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Optimizing Analytical Depth and Cost Efficiency
of IEF-LC/MS Proteomics

llona Kifer, Rui M. Branca, Amir Ben-Dor, Linhui Zhai, Ping Xu, Janne Lehtio, and Zohar Yakhini

Abstract—I|EF LC-MS/MS is an analytical method that incorporates a two-step sample separation prior to MS identification of proteins.
When analyzing complex samples this preparatory separation allows for higher analytical depth and improved quantification

accuracy of proteins. However, cost and analysis time are greatly increased as each analyzed IEF fraction is separately profiled using
LC-MS/MS. We propose an approach that selects a subset of IEF fractions for LC-MS/MS analysis that is highly informative in the
context of a group of proteins of interest. Specifically, our method allows a significant reduction in cost and instrument time as
compared to the standard protocol of running all fractions, with little compromise to coverage. We develop algorithmics to optimize the
selection of the IEF fractions on which to run LC-MS/MS. We translate the fraction optimization task to Minimum Set Cover, a
well-studied NP-hard problem. We develop heuristic solutions and compare them in terms of effectiveness and running times. We
provide examples to demonstrate advantages and limitations of each algorithmic approach. Finally, we test our methodology by
applying it to experimental data obtained from IEF LC-MS/MS analysis of yeast and human samples. We demonstrate the benefit of
this approach for analyzing complex samples with a focus on different protein sets of interest.

Index Terms—Iso-electric focusing, minimum set cover, greedy heuristics, analytical depth, cost-effectiveness, coverage

1 INTRODUCTION

THE analysis of proteins in complex samples, termed
analytical proteomics, is key to understanding cellular
mechanisms as well as of industrial processes that exploit
living systems, such as manufacturing protein therapeu-
tics (1; 2; 3; 4).

The most widely used analytical proteomics technique is
tandem mass-spectrometry (MS). MS is a sensitive tech-
nique used to detect, identify and quantify molecules based
on analyte mass and charge (m/z) and enables comprehen-
sive proteome studies with complex samples. Commonly,
proteins are digested into peptides which are then analyzed
on MS and the protein level information is inferred from
unique peptides identified in the sample. Mass-spectrome-
try for proteomics is typically coupled with one or more
separation techniques, allowing higher proteome analytical
depth, enhanced quantitative accuracy and improved PTM
characterization. Common separation techniques include:

1. High performance liquid chromatography (HPLC)—the
most popular separation technique for measuring
biological samples by MS or MS/MS (termed
LC-MS or LC-MS/MS, respectively), as most biolog-
ical samples are liquid and nonvolatile. LC columns
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have small diameters (e.g. <0.1 mm) and low flow
rates (e.g., 200 nL/min), leading to efficient separa-
tion of molecular entities in the sample. A longer
duration of an LC gradient in a given measurement
generally leads to better performance in identifica-
tion of the sample compounds. Thus, long LC gra-
dients are used for measuring complex samples.
Seamless LC/MS interfaces also greatly increase
analysis throughput (5).

2. Isoelectric focusing (IEF)—a separation technique
based on differences of the isoelectric point (pI)
between molecules (typically peptides, in the case of
analytical proteomics). The pl of a molecule is the pH
at which its net charge is zero (electrically neutral). In
IEF the molecules are separated using an electric
field, migrating along a slowly increasing pH gradi-
ent until their overall charge is neutral. IEF is com-
monly performed using gel based devices or off-gel
systems (6; 7; 8) that separate the analytes into frac-
tions according to their pI driven migration. The stan-
dard protocol for achieving maximal analytical depth
is to then analyze all fractions using LC-MS/MS. The
entire process, in this case, is termed IEF-LC-MS/MS.

In this paper we develop an algorithmic approach that
enables more efficient utilization of IEF-LC-MS/MS. Our
approach seeks high analytical depth obtained at a cost
much lower than that of running LC-MS/MS on all frac-
tions, as in the standard protocol. It is based on algorithmi-
cally optimizing the selection of a subset of fractions that
provide a complete coverage of a protein set of interest.

In many studies the biological question of interest hinges
upon identification and quantification of a particular set of
proteins rather than on the content of the entire mixture.
This protein set can consist of members of a pathway,
biological process or protein complex, or of a group of
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biomarker candidates (possibly to be further validated).
Despite substantial recent improvements in analytical proteo-
mics, there are considerable difficulties to reproducibly detect
and quantify low abundant proteins and PTMs within com-
plex samples. Targeted proteomics using selected reaction
monitoring (SRM) has been developed to address these
needs (9). However, SRM assay development is time consum-
ing and requires investment in specific assay components.

