE8, but in this case the
partner is the activator PI-3 kinase rather than Ras interact-
ing protein.

Of the 21 original features, five appeared to provide opti-
mal performance according to both BestFirst exhaustive
subset sampling in Weka and classifier precision and recall.

TABLE 1
Docking Results and Training Set

wild-type docking models docked

Protein pair from CAPRI 4.0 /
SKEMPI PDBID_chains

fnc (prop contacts
recaptured)

ligand
RMSD

interface
RMSD

stars # SKEMPI
binders

# SKEMPI
non-binders

Total

RAC1_NCF2 (Homo sapiens) 1E96_A_B 0.5 2.94 0.84 �� 1 0 1
CHEY_CHEA (Escherichia coli) 1FFW_A_B 0.33 3.04 0.73 �� 4 0 4
GRB2_VAV (Mus musculus) 1GCQ_B_C 0.12 3.5 1.09 � 3 0 3
PK3CG_RASH (Homo sapiens) 1HE8_A_B 0.24 3.48 0.94 � 2 0 2
BLAT_BLIP (Escherichia. coli,
Streptomyces clavuligerus)

1JTG_A_B 0.12 3.58 0.91 � 4 48 52

TGFB3_TGFR2 (Homo sapiens) 1KTZ_A_B 0.9 2.2 0.67 �� 2 2 4
GNDS_RASH (Rattus norvegicus,
Homo sapiens)

1LFD_A_B 0.53 2.88 0.93 �� 6 0 6

ACES_FAS2 (Mus musculus,
Dendroaspis angusticeps)

1MAH_A_F 0.36 2.74 0.84 �� 4 6 10

SUBT_IOVO (Bacillus licheniformis,
Meleagris. gallopavo)

1R0R_E_I 0.9 1.18 0.71 �� 47 23 70

ACTB_PROF1 (Bos taurus) 2BTF_A_P 0.53 2.1 1.1 �� 2 0 2
UPA_UPAR (Homo sapiens) 2I9B_A_E 0.15 5.27 2.14 � 4 0 4
SUBT_SSI (Bacillus amyloliquefaciens,
Streptomyces albogriseolus)

2SIC_E_I 0.76 2.62 0.74 �� 8 0 8

87 79 166

Of the 39 wild-type protein pairs that overlap between the CAPRI 4.0 docking benchmark and the SKEMPI database, 12 produced biologically-accurate struc-
tures when docked and contained at least one “binder” or “non-binder” mutant in SKEMPI (kD < 10-fold of wild-type, kD > 1000-fold of wild-type, respectively).
The protein names, species, and PDB entries for these 12 protein pairs (columns 1-2), as well as the CAPRI docking ratings (“wild-type docking”) are shown. The
numbers of “binders” and “non-binders” are also shown (“mutant docking”).
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These five were also the most informative, and appeared to
measure distinct aspects of binding, including free energy,
buried surface area, and improper-bond energy. However,
the phi-psi angle feature was removed because it offered lit-
tle extra performance when added to the other four. The
four features used in the final model, as well as features
used to approximate residue-residue (pairwise) contact
potentials, are shown in Fig. 3. For the four final features,
the difference in distributions for true binders and true non-
binders is evident, with higher average values and propor-
tionally even higher variance for non-binders (Fig. 4),
despite the presence of a number of positive outlier scores
among binders (�10 percent binders for all features, exclud-
ing BSA). BSA was the only score that was higher on aver-
age for non-binders than for binders, and also the only one
for which the p-value was > .05 using a one-tailed t-test
with unequal variance.

TheQ-value curve, which shows the # of positive (i.e., non-
binding) predictions made for given false discovery rates,
indicates significant improvement in predictive performance
compared to either the pairwise contact potentials or the com-
binedmodel (CEM) of pairwise contact potentials and conser-
vation score (Fig. 5). The model (solid line) is able to make 34
correct non-binder predictions without incurring a false posi-
tive, while the CEM (dashed line) is able tomake only 23 such
predictions. The model predicts half of true positives with a
false discovery rate or FDR¼ 2%,while the CEMpredicts half
of true positiveswith FDR¼ 9% (Fig. 5, red arrow).

A confidence threshold of c(nonbinder) > 0.60 was set by
visual inspection. This corresponds to a FDR of 10 percent
and 73 positive predictions (64/79 true positive predictions)
(Fig. 5, blue arrow). This confidence threshold was used
during additional classification tasks. The same threshold
appeared to be optimal for binder predictions, as well: c
(binder) > 0.60. With this threshold, precision, recall, speci-
ficity, and F1 score for non-binders were: 0.89, 0.84, 0.91,

and 0.86, respectively. For binders, these scores were: 0.89,
0.80, 0.89, and 0.84, respectively. The area under the
receiver-operator curve was 0.93. The unlabeled set of
mutant-containing protein pairs, those with kDfold between
10 and 1,000, were largely classified as binders. An example
of one of the mutants is illustrated in Fig. 1 (a M73D substi-
tution in subtilisin inhibitor, PDBid 2SIC, chain I). Although
this substitution is extremely uncommon, and therefore
would rank as a non-binder using the conservation score
alone, it would be predicted correctly to be a binder.

3.3 Cross-Validation

HADDOCK docking is capable of optimizing backbone
and side-chain conformations at the interface, and provides
various physical and energy-based features (Fig. 3). The
model performs particularly well at predicting mutant pro-
tein pairs with strongly-diminished affinity of interaction
(non-binders), distinguishing them from less disruptive
mutants on the basis of characteristic patterns of redistrib-
uted binding at the interface. Specifically, less favorable
changes in energy upon binding in mutants compared to
their wild-type “parent” protein pairs (þDD energy scores),
as well as the presence of markedly fewer outliers, appear
to define non-binders (Fig. 4).

3.4 Comparison with Pairwise Potentials

Pairwise residue contact potentials derived from docking
were among the most informative on an individual basis,
but did not combine well with the most informative core
features, being largely redundant with other features of the
model. A model combining residue contact potentials with
accessible surface area (ASA) [35] has been shown to be use-
ful in predicting “hot spot” residues – those most essential
for binding [36]. Therefore, we combined BSA with contact
potentials to see if we could achieve a similar synergism at
the level of the entire interface. Although we noted a modest

Fig. 4. Boxplots of values for features used in model. Binders and non-binders are shown in tan and blue, respectively, while outliers are indicated by
red plus signs.
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improvement in performance, the improvement was less
significant than when adding BSA to other three features of
the present model. This may be due to the fact that, for the
majority of non-binders, hot spot residues have been
removed.

The model shows several advantages in performance
terms, notably its low false discovery rate (FDR), with �50
percent non-binders correctly predicted with an FDR of 2
percent, compared to an FDR of 9 percent for a combined
model (CEM) based on conservation scores and pairwise
residue contact potentials (Fig. 5).

3.5 External Test Sets

For the HIV-1 test set of five binders and 10 non-binders,
four and seven predictions were made with c > 0.60, of
which three and four were correct, respectively (Table 2,
top). The FDR was thus 50 percent for binders, and 20 per-
cent for non-binders.

For the glioblastoma test set of seven non-binders, seven
predictions were made with c > 0.60, of which five were
correct. Increasing the confidence threshold to 0.80, five pre-
dictions remained, of which all five were correct (Table 2,
bottom). Because there were no binders in this set, no FDR
can be given.

Validation on external test sets of HIV-1 and human glio-
blastoma mutants showed results similar to those from ten-
fold cross-validation, in particular for the glioblastoma set,
for which increasing the confidence threshold modestly
eliminated all false binders without losing any true binders
(not shown). This suggests that tightening the confidence
threshold is an effective means of adjusting the model to
eliminate false predictions, supporting results from cross-
validation (Fig. 5). There was a relatively higher rate of
errors in the HIV-1 dataset, with four ambiguous predic-
tions, and only seven of the remaining 11 correct (64 per-
cent). It should be noted, however, that the FDR for non-
binders was fairly modest, at 20 percent.

Although the LEDGF-integrase pair accounted for fewer
than half of the HIV-1 dataset (7/15 mutants), 3/4 non-pre-
dictions (c < 0.60 for either class) and 2/4 false predictions
were found among its mutants. Omitting LEDGF-integrase
predictions, the FDR for non-binders is 0 percent. These less
accurate results for LEDGF-integrase may be due to the
class labelling methodology or artefacts of the docking
methodology, as elaborated in the Discussion (Section 5.2).

3.6 Case Study – Predicting nsSNPs that Abolish
Human – HIV-1 PPIs

Of the 18 human – HIV-1 PPIs in the case study that could
successfully be docked, 10 were predicted to be non-binders
when nsSNP rare form variant(s) were included (c > 0.60)
(Table 3, rightmost column). Of the 18 successfully-docked
mutants, 10 were predicted to be non-binders, including
eight of the 10 successfully-docked cases with nsSNPs at the
interface and one case of a single-nsSNP mutant at the inter-
face. By contrast, the eight predicted binder nsSNPs were
primarily external to the interface (6/8 cases), although there
were three cases of single-nsSNP mutants for this class.
Thus, predicted non-binders generally fell within the inter-
face and had multiple mutations, while predicted binders
generally fell outside the interface and had fewer mutations.
It must also be noted that the confidence of predictions was
not particularly high for any of the non-binders, ranging
between 0.60 (the threshold) and 0.77. The highest confi-
dence prediction was for APOBEC3F – Vif. It is interesting
that this highest prediction was for a member of a family of
closely-related human proteins, with considerable redun-
dancy in function. APOBEC3H nsSNPs were also predicted
to abolish interaction, although the primary target [37] of
HIV-1 Vif, APOBEC3G, did not have nsSNPs that prevent
this interaction. An evolutionary explanation of this finding
is elaborated below, in the Discussion (Section 4.3). A (rela-
tively) high-confidence non-binding prediction (0.73) was

Fig. 5. Combining multiple docking-derived features enhances predictive performance. The number of total positive (i.e. non-binding) predictions is
plotted against the false discovery rate. The complete set of four features (solid line with crosses) shows improved performance over subsets of three
(solid grey line) and two (compound line) features, even though the remaining features in the subsets have higher predictive performance when used
in isolation. Combining features also enhances performance over external metrics that do not use full interface information, such as amino-acid
replacement scores based on sequence conservation, pairwise amino-acid energy potentials (dotted line), or both (CEM - dashed line). The large
red arrow indicates half of all positive predictions. The small red arrow indicates the FDR corresponding to a confidence threshold of c > 0.60.

1088 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2017



TABLE 2
Non-Synonymous SNPs Predicted To Cause Loss of Binding between Human and HIV-1 Proteins

External test set 1 - HIV-1

Human
protein
name

PDB
structure

mutation HIV1
partner
name

PDB
structure

binding type Non-binder
prediction,
confidence

LEDGF 2B4J_D D366N Integrase 2B4J_A non-binding N
LEDGF 2B4J_D D366A Integrase 2B4J_A non-binding N
LEDGF 2B4J_D V370A Integrase 2B4J_A binding Y, 0.81
LEDGF 2B4J_D I365A Integrase 2B4J_A non-binding Y, 0.87
LEDGF 2B4J_D K360A Integrase 2B4J_A non-binding N
LEDGF 2B4J_D V408A Integrase 2B4J_A binding N
LEDGF 2B4J_D F406A Integrase 2B4J_A non-binding N
TFIIB 1RLY_A R53A_T54A Vpr 1M8L_A binding N
TFIIB 1RLY_A F55A Vpr 1M8L_A binding N
TFIIB 1RLY_A W52A Vpr 1M8L_A binding N
CypA 1AK4_A H487R Capsid 1AK4_D non-binding N
CypA 1AK4_A A488G Capsid 1AK4_D non-binding N
CypA 1AK4_A G489A Capsid 1AK4_D non-binding Y, 0.95
CypA 1AK4_A G489V Capsid 1AK4_D non-binding Y, 0.84
CypA 1AK4_A P490A Capsid 1AK4_D non-binding Y, 0.88

External test set 2 - glioblastoma
Human
protein
name

PDB
structure

mutation partner
name

PDB
structure

binding type Non-binder
prediction,
confidence

p53 1YCS_A P177S 53BP2 1YCS_B non-binding Y, 0.72
p53 1YCS_A R248H 53BP2 1YCS_B non-binding Y, 0.84
p53 1YCS_A R248Q 53BP2 1YCS_B non-binding N
p53 1YCS_A R248W 53BP2 1YCS_B non-binding N
p53 1YCS_A R273C 53BP2 1YCS_B non-binding Y, 0.83
HRAS 1NVU_R G12D SOS1 1NVU_S non-binding Y, 0.95
RHOE 2V55_B D67Y ROCK1 2V55_A non-binding Y, 0.9

Protein names and PDB structures used in docking are provided in columns 1-2 and 4-5. NsSNPs are listed in column 3 (those found at or near interface residues
in bold, light blue). Amino acid positions are for Uniprot canonical sequences. Proximity to interface is defined as within 10 angstroms from a literature-reported
interacting residue. Non-binding prediction status (Yes(c > ¼ 0.60) or No), as well as confidence values for positive cases, is shown in the final column.

TABLE 3
Non-Synonymous SNPs Predicted to Cause Loss of Binding between Human and HIV-1 Proteins

Human
protein

PDB
structure

nsSNPs (@ interface) HIV1
partner

PDB
structure

Non-binder
prediction, conf

CD4 4H8W:C K191E, F227S, R265W Gp120 4H8W:G N
Lck 4D8K:A G201S Nef 4NEE:C Y, 0.65
ß-TrCP 1P22:A A543S, P592H Vpu 1VPU:A Y, 0.66
TRIM5a 4B3N:A (SMR) G31S, H43Y,C58Y, G110E, V112F,

R136Q, G249D, H419Y, C467S, P479L
Capsid 1E6J:P N

Dynamin2 3SNH:A (SMR) P263L Nef 4NEE:C N
SIRT1 4KXQ:A D3E, V484D Tat 1JFW:A (SMR) Y, 0.6
TFIIB 1RLY:A P19S Vpr 1M8L:A N
APOBEC3G 3V4K:A H186R, R256H, Q275E Vif 4N9F:G N
APOBEC3F 4IOU:A R48P, Q61L, P97L, A108S, A178T, V231I, Y307C Vif 4N9F:G Y, 0.77
APOBEC3H 4J4J:A (SMR) R18L, G105R, K121E, K121N, K140E, E178D Vif 4N9F:G Y, 0.63
APOBEC3B 3VM8:A (SMR) K62E, P98L, S109A, T146K, R351H Vif 4N9F:G N
Hck kinase 1AD5:A A44T, M105L, P502Q Nef 4NEE:C Y, 0.69
AP1G1 1W63:A V195G, P685H Nef 4NEE:C N
Erk1 2ZOQ:A E323K Nef 4NEE:C N
Fyn 1Y57:A (SMR) I445F, D506E Nef 4NEE:C Y, 0.65
Importin-a 1IAL:A (SMR) A157V, P165R, G365S, T430P, K453N Vpr 1M8L:A:1–96 Y, 0.60
Alix 2XS1:A V7M, A309T, V378I, G429S, N550S, K638E,

S730L
P6 2R05:B Y, 0.6

Alix 2XS1:A V7M, A309T, V378I, G429S, N550S, K638E,
S730L

Nucleo
capsid

1A1T:A (SMR) Y, 0.69

Protein names and PDB ids (columns 1-2, 4-5) are shown. NsSNPs are listed in column 3 (those found at or near interface residues in bold, light blue). Amino
acid positions are for Uniprot canonical sequences. Proximity to interface is defined as within 10 angstroms from a literature-reported interacting residue. Non-
binding prediction status (Yes(c > ¼ 0.60) or No), as well as confidence values for positive cases, is shown in the final column.
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alsomade for Alix-p6. This is likely a result of the availability
of crystal contacts for this pair, and the presence of seven
nsSNPs overall with two at the interaction interface. The kin-
ases (Lck, Hck, and Fyn) which are hijacked by HIV-1 Nef to
orchestrate down-regulation of T-cell surface MHC I and II
surface receptors, as well as the anti-lentiviral protein BST-2,
all showed loss of interaction upon mutation to their nsSNP
rare forms, even though the interacting residues information
was only general (SH3 domain).

4 CONCLUSION

The model was found to perform optimally when using one
conservation-based score and three docking-based scores for
mutation (DDG, DDBond and DDBSA). Many of the non-
bindermutants used in the training set had aromatic or other
large residues substituted with smaller residues. This may
explain why two of the three docking features (DDBond and
DDBSA) quantify redistributed binding across the interface.
The model appears to outperform both sequence-conserva-
tion and a pairwise-potential – based predictivemodels. Spe-
cifically, the model generates predictions with a very low
false discovery rate, provided the confidence threshold is set
suitably high (at least c>0.60). This low false discovery rate
was also found in external validation using HIV-1 – human
and glioblastoma-related mutants. The model was used to
discovery ten cases wherein an nsSNP in a human protein
abolished interactionwith anHIV-1 partner protein.

5 DISCUSSION

5.1 Comparison with Existing Models

An estimated 10,000-25,000 SNPs [38] that code for altered
versions of 3,200 human proteins [39] (non-synonymous
SNPs or nsSNPs) are believed to play a role in disease. It
has been estimated that as much as 10 percent of these
nsSNPs may exert this effect by altering protein-protein
interactions [3], including with viral proteins [5].

However, existing techniques such as amino-acid conser-
vation scores are insufficient for predicting mutations that
disrupt interaction, particularly in a disease context. A recent
structural SNPs survey by Das et al. [40] found that variants
at interaction interfaces tend to disrupt interactions of
greater biophysical strength, compared to variants outside
the interface. However, variants at interaction interfaces do
not fall upon more highly conserved residues, compared to
those outside. Therefore, measuring the magnitude of bind-
ing energy disruption (DDG or other DDEscore) seems to be a
promisingmeans of improving predictive capabilities.

The SKEMPI database of experimentally-defined kinetic
mutants has already led to development of more refined
pairwise potentials. A handful of recent studies have used
SKEMPI either for training [41] or validation [42], [43] of
predictive models of protein interaction. These studies are
encouraging, as they are among the first successful attempts
to make binding predictions based on energy scores that are
generalizable across proteins pairs. The novel predictive
model presented here adds to such models, using the full
structure of the protein interaction complex, in particular
the interface, as depicted in Fig. 1. The expansion of data-
bases like SKEMPI is likely to accelerate the development of

docking tools, as more compound and synergistic mutations
are added.

The performance of HADDOCK depends in part upon
the accuracy of active interface restraint information. Co-
crystal complexes are not available for many of the more
than 1,000 HIV-1 - human protein pairs that may be investi-
gated in the future. However, considerable overlap exists
between human-human and human-virus interfaces [44].
Therefore, human-human interfaces may be used. Interfaces
can be obtained from databases such as 3DID [45] or iPfam
[46]. In fact, a tool based on 3DID recently developed by
Gonzalez, Liao and Wu (2013) [47] can provide a confidence
score to rank interacting residues. Alternatively, interact-
ing-residues prediction programs such as ProMate [48] or
the consensus tool CPORT [49] can be used.

5.2 External Test Sets

The results suggest that the non-quantitative terms from
literature used to assign class labels were ambiguous.
The glioblastoma mutants all had experimentally-measured
þ DDG values, and hadmore experimental evidence of bind-
ing loss. In addition, the use of a monomer of HIV-1 inte-
grase for docking with human LEDGF rather than a dimer
(the current model was only trained on binary complexes)
may have produced incorrect poses. Lab data indicates that
significantly more hinging occurs when themonomer, rather
than the dimer, is docked (results not shown).

5.3 Case Study of nsSNPs that Abolish
Human – HIV-1 PPIs

The case study is valuable because it serves as further evi-
dence that the predictive model can be applied to its origi-
nal and primary purpose: predicting the effect of sequence
variation on essential protein interactions of pathogens
(with their host).

Equally importantly, these findings (nsSNPs with inter-
action-abolishing effects in 10 human proteins) have poten-
tial medical relevance, as they consist of mutations that
could be cloned into T-cells that are then administered into
AIDS patients to confer lasting immunity, following the
overall methodological approach of Hutter et al. in their
2009 experimental therapy [6].

It is tempting to speculate that the APOBEC3 family of
proteins has been in an evolutionary arms race with primate
lentiviral Vif proteins for some time, and that the known
nsSNPs have evolved as escape mutants for APOBEC3F,
and APOBEC3H, but not yet APOBEC3G, proteins. It has
been found that only a single amino acid differs between
human and macaque APOBEC3G – the latter is not bound
by lentiviral Vif [50]. APOBEC3B nsSNPs also were not pre-
dicted to lose interaction with HIV-1 Vif, but the B form is
not a major player in HIV-1 infection.

Predictions of non-binding for two of the eight mutants
outside the interface must be interpreted only tentatively, as
the model was not trained on mutants outside of interaction
interfaces. Nevertheless, the finding that the majority of
nsSNP-mutants predicted to cause loss of binding were
mutants within the interface, and vice versa, supports the
model.

Another important point to acknowledge is methodologi-
cal in nature. NsSNPs were incorporated (for each protein)
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as a single ensemble during the in silico preparation of struc-
tural mutants. While the findings suggest that interface
nsSNPs are the predominant causes of binding loss in this
experiment, 3 human proteins had >1 interface nsSNP.
Future studies should follow up on the present study with
predictions of the effects of individual nsSNPs.

5.4 Comparison of Random Forest with Other
Machine-Learning Classifiers

Bayesian networks (BNs) may be of some value in the devel-
opment of future models. As indicated, the performance for
BNs was close to that of Random Forests during cross -vali-
dation. By contrast, ANNs and especially SVMs displayed a
high false-negative (FNR) rate for non-binders. Over 50 per-
cent of actual non-binders were incorrectly classified by
SVMs, although the FDR was lower than for Random For-
ests. BNs classifiedHIV-1, but not glioblastoma, non-binding
mutants slightlymore accurately than did RandomForest.

5.5 Future Directions

5.5.1 Features

The finding that greater buried surface area (positive DDBSA)
was characteristic of non-binders, yet is typically associated
with higher binding affinity in experimental findings [43] also
warrants deeper investigation (Fig. 4). DDBSA also contained
the fewest outliers of any feature in themodel (Fig. 4, red plus
marks), suggesting that binding redistribution is consistently
different for the two classes (although p ¼ .06). This may be
due to the prevalence, among non-binders, of mutations con-
verting aromatic to hydrophobic or other class of residue.
Aromatic residues contain bulky side chains whose removal
would allow the two proteins to come closer together, with an
increase in Lennard-Jones potentials. In agreement with this
explanation, non-binding mutants generally replaced larger
amino acids with smaller amino acids, which was not found
to be true of binding mutants (Fig. 3). Aromatic residues are
alsowell-known to be over-represented among hot spots, con-
tributing substantially to binding affinity [50]. Alternatively,
the removal of hot spot residues may force the docking soft-
ware to introduce numerousweak compensatory interactions
e.g., through rotation of hydrophobic side-chains. More thor-
ough investigation of these possibilities would clarify the
findings of the present study.

More realistic energy (and other) scoring functions could
improve performance. For example, energetic interactions at
so-called “hot spots” [51], differ from those at the interface
periphery [52]. Geometric scores for scoring final docking
poses, such as ZDOCK pairwise shape complementary
(PSC) [53] might add value to the existing model. Additional
structural elements such as fold or motif could be included.
A docking affinity benchmark [54], suggests that conforma-
tional rearrangement prevents accurate prediction of com-
plexes, as well as DG. To address this problem, one of the
original 21 features generated for the present model was a
score for conformational rearrangement: rmsd(DDposition),
where Dposition is a vector of residue displacements occur-
ring during docking, for either the wild-type or mutant. This
feature was not found to add significant predictive value to
the model, therefore, more advanced (e.g., geometric) scores
are required. The iAlign tool developed by Gao and Skolnick
[55] scores similarity of interfaces between two pairs of

proteins, and has been recommended for scoring docking
predictions [56]. However, this tool was not found to add sig-
nificant value in a pilot study (results not shown), perhaps
due to the use of a single representative structure from each
docking, rather than a consensus or averaged structure.
Global docking tools such as ZDOCK could also be used to
verify the accuracy of the wild-type docking by consensus,
in cases where no co-crystal complex is available, so that
future users of the model can be more assured of DD scores
with predictive value. Alternatively, if a known non-binder
exists, that mutant could be used as a positive control for
non-binding (although this does not inform about the true
wild-type binding conformation). A third way to verify
docking results is to compare themwith solved crystal struc-
tures of homologous complexes.

5.5.2 Classes of Altered Binding

The existing model could be expanded to include other clas-
ses of altered binding, such as “super-binders”with enhanced
affinity. A recent studyused SKEMPImutants to train a classi-
fier for nsSNPs that affect protein-interactions, using three
classes – no effect, diminished binding, and enhanced binding
[57]. However, the classifier did not define a class of “non-
binders”, as in the present study. There aremany other classes
of binding that could be defined, for instance enthalpy-driven
versus entropy-driven binding. Such a classifier could aid in
the development of more sophisticated free energy (DG) scor-
ing functions. There is preliminary evidence that disease-
causing nsSNPs that alter protein interactions act through dis-
tinctmechanisms [57]. The same study also leverages the class
of “undefined” (medium effect) mutants in SKEMPI to
improve predictions for binding and non-binding mutants,
using a technique known as semi-supervised learning. The
functional insight that future tools such as the one in the pres-
ent study might shed on interaction-altering human SNPs
would prove invaluable to the current understanding of
human genetic variation in disease.
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