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Abstract—K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To

quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most

frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the

sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one

is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the

standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying

the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning

unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10–

2001 (�400 MB in size) demonstrated marked reduction in computation time for k ¼ 10-500 in comparison with other state-of-the-art

pruning methods such as Elkan’s and Hamerly’s algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/

�ichikawa/boostKCP/.

Index Terms—Bioinformatics, clustering, mining methods and algorithms, optimization
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1 INTRODUCTION

CLUSTERING, an unsupervised learning algorithm to
group data into similar categories, has been widely

used to gain insights into biological systems from large-
scale biological data, such as gene expression data moni-
tored by microarrays [1], [2], [3], [4], histone modifications
[5], [6], [7], [8], [9], [10], [11], [12], [13], and nucleosome
positioning [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24]. A variety of clustering algorithms, such as hier-
archical clustering, k-means clustering, self-organizing
map (SOM), and principal components analysis (PCA),
have been used (for review, see [25]). Of these, k-means
clustering is the most widely used to process large-scale
data sets, in part because the computational complexity of
hierarchical clustering is quadratic or higher in the num-
ber of data points, while k-means clustering algorithms
have lower computational complexity [26]. Accelerating
k-means clustering algorithms is still necessary to process
the growing volume of biological data due to the recent
progress in data collection by next-generation sequencing.

The basic concept of k-means clustering is simple.

1) It first selects k cluster centroids in some manner.
The behavior of the algorithm is highly sensitive to
the initial selection of k initial centroids, and many
efficient initialization methods have been proposed

to calculate better k centroids [26], [27], [28], [29],
[30], [31], [32], [33]. In this study, we use the initiali-
zation method proposed by Bradley and Fayyad
[31], since it consistently performs better than the
other methods in terms of several criteria according
to the recent report by Celebi et al. [26].

2) Subsequently, k-means clustering repeats the process
of assigning individual points to their nearest cent-
roids and updating each of k centroids as the mean
of points assigned to the centroid until no further
changes occur on the k centroids [34].

Quantifying the same data points is essential. Various
measures are available, such as Euclidean distance, Man-
hattan distance, Pearson correlation distance, and Spell-
man rank correlation. Of these, Euclidean distance and
Pearson correlation distance have been widely used for
large-scale biological data processing [3], [4], [24], [35],
[36]. Euclidean distance is sensitive to scaling, while corre-
lation is unaffected by scaling. Precisely, given two data of
high dimension such that their patterns are quite similar
but their scales are different, Euclidean distance is not suit-
able for measuring the similarity. To avoid this problem,
standardized Euclidean distance, which is not sensitive to
scaling, is frequently used [3], [36], [37], [38], [39], [40].

Of note, standardized Euclidean and Pearson correla-
tion distances are equivalent in the sense that both yield
the same k-means clustering result for identical sets of k
initial centroids because the standardized Euclidean dis-
tance is proportional to the square root of the Pearson
correlation distance [3], [40], and the two distances
always produce consistent orderings. Thus, optimization
methods designed to calculate one distance are applica-
ble to the other.
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Despite the importance of the Pearson correlation and
standardized Euclidean distances for machine learning,
optimization methods customized for these distances are
largely unexplored. In general, several efficient k-means
clustering algorithms have been proposed for processing
Euclidean distances by utilizing the triangle inequality
[41], [42], [43] or by analyzing the correlation coefficient
between the centroids [44]. Thus, we can use optimization
methods for the Euclidean distance to yield a k-means
clustering result based on the standardized Euclidean dis-
tance that is in agreement with that based on the Pearson
correlation distance [3].

We instead examined the properties of the Pearson cor-
relation distance and devised a simple and novel method
for avoiding unnecessary computation in order to boost
k-means clustering using the Pearson correlation distance.
We demonstrate that our method outperforms pruning
method applications using the Euclidean distance [41],
[42], [43] compared with those that use the standardized
Euclidean distance. Our method has been best optimized
for k-means clustering using the standardized Euclidean
and Pearson correlation distances.

2 METHODS

We first introduce the definition of Pearson’s correlation
coefficient.