Alternatively, narrow-range IEF focusing on pre-selected
pH ranges has demonstrated utility in capturing predictable
sub-proteomes (10; 11; 12). In-silico calculated pI values can
be used to predict the experimental fractions in which each
peptide ends up (7). We propose to use predicted pl values
to guide a cost effective technique to IEF-LC-MS/MS and
thus enable a fast turnaround approach to targeted proteo-
mics. Our algorithmic methodology seeks to retain high
analytical depth at a cost much lower than that of analyzing
all fractions, as in the standard protocol. It is based on opti-
mizing the selection of a subset of fractions that provide a
complete coverage of a protein set of interest. We translate
the task of selecting fractions for LC-MS/MS analysis to the
well-studied Minimum Set Cover (MSC) problem, formally
defined in Section 2.2. MSC is NP-hard (13) and a greedy
approach yields an O(log n) approximation ratio, n being
the size of the universal set (14), which is also tight for the
general case (15). Approximation approaches that exploit
bounds on the scarcity of elements (number of sets in which
they occur) were also proposed in literature.

To address optimal fraction selection we examine several
heuristic approaches and compare their performance, con-
sidering both effectiveness (how close to optimal is the pro-
duced cover) and efficiency (running time in practice). The
algorithms are evaluated using two experimentally mea-
sured datasets, one from yeast and one from a human cancer
cell line. The performance of three workflows is compared —
a long LC gradient (no IEF fractionation), standard all-
fraction LC-MS/MS, and LC-MS/MS performed only on the
subset of fractions selected by our algorithm (termed the
fraction-cover). Focusing on several different protein sets of
interest we evaluate the number of selected fractions pre-
dicted to cover each protein set, as well as the implied total
cost and the actual obtained coverage, based on experimen-
tally measured data of complex samples. Our streamlined
approach obtains much higher analytical depth than that of
the long gradient. The analytical depth is close to that
obtained by the standard all-fraction LC-MS/MS but is sig-
nificantly less expensive and requires considerably less
instrument time. Our method can also be applicable to select-
ing IEF fractions for targeted proteomics (SRM/MRM).

We expect the method presented in this paper to make
higher analytical depth for a set of interest proteins
broadly affordable, for core facilities as well as for indi-
vidual laboratories.

2 METHODS

2.1 Experimental Methodology
Sample Preparation—Human A431 cancer cell line samples
were acquired as described in (7). Yeast strain JMP024 sam-
ples were acquired and handled as described in (16).

IEF Pre-fractionation by Peptide Isoelectric Focusing—High
resolution isoelectric focusing (HiRIEF) was used as

described in (7). Briefly, peptide samples were dissolved in
225 pl rehydration solution containing 8 M urea, and
applied to the gel bridge. For reswelling of the IPG strip,
1 percent IPG pharmalyte pH 2.5-5.0 (GE Healthcare) was
used. 24 cm linear gradient IPG strips (pI 3.0-10.0, GE
Healthcare) were incubated overnight. Samples were
applied to the IPG strips by the gel bridge (pH 3.7) at the
cathode end and run. After focusing, the peptides were pas-
sively eluted into 72 contiguous fractions with MilliQ
water using an in-house constructed IPG extractor robotics
(GE Healthcare Bio-Sciences AB, prototype).

LC-MS analysis—LC/MS protein extraction and diges-
tion were performed as previously described in (7). Peptide
samples were separated using an Agilent 1200 nano-LC sys-
tem with a Zorbax 300SB-C18 trap column and a NTCC-
360/100-5-153 (Nikkyo) analytical picofrit column. The gra-
dient of mobile phases A (3 percent ACN, 0.1 percent FA)
and B (95 percent ACN, 0.1 percent FA) ran from 6 to 40 per-
cent B at a flow rate of 0.4 ul/min. A long gradient of
240 min was used for samples not pre-fractionated by IEF
whereas IEF fractions were analyzed using a 45min gradi-
ent. The Q-Exactive was operated in a data dependent man-
ner, selecting the top 5 precursors for fragmentation by
HCD. The survey scan was performed at 70,000 resolution
from 300-1700 m/z, using lock mass at m/z 445.120025,
with a max injection time of 100 ms and target of 1 x 10e6
ions. For generation of HCD fragmentation spectra, a max
ion injection time of 500 ms and AGC of 1 x 10e5 were used
before fragmentation at 30 percent normalized collision
energy, at 17,500 resolution. Precursors were isolated with a
width of 2 m/z and put on the exclusion list for 60 s. Single
and unassigned charge states were rejected from precursor
selection. Proteome discoverer 1.3 with Sequest-percolator
was used for protein identification. Precursor mass toler-
ance was set to 10 ppm and fragment mass tolerance to
0.02 Da. Oxidized methionine was set as dynamic modifica-
tion, and carbamidomethylated cysteine as static modifica-
tion. Spectra were matched to a yeast Ensembl (R64-1-1
with 6,610 target sequences) or human Ensembl database
(GRCh37.63 with 76501 target sequences), and results were
filtered to 1 percent FDR on PSM level.

2.2 Computational Methodology

Algorithm—Denote the set of proteins of interest residing
within a complex sample by P = {P;,P,,...,P,}. In our
setting, each protein expected to appear in the sample is
cleaved into peptides using a selected protease such as
trypsin. For each protein P; € P, we consider a peptide q
as a representative of P; (also termed proteotypical) if
and only if:

a) g uniquely identifies Pi—namely, no other protein in
the collection of proteins expected to be in the
mixture has a peptide, under the used protease,
identical to g.

b) g does not contain a Methionine—as optional Methi-
onine oxidation leads to ambiguity in peptide
identification.

¢) q does not have an ambiguous trypsin cleavage
site—e.g., consecutive R or K residues. Such peptides
are generally less reproducible between runs.
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Fig. 1. Distribution of the number of covering fractions per protein on the
human A431 cell line. Obtained from a 3-10 pH strip, with 72 fractions.
Each fraction is 0.07 pH units wide.

For each peptide obtained by cleavage of the proteins in
P, we use the predpl algorithm (7) to predict its iso-electric
point (See Fig. 2 for evaluation of the pl prediction algo-
rithm). An IEF fractionation is a partitioning of the range of
possible pl values into disjoint intervals. Given an IEF frac-
tionation, each representative peptide ¢ of protein P; is
assigned to a specific fraction, F, based on its predicted pl
value. In this case we say that fraction /' covers protein P,.
Note that each protein P; can be separately covered by sev-
eral fractions, determined by the distribution of its represen-
tative peptides among fractions.

We now consider a setting in which there are K fractions
(for example, K = 72 for a standard GE IEF, or K = 24 for an
Agilent Offgel Fractionator), each fraction consisting of rep-
resentative peptides of some subset of the proteins in P. We
seek to find the minimal set of fractions that is required in
order to cover all the proteins in P. If we consider each frac-
tion to be a set and the proteins P = {Py,P,,...,P,} to be
elements, it is straightforward to formulate our optimiza-
tion task as an instance of the Min-Set-Cover problem
(MSC). We now prove that our problem is NP-hard by
reduction from MSC.

Reduction from MSC—In the set cover problem we
are given a universe U, such that |[Ul=mn, and sets
S={51,5...,5¢}s.t. S; C Uand |S| = K. We seek a collec-
tion C C S that satisfies Us,ecS; = U such that |C| is mini-
mal. To reduce to our IEF optimization problem, we define
each element ¢; € U to be a protein P; € P. Each set S; is
translated to a fraction F;, and the elements contained in S;
are reduced to the proteins represented in fraction F;. More
specifically—fraction F; will have a representative peptide
for a protein P; iff ¢; € S;. This reduction takes O(nk) opera-
tions as we construct the set of representative peptides by
scanning all K subsets of S, where |S;| < n. Solving the
above stated IEF optimization problem in polynomial time
will lead to a polynomial time solution to the MSC problem.
Therefore our IEF optimization problem is also NP-hard.

Heuristic Approaches—The most commonly used heu-
ristic approach to MSC is the Greedy algorithm outlined
below:

T T T T T
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Fig. 2. A Heat map comparing the theoretical IEF fraction, prediced by
predpl, with to the experimentally measures IEF fraction. Analysis was
performed on the nr90 yeast proteome (>6,000 proteins). Trypsination
and selection of representative peptides resulted in a dataset of 17,005
peptides, for which pl values were predicted (predpl algorithm (7)), and
experimentally measured with IEF. Color intensity correlates with the
concentration of peptides residing at each pixel.

Start by marking all elements in U as uncovered. Then:

a) Pick the set that covers the maximal number of
uncovered elements
b) Mark all elements in the selected set as covered

Repeat (a) and (b) until all elements of U are covered.

Note that in this algorithm the next set to be added to the
cover depends on the previously selected sets since they
determine the identity and number of uncovered elements in
each of the remaining sets. This approach therefore requires
updating the set-to-element adjacency matrix after every
iteration. Moreover, Greedy is a generic algorithm that disre-
gards input-specific characteristics such as the distribution
of number of covering fractions per protein. For our data, we
observe this distribution to be skewed (Fig. 1), as most pro-
teins are covered by very few fractions (or even just one). We
thus contemplated that a suitable adaptation to the standard
greedy algorithm could reduce the calculated cover size.

We call a set (fraction) critical if it is the only set that cov-
ers a particular element (protein). A simple adaptation of
Greedy is the following: initially all critical sets are identi-
fied and added to the set cover. Subsequently, the greedy
algorithm proceeds as standard. We call this approach the
Critical-First Greedy algorithm (in short, CF-Greedy). The
rationale behind this approach, also briefly mentioned in
(17), is that since every set cover must add all critical sets at
some point, we might as well add them at the beginning
and possibly gain coverage of additional elements that may
cost more to cover if addressed at a later stage of the algo-
rithm. In Fig. 3A we show that while this adaptation seems
very intuitive, it can also lead to the selection of a larger
cover than that of Greedy. However, the simulations in
Section 3.1 show that CF-Greedy is significantly more com-
patible with our data than the standard greedy approach.

A natural extension to the CF-Greedy algorithm, poten-
tially more appropriate for IEF-type data distribution (as
depicted in Fig. 1), adds sets to the set-cover in an order that
is influenced by the scarcity of the elements they consist of.
Formally:
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Fig. 3. Examples of performance differences between Greedy variants
(A) Adaptation of the classical proof of Greedy approximation ratio:
Greedy outperforms CF-Greedy by selecting three sets (two reds fol-
lowed by blue), similar to OPT, while CF-greedy starts with the blue criti-
cal set, followed by o(log n) green sets. (B) SB-Greedy chooses /n sets
(green), Greedy chooses two sets (red), similar to OPT. (C) Greedy
ends up with o(log n) green sets, in addition to the two red sets. CF-
Greedy and SB-Greedy both choose two sets (red), similar to OPT.

1. Define the scarcity value of element e; € U to be the
number of sets in which it appears. For example, a
critical set is now defined as a set that contains an
element with scarcity value of 1. Partition the ele-
ments into classes according to their scarcity values.

2. Traverse the scarcity classes in increasing order of
scarcity value. For each class with scarcity value r,
consider the collection of unused sets C, C S which
are the sets that have an uncovered element with a
scarcity value of r.

3. Add the sets in C, to the cover in a greedy manner—
i.e., at each stage pick the set of C, covering the largest
number of uncovered elements of U. Continue until
there are no more sets in C, with uncovered elements.

4. Move on to the next scarcity class, until all elements
in U are covered.

We call this variant Scarceness-Based Greedy (in short,

SB-Greedy).

Theoretical effectiveness of the heuristic approaches—It has
previously been shown that the greedy algorithm achieves
an approximation ratio of O(log n) (14). Moreover, it has
been demonstrated that Greedy is essentially the best-possi-
ble polynomial time approximation algorithm for MSC,
under plausible complexity assumptions (15; 18; 19). Hence,
neither CF-Greedy nor SB-Greedy can achieve a better than
O(log n) approximation ratio. Fig. 3B presents a family of
cases where SB-Greedy achieves an approximation ratio of
O(y/n), indicating that its general case theoretical bound is
inferior to that of Greedy. A different problem setting, illus-
trated in Fig. 3C, demonstrates superiority of the scarceness
based variants over Greedy, when selecting an optimally-
sized set cover contrary to Greedy’s O(log n) sized selection.
We conclude that neither of the presented variants is consis-
tently superior to the other two.

In Section 3.1 we compare the practical performance of
the three heuristic approaches on our IEF optimization
problem for different values of n and K. We find that in
practice, for our data and problem setting, all three algo-
rithms converge to the optimal solution in the vast majority
of cases. Moreover, for the relatively small problem sizes
that were computationally feasible to test, we find that CF-
Greedy is significantly closer to OPT than Greedy, and SB-
greedy even more so.

Efficiency of the heuristic approaches—With some varia-
tion dependent on implementation details and data struc-
tures, it is clear that all heuristics presented above can be
implemented in polynomial time with a low coefficient.
More precisely:

e In the greedy algorithm, an addition of a fraction f to
the fraction-cover requires a traversal over all ele-
ments in all remaining fractions to mark all of f’s
elements as covered. This step is followed by a re-
assessment of the next fraction to be added to the
cover, which is determined by the number of elements
still uncovered in each fraction. The worst-case run-
ning time of Greedy is thus O (K”n + K?) = O(K”n).

e For CF-Greedy and SB-greedy the worst case running
time is similar to Greedy since in certain cases all ele-
ments may appear in exactly X of the K fractions for
some constant X. However, in practice running time
is expected to be smaller since the process of reassess-
ing the order of addition of fractions to the cover
occurs separately within each scarcity class. This
observation is further demonstrated in Fig. 5.

In Section 3 we demonstrate that the three proposed
Greedy algorithms are extremely fast even for larger prob-
lem sizes, despite the exponential growth in search space of
the exhaustive calculation.

3 RESULTS

3.1 Efficiency Analysis for Heuristic Approaches

As our fraction selection problem is NP-hard, it very
quickly becomes infeasible to calculate the optimal solution
for increasing values of K (number of fractions). We thus
wish to apply the heuristics described in Section 2.2 namely
Greedy, CF-Greedy and SB-Greedy to this task. First we val-
idate their relevance to our problem by comparing their per-
formance to that of the exhaustive MSC calculation on our
biological data. In this comparison, we evaluate the algo-
rithms by two criteria—effectiveness (size of the calculated
MSC) and efficiency (running time). Since calculation of the
exact MSC is exponential in K due to enumeration over all
possible 2K subsets of S, we use relatively small values of K
and n for the evaluation of heuristics with respect to the
optimal set cover denoted by OPT.

Table 1 summarizes the effectiveness of the three heuris-
tic approaches as compared to the optimal solution. For the
purpose of statistical soundness, we performed 1,000 simu-
lations for each pair of (K,n): first, we partition the pH
region of [3], [4], [5], [6], [7], [8], [9], [10] into K equally
spaced fractions. Subsequently, in every simulation the ele-
ment universe U is constructed from # proteins randomly
drawn from the human proteome. A fraction F is defined as
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TABLE 1
Effectiveness Comparison for the Three Heuristic
Approaches with Respect to the Exact MSC Solution,
for Different Values of n (Number of Proteins of Interest)
and K (Number of Fractions)

%simulations with optimality ratio=1

CF- SB- Min
K " Greedy Greedy Greedy (variants)
12 5 0.978 0.996 1.0 10
12 10 0.942 0.992 0.992 0.993
12 20 0.931 0.995 0.996 0.998
12 50 0.96 1.0 1.0 1.0
24 5 0.969 0.992 0.995 0.995
24 10 0.923 0.985 0.988 0.994
24 20 0.872 0.99 0.99 0.996
24 50 0.926 0.995 0.996 0.998
48 5 0.965 0.991 0.997 0.998
48 10 0.928 0.985 0.985 0.992
48 20 0.897 0.979 0.979 0.98
72 5 0.972 0.99 0.995 0.996

See description in text.

covering some protein p € U if the calculated pI of one of
its representative peptides falls within F's pH range. The
optimal fraction cover is then computed, as well as the
fraction covers resulting from the three greedy variants.
The values in Table 1 indicate the percentage of simula-
tion instances for which the ratio of % =1, which
means the corresponding heuristic computed a solution
of optimal size. We call this ratio the optimality ratio of
the algorithm. The Min (Greedy-variants) column is a
hybrid algorithm which selects the minimal solution out
of the three heuristics. It is evident from Table 1 that, for
the examined problem sizes all three approximation algo-
rithms compute an optimal solution in the vast majority
of cases. Also, the relevance of a scarcity-based

n=10, Avg. #fractions=4.4

n=60, Avg. #fractions=13

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.2, MARCH/APRIL 2017

approximation approach to our problem is demonstrated
by the superior optimality ratio achieved by the two scar-
city-based variants, where amongst the two SB-Greedy
shows better performance.

Fig. 4 further demonstrates the superiority of the scarce-
ness based approach by comparing the fraction cover size
calculated by SB-Greedy to the ones calculated by Greedy
and CF-Greedy by examining their ratio. The comparison
is performed over a set of 3,000 simulations—1,000 for
each value of n € {10, 60, 1,000}, where k (number of frac-
tions) is fixed to 72. For this problem size the calculation of
the optimal solution becomes computationally infeasible
(or at least entirely impractical) and thus only the heuristic
calculations are performed. Clearly, and as is demonstrated
in Table 1, the fraction cover size computed by all three
heuristics is frequently identical. However, some differen-
ces are illustrated in favor of the scarceness-based
approaches. Specifically, for the smaller (and often practi-
cally more relevant) protein group sizes SB-Greedy obtains
a smaller fraction cover than that of Greedy. The superior-
ity over CF-Greedy is more subtle and is best demon-
strated for the case of n = 10.

Fig. 5 summarizes an efficiency analysis for the exhaus-
tive and greedy variants that is based on the simulation
data described above. For each pair of (K,n) we divide the
1,000 simulation instances into groups according to the size
of their optimal set-cover. For every such group of simula-
tions we plot the average running time of each algorithm
over all relevant instances, in log (seconds), with error bars
representing two standard deviations. Fig. 5 focuses on five
entries from Table 1, specifically (K =72,n=5) and
(K =24,n= {5,10,20,50}), since these K values represent
standard fractionations. Results from other (K,n) pairs
show similar tendencies. The exponential growth in OPT
time complexity for increasing set-cover sizes is most evi-
dent. In contrast, all three heuristic approaches show a
very moderate, if any, increase in running time for larger

n=1000, , Avg. #fractions=34
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Fig. 4. Comparison of number of fractions calculated by the Scarceness-Based greedy approach to the fraction set size as calculated by Greedy and
CF-Greedy. Calculations were performed on simulated data with number of fractions k set to 72, and the protein group size n varying between 10,
60, and 1,000. Clearly, SB-Greedy is able to calculate smaller cover sets in a larger percent of simulations. This is especially true for the smaller pro-
tein group sizes, in which the MSC size ratio of SB-greedy to the other algorithms is often below 1.
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Fig. 5. Comparison of set-cover calculation time in log(#seconds) for the
exhaustive approach and for the three heuristics. For each pair of (K;n),
the experiment was repeated 1,000 times. Running time is averaged
over all instances with a similar optimal fraction cover size.

set-cover sizes, and the calculation remains within the time
range of 107 — 1072 sec.

3.2 Application to Biological Sets of Interest

This study proposes an efficient approach for obtaining
high LC-MS analytical depth for a subset of proteins of
interest within a complex biological sample, while mini-
mizing experimental cost and duration. We thus test our
methodology on several well-studied groups of proteins,
specifically:

e The human Anaphase Promoting Complex (APC),
consisting of 11 proteins. APC is responsible for
marking target cell cycle proteins for degradation.

e The human MAPK/ERK cascade, consisting of 62
proteins. These proteins form a signaling pathway
from cell surface receptors to the nucleus DNA.

e The 945 human glycosylation-related genes, retrieved
from the site of the Consortium for Functional
Glycomics (CFG).

e The 130 yeast Ubiquitination-related genes described
in (20).

For running calculations on the human and yeast biologi-
cal groups we used the human and yeast Ensembl FASTA
sequence files, respectively. The sequences were in-silico
trypsinated and the peptides” pl calculated (7). In parallel,
samples from the human A431 cell line and from yeast were
fractionated into 72 fractions and LC-MS/MS was per-
formed separately for each fraction. Since the number of
fractions (sets) is relatively large (K = 72), it is infeasible to
calculate the optimal set cover. We thus employ the above-
described heuristics to search for a minimum-fraction-cover
of the biological protein groups mentioned above within the
given complex samples. As we have found CF-Greedy to
obtain intermediate effectiveness, we focus the remainder
of our analysis on Greedy and SB-Greedy.

Table 2 summarizes the MS2 protein identification rate
for each of the four biological groups described above.
We compare our minimum-fraction methodology to two
LC-MS/MS based measurement procedures commonly
applied for analyzing a focus set of proteins within a com-
plex sample. The three compared protocols are as follows:

e Long gradient—No fractionation is used; a single
slow-gradient LC-MS/MS experiment is performed
for the duration of 5 hours. This procedure indicates
the expected coverage for a single LC-MS/MS analy-
sis of the entire complex sample.

e Full fraction—IEF is run on the entire sample, dis-
tributing peptides with a pl value in the range of [3],
[4], [5], [6], [7], [8], [9], [10] into 72 fractions, LC-MS/
MS is performed on each fraction separately.

e Fraction subset—fractionation is performed as before,
but LC-MS/MS is run only on the fractions in the min-
imum-fraction-cover as calculated by either heuristic.

The substantial difference in coverage obtained by the

long gradient and by the two fractionation-based approaches,
as demonstrated in Table 1 suggests that the single-gradient
procedure is not suitable for obtaining high analytical depth
in complex samples. Importantly, the coverage obtained by
the fraction-cover approach is remarkably close to the cover-
age obtained by running LC-MS/MS on all 72 fractions,
despite a considerably smaller number of analyzed fractions.
We thus propose that our methodology offers an efficient
way to significantly reduce cost and instrument time,
while maintaining high coverage of the proteins of interest.

To further validate the statistical significance of our results

on biological groups of interest, we perform simulations that
mimic the experimental setting of each of the three human
protein groups described in Table 2. Contrary to previous

TABLE 2
Comparison of Analytical Depth Acquired by Several LC-MS/MS Based Techniques, for Different Protein Groups

Coverage (# proteins identified in MS2)

Fraction-Cover Size

size
Lone Grad. All Frac. Greedy SB-Greedy Greedy SB-Greedy
APC 11 (@) 10 6 6 5 5
MAPK 62 14 45 43 44 29 29
Glyco 945 164 408 400 397 41 39
Yeast Ub" 130 N/A 113 80 79 8 8

For each group we present the coverage, i.e., the number of proteins identified using LC-MS/MS, using each methodology, and also the number of fractions
required to obtain this coverage, as computed by the relevant heuristic. (*) A long gradient was not performed on the yeast sample.
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Fig. 6. The Proteins/Euro ratio calculated for different sizes of protein
groups chosen at random (1,000 repeats). Based on experience, a sin-
gle-fraction LC-MS/MS it considered to run for 69 min., and an LC-MS/
MS hour to cost 30 EU. Note the differences in Y-axis scaling.

simulations, we leave the number of fractions constant
(K = 72). For each protein group size n € {10,60, 1,000} we
perform 1,000 simulations. Each simulation consists of draw-
ing n proteins at random from the human proteome and cal-
culating their minimal fraction cover using Greedy and SB-
Greedy. We now consider two criteria for evaluating simula-
tion results based on our actual measurement data. One is
the coverage obtained for the randomly drawn set of interest
proteins. The other is the cost-effectiveness of the experi-
ment. Fig. 7 depicts the distribution of coverage across simu-
lations for each of the three protein group sizes. Most evident
is the lack of analytical depth obtained by the long gradient
experiment, in agreement with the results of Table 2. Also, as
expected, the best analytical depth is demonstrated by the
full-fractionation approach. Nevertheless and as also stands
out from Table 2, limiting LC-MS

MS analysis to the fractions computed by our proposed
methodology results in good coverage (for small protein
groups) to excellent coverage (for larger protein groups),
while allowing significant reduction inexperimental cost
and complexity.

Notably the two heuristic variants obtain similar analyti-
cal depth, indicating that the actual choice of algorithm vari-
ant will not, on average, affect coverage. This is despite some
differences demonstrated in Tables 1 and in 2. For example,
SB-Greedy is shown to sometimes calculate a smaller frac-
tion cover for the proteins in the biological group of interest.
Thus, given a perfect agreement between the theoretical and
experimental peptide fraction assignment, SB-greedy is
expected to on occasion produce a less expensive solution
than Greedy. In practice however, not all peptides consid-
ered in the calculation necessarily appear in their predicted
fractions (see Section 3.3 for further discussion). Thus the
choice of a larger fraction cover (as sometimes calculated by
Greedy) may potentially lead to slightly higher coverage due
to the unpredicted inclusion of proteo-typical peptides that
are either unaccounted for by the algorithm, or theoretically
reside in a different fraction. Fig. 6 compares the distribution
across simulations of cost-effectiveness, which we quantify

| #id—ed proteins : :
by the ratio Z-—<"L2m22, for the three protein group sizes. As

=10 =6l n=1000
” £ & M » T Greedy :'Bd\
Fraction t "
. X J Fractions =] - =
: ey i { S Y
T Creots dl o 5B =
T | Greedy Greedy il All 18 |

Fractions
! | |
o I I
| |

Long
Grad.

i X
.
-

# ldentificd proteins
=1
fio s
=
=

B

-+

Fig. 7. Comparison of MS2 coverage distributions for three protein group
sizes n € {10,60,1,000} (1,000 random repeats each). In each box:
central mark is the median, box edges are the 25th and 75th percentiles,
whiskers extend to the most extreme data points not considered as out-
liers, and outliers are plotted individually. Note the differences in Y-axis
scaling.

Fig. 7 clearly illustrates the incompatibility of the long-gradi-
ent measurement approach for achieving high analytical
depth, we compare cost-effectiveness for the fractionation-
based approaches only. Fig. 6 demonstrates the substantial
improvement in cost-effectiveness gained from utilizing the
minimum-fraction-cover approach rather than the all-frac-
tion methodology. This is an expected outcome given the sig-
nificantly reduced number of fractions submitted to LC-MS/
MS analysis, together with the maintained high coverage.

Notably, some superiority of SB-Greedy over Greedy
is evident, especially for the smaller group sizes. This
reflects the fact that SB-Greedy’s ability to produce a more
compact solution that can sometimes reduce LC-MS/MS
time and cost, more than compensates for the marginal loss
in identified proteins. We thus propose that considerations
related to working with SB-Greedy versus Greedy should
be taken on a per-case basis, factoring in the importance of
cost (biasing towards SB-Greedy) versus coverage (biasing
towards Greedy).
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Fig. 8. Performance Evaluation against similar sized random fraction
covers. Coverage was evaluated for the APC complex (11 proteins,
blue), MAPK cascade (62 proteins, green) and glyco-related genes
(945 proteins, red). The histograms depict the distribution of portion of
uncovered proteins per focus set, in log space. Asterisks indicate this
portion for the fraction cover selected by our algorithm.
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3.3 Statistical Validation of Significance

Thus far we have validated our method’s robustness in the
sense that it does not depend on a specific choice of a pro-
tein focus set (reproducibility). Herein we asses our meth-
od’s dependence on the specific selection of a fraction cover,
i.e., we test whether employing the minimum-fraction-cover
approach as computed by our algorithm contributes to
coverage and cost-effectiveness over an arbitrary selection
of a fraction-cover of similar size. To do this we examine
the protein focus sets as described above. Given the set C
of fractions selected by the Minimum Fraction Cover
algorithm, we perform 100 simulations in which |C| frac-
tions are chosen at random and the coverage attained for
the corresponding focus set is measured. Fig. 8 presents
the distribution of the portion of uncovered proteins for
every simulation, in log space, for each of the three tested
protein focus sets. The asterisks indicate the portion of
uncovered proteins when fractions are chosen according
to the Min-Fraction-Cover algorithm. In all three cases the
advantage of our approach is evident, as the portion of
interest proteins that remain uncovered with the Min-
Fraction-Cover approach is either smaller than for all
randomly chosen fraction sets (MAPK cascade and glyco-
related proteins), or very close to that (for the APC com-
plex only 12 percent of the simulations result in higher
coverage). This result indicates that an arbitrary selection
of a fraction cover of similar size will almost always
result in poorer coverage and thus reduced cost-effective-
ness. Moreover, we note that the naive approach of
arbitrary fraction selection can only be applied for a pre-
defined parameter of fraction cover size—a factor which
is in itself extremely important in maintaining the balance
between high coverage and low cost.

3.4 L-Fraction-Cover

The results presented in Table 2 and Fig. 7 may bring one to
notice the somewhat incomplete coverage obtained by the
heuristically-calculated fraction-covers for the groups of
proteins subjected to optimization. It is of importance to
understand why these computationally selected sets of

115 T T T T T T T T

All-fraction analysis coverage
110} 1

Fig. 10. Effect of increasing values of L on coverage size. The red line
indicates maximal obtainable coverage (LC-MS/MS of all 72 fractions).

fractions do not include the entire group of interest proteins
as identified by MS2 on the 72 fractions. A plausible expla-
nation for this follows from the premises underlying our
approach: First, that pl prediction is always precise. While
prediction accuracy is relatively high (Fig. 2), some down-
ward bias is observed in pl value prediction of the less
acidic fractions. The existence of PTMs and other modifica-
tions, usually not addressed by pl prediction programs, can
result in changes to pls of peptides and are expected to be
more prevalent for proteomes of high complexity such as
human. In future, we plan to correct pl prediction by train-
ing on experimental data, likely improving our method’s
performance. The second assumption is that every represen-
tative peptide is selected for MS2 analysis. In actuality low
peak ionization and insufficient separation lead to many
peaks not being selected for MS2 analysis. In future we plan
to employ more sophisticated means of selecting potentially
proteo-typical peptides, to maximize the chance of experi-
mental detection. It is also possible to use additional tar-
geted proteomics approaches to further improve coverage,
under the assumption that prediction and separation are
sufficiently accurate.

To narrow the gap between the predicted coverage of
the computationally selected fractions and the actual cover-
age obtained experimentally on the same set of fractions we
have devised an L-fraction-cover approach, where each ele-
ment is required to be covered at least L times in the
selected fraction-cover. Assigning each interest protein to
more than one representative peptide, and often to more
than one fraction, decreases the probability of a protein not
being identified by MS2. Hence with increasing L values the
actual coverage is expected to increase, albeit the fraction-
cover size is also expected to grow. We thus evaluate the
gain in coverage with respect to the increase in experimental
time and cost. Fig. 10 and Fig. 9 demonstrate the effect of
increasing the value of L on coverage and cost-effectiveness,
for the yeast Ubiquitin-related protein dataset. All fraction
covers were calculated using SB-Greedy. Some increase in
coverage is observed when requiring a protein to be repre-
sented by more than one peptide, the most significant leap
being demonstrated for L = 2. However, Fig. 9 indicates
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that this gain in coverage leads to a significant decrease in
cost-effectiveness. For example, the 12 percent increase in
coverage demonstrated for L = 2 is associated with an
almost two-fold decrease in the number of proteins identi-
fied per Euro.

These results indicate that when assigning equal impor-
tance to analytical depth and to cost-effectiveness, the single
representative variant (L = 1) would be the best choice.
However, when conducting an LC-MS/MS experiment
requiring high emphasis on maximal analytical depth, a
larger L value can be used. As a consequence more experi-
mental resources will be required and cost is expected to
increase, yet a practically full coverage can be obtained with
significantly less resource investment than in an all-fraction
LC-MS/MS analysis.

4 CONCLUSIONS

In this study we demonstrate that rational selection of IEF
fractions can direct LC-MS analysis to aid in the detection
of desired groups of proteins with the benefit of shorter
analysis time and hence lower cost of the experiment. The
algorithm presented herein functions as an experimental
design tool for discovery proteomics, where the detection
of predefined groups of proteins is important for biological
interpretation and for other purposes such as monitoring a
protein variant in an industrial process. Furthermore, this
method can be used to select experimental IEF fractions
for targeted proteomics analysis, hence potentiating anti-
body free pre-fractionation for SRM. These applications
can help proteomics laboratories and core facilities in opti-
mizing use of instrument time with maximal output and
lower cost.

Here we have optimized our method for unmodified
peptides, but in future we intend to further enhance capabil-
ity to correctly handle post-translationally modified pepti-
des as well.

In addition, we intend to further test out methodology in
the context of quantification-based MS studies. That is, to
use iTRAQ data to evaluate the agreement between per-
protein ratios inferred by an all-fraction analysis to the cor-
responding ratios inferred from the fractions obtained by
our approach. This can potentially have extensive applica-
tions in comparative studies of cancer biomarkers as well as
for the study of other diseases.

Finally, we note that our algorithmic approach can be
extended to any separation technique, other than IEF,
that is based on a molecular characteristic that can be
predicted in-silico.
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