Definition. To measure the distance between two d dimensional
vectors xx ¼ ðxx½1�; . . . ; xx½d�Þ; yy ¼ ðyy½1�; . . . ; yy½d�Þ, we define
Pearson’s correlation coefficient:

rðxx; yyÞ ¼ 1

d

Xd
i¼1

xx½i� � xx

sxx

� �
yy½i� � yy

sy

� �
;

where xx denotes the average of xx½1�; . . . ; xx½d�, and sxx is the

standard deviation, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 ðxx½i� � xxÞ2=d
q

. Let xx denote

the length, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 xx½i�2
q

.

Note that Pearson’s correlation coefficient ranges from�1 to
1, i.e., �1 � rðxx; yyÞ � 1. The Pearson’s correlation coefficient
rðxx; yyÞ itself does not serve as a distance because when xx
and yy are more similar to each other, rðxx; yyÞ becomes larger
and approaches 1 rather than 0.

Definition. [45] The Pearson correlation distance disðxx; yyÞ is
defined as 1� rðxx; yyÞ.
The Pearson correlation distance approaches 0 when xx

and yy are similar. In contrast, when xx and yy are more
dissimilar, the Pearson’s correlation coefficient decreases
to �1, and the Pearson correlation distance between xx
and yy increases approaching 2. The range of the distance
is 0 � disðxx; yyÞ � 2. The Pearson correlation distance vio-
lates the triangular inequality.

Example.Whenxx1 ¼ ð9; 3; 1Þ; xx2 ¼ ð3; 1; 9Þ, andxx3 ¼ ð1; 3; 9Þ,
we have dis ðxx1; xx2Þ ¼ 1:5; dis ðxx2; xx3Þ ¼ 0:115, and disðxx1;
xx3Þ ¼ 1:846, which do notmeet the triangular inequality:

disðxx1; xx2Þ þ disðxx2; xx3Þ � disðxx1; xx3Þ
We illustrate here two examples that clarify how the Pear-

son correlation distance differs from the Euclidean distance.

Example. When xx1 ¼ ð1; 3; 9Þ; xx2 ¼ ð0:9; 0:3; 0:1Þ; and xx3 ¼
ð0:1; 0:3; 0:9Þ xx1 and xx3 have similar patterns, but their
scales are different, while xx2 and xx3 have dissimilar pat-
terns, yet their Euclidean distance is smaller than the dis-
tance between xx1 and xx3. Indeed, we have:

disðxx1; xx3Þ ¼ 0 < 1:84615 ¼ disðxx2; xx3Þ;
while

jjxx1 � xx3jj ¼ 8:58545 > 1:13137 ¼ jjxx2 � xx3jj:

The next example illustrates the discrepancy between the
Pearson correlation distance and the “normalized” Euclid-
ean distance.

Example.When xx1 ¼ ð0:1; 0:3; 10Þ; xx2 ¼ ð0:1; 1; 10Þ; and xx3 ¼
ð0:1; 0:1; 1Þ, Pearson correlation distances meet

disðxx1; xx3Þ ¼ 0:00016 < 0:00338 ¼ disðxx2; xx3Þ
implying that xx3 is more similar to (correlated with) xx1. In
contrast, the normalized Euclidean distance yields the
opposite ordering:

xx1

jjxx1jj �
xx3

jjxx3jj
����

����
����

���� ¼ 0:11304 > 0:08920 ¼ xx2

jjxx2jj �
xx3

jjxx3jj
����

����
����

����:
We next define the standardized Euclidean distance.

Definition. Let dis SEðxx; yyÞ denote
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

x½i� � xx

sx
� yy½i� � yy

sy

� �2

vuut ;

the standardized Euclidean distance between two dd dimen-
sional vectors xx and yy.

The square root of the Pearson correlation is proportional
to the standardized Euclidean distance.

Proposition. [3], [40]

ffiffiffiffiffi
2d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
disðxx; yyÞ

p
¼ dis SEðxx; yyÞ:

The Pearson correlation distance and the standardized
Euclidean distance produce consistent orderings; namely, for
any xx11; yy11; xx22; yy22,

disðxx11; yy11Þ � disðxx22; yy22Þ;

if and only if

dis SEðxx1; yy1Þ � dis SEðxx2; yy2Þ:

We note here that the Pearson correlation distance and

its square root are largely different. For example,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
disðxx; yyÞp ¼ 0:4 when disðxx; yyÞ ¼ 0:16, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
disðxx; yyÞp ¼ 1:3

when disðxx; yyÞ ¼ 1:69. In general, two proximal (distal,

respectively) points of the Pearson correlation distance <1

(>1) become more distant (closer) according to the square

root of the Pearson correlation distance.
Next, we outline Lloyd’s algorithm, which implements

k-means clustering. Given nn points in d dimensional space,
a kk-means algorithm starts with selecting kk initial centroids,
fccpjp ¼ 1; . . . ; kg, in some way. It then repeats the following
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two steps until no further changes occur in any of the kk
centroids:

� Assigning step: Assign each of nn points to its nearest
centroid.

� Updating step: Update each cc of kk centroids as the
mean of points assigned to cc.

Lloyd proposed the basic concept of the above procedure
[34]. Suppose that it takes QðdÞ time to compute the distance
between two d-dimensional points. A na€ıve implementation
of the assigning step is to calculate the distance between
each point and each centroid, which takes a QðdknÞ time in
total, while the updating step needs a QðdnÞ time. Thus,
accelerating the assigning step is crucial. Here, we present a
way of avoiding unnecessary computation in the assigning
step by finding unchanged nearest centroids.

Selecting the distance between points is crucial in
kk-means clustering. The Euclidean and Pearson correla-
tion distances are not always consistent and may produce
different clustering results for an identical set of kk initial
centroids because during the assigning step, the centroid
nearest to each vector can differ according to the distance
selected. In contrast, the standardized Euclidean and
Pearson correlation distances produce consistent order-
ings, and consequently the centroid closest to each vector
is the same regardless of the distance selected. Using this
property, we show that both distances yield the same
clustering result.

Proposition. For an identical set of kk initial centroids, the
kk-means clustering algorithm produces the same clustering
result for the standardized Euclidean distance as the Pearson
correlation distance.

Proof.We prove the inductive hypothesis stating that before
each round of iteration, the set of kk centroids for the stan-
dardized Euclidean distance is identical to that for the
Pearson correlation distance. The hypothesis holds true
before the first iteration simply because the same set of kk
initial centroids is the input for each distance. Assuming
that the hypothesis is true before the iith iteration, after
the assigning step, the centroid nearest to each vector
is identical for each of the two distances because for
any vector xx and any centroids cc1 and cc2; disðxx; cc1Þ �
disðxx; cc2Þ if and only if dis SEðxx; cc1Þ � dis SEðxx; cc2Þ. Thus,
after the updating step, the set of vectors closest to each
centroid cc is identical for the two distances, implying
that the mean of the set, the revised centroid, is also iden-
tical. Consequently, the inductive hypothesis is true
before the ðiþ1) th iteration. tu
This proposition allows us to perform kk-means clustering

with the Pearson correlation distance using optimization
algorithms developed for the (standardized) Euclidean dis-
tance [41], [42], [44]; however, it is unclear whether the
methods for the Euclidean distance are effective for acceler-
ating the performance when using the standardized Euclid-
ean distance. We show relevant experimental results in the
next section.

For the following, we describe our new algorithm cus-
tomized for the Pearson correlation distance. Centroids are
updated frequently and are likely to move long distances in
early stages of the repetitive steps. In contrast, in later steps,

centroids are unlikely to move, and therefore, the assigning
step has a tendency to reassign each point to the previous
centroid as the nearest one, which should be avoided. Thus,
we can accelerate the assigning step if we can test whether
the nearest centroid for a point remains unchanged without
recalculating the distances between the point and all cent-
roids. Suppose that after the updating step, the centroid ccp
nearest to xx moves to cc0p for p ¼ 1; . . . ; k, and any other cen-
troid ccqðq ¼ 1; . . . ; k; q 6¼ pÞ moves to cc0q. We ask if xx is still
closest to cluster cc0p after the updating step:

disðcc0p; xxÞ � disðcc0q; xxÞ;
for q ¼ 1; . . . ; kðq 6¼ pÞ:

To check this test efficiently for any point xxwithout recal-
culating the new distances on both sides of the inequality,
we will develop an efficient method to estimate an upper
bound of the new distance disðcc0p; xxÞ using the existing dis-
tance disðccp; xxÞ:

disðcc0p; xxÞ � disðccp; xxÞ þ an upper bound;

where we will define “an_upper_boundð�0Þ” shortly. Simi-
larly, we will derive a lower bound of disðcc0q; xxÞ using the
previous distance disðccq; xxÞ:

disðccq; xxÞ þ a lower bound � disðcc0q; xxÞ
for q ¼ 1; . . . ; kðq 6¼ pÞ,where a lower bound � 0.

Using these methods, we can implement a pruning
procedure. If

dis ðccp; xxÞ þ an upper bound �
dis ðccq; xxÞ þ a lower bound for q ¼ 1; . . . ; kðq 6¼ pÞ; ð�Þ

we can confirm disðcc0p; xxÞ � disðcc0q; xxÞðq 6¼ pÞ without calcu-
lating the new distances, while retaining the final solution.
In the next round of the assigning step, it might be neces-
sary to calculate the new distances, but we can omit this
step by substituting disðccp; xxÞ þ an upper bound for new dis-
tances disðcc0p; xxÞ and disðcc0q; xxÞ respectively because this
replacement does not violate the validity of the pruning
procedure in the next assigning step. In cases in which the
inequality (�) does not hold, we calculate disðcc0p; xxÞ and
disðcc0q; xxÞ for q ¼ 1; . . . ; kðq 6¼ pÞ, and determine the centroid
nearest to xx.

To facilitate the simple description of formula and deri-
vations, we introduce a method of decomposing the
Pearson’s correlation coefficient rðxx; yyÞ into two vectors
called “correlation coefficient vectors.”

Definition. Correlation coefficient vectors are defined as

1ffiffiffi
d

p xx½1� � xx

sx
;
xx½2� � xx

sx
; 	 	 	xx½d� � xx

sx

� �
;

1ffiffiffi
d

p yy½1� � yy

sy
;
yy½2� � yy

sy
; 	 	 	 yy½d� � yy

sy

� �
;

for xx ¼ ðxx½1�; . . . ; xx½d�Þ and y ¼ ðyy½1�; . . . ; yy½d�Þ; respectively.
Let CCxx and CCyy denote the respective correlation coeffi-
cient vectors.
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Note that the Pearson’s correlation coefficient rðxx; yyÞ is
equal to the inner product of CCxx and CCyy; i.e., rðxx; yyÞ ¼
ðCCxx;CCyyÞ. Any correlation coefficient vector CCxx is of
length 1; namely, k CCxx k¼ 1, and similarly, k CCyy k¼ 1.

To facilitate the discussion of calculating better upper
and lower bounds, we introduce a new definition.

Definition. Let cc and cc0 be respective centroids before and after
the updating step, and let CCcc and CCcc0 be their correlation
coefficient vectors. Let Ddisðcc; cc0; xxÞ denote disðcc0; xxÞ�
disðcc; xxÞ, the distance variation of point xx to cc and cc0.

For example, disðcc0p; xxÞ � disðccp; xxÞ þ an upper bound can
be concisely described by

Ddisðccp; cc0p; xxÞ � an upper bound:

Another merit of this notation is that we are able to trans-
form the distance variation into an inner product of ðCCcc�
CCcc0Þ and CCxx:

Ddisðccp; cc0p; xxÞ ¼ disðcc0p; xxÞ � disðccp; xxÞ
¼ rðccp; xxÞ � rðcc0p; xxÞ;
¼ ðCCccp; CCxxÞ � ðCCcc0p; CCxxÞ;
¼ ðCCccp � CCcc0p; CCxxÞ:

This inner product allows us to estimate an upper bound
and a lower bound of Ddisðccp; cc0p; xxÞ by analyzing the two
vectors independently as well as by considering each
dimension separately.

We can derive an upper bound and a lower bound that
are effective for any point xx for which the nearest centroid
is ccp. A simple approach is to derive two bounds from

����disðccp; cc0p; xxÞ���� ¼ ����ðCCccp � CCcc0p; CCxxÞ����
� ����CCccp � CCcc0p

����jjCCxxjj;

where the inequality holds because of the Cauchy-Schwarz
inequality. Because kCCxxk ¼ 1; we can use kCCccp � CCcc0pk
and �kCCccp � CCcc0pk as the upper and lower bounds,
respectively, and we define them as follows:

Definition.

upperAðccp; cc0pÞ ¼
def jjCCccp � CCcc0pjj

lowerAðccp; cc0pÞ ¼def�jjCCccp � CCcc0pjj

These upper and lower bounds are simple formulas but
effective for eliminating unnecessary computation. It takes
QðdkÞ time to calculate the lower and upper bounds for all kk
centroids, and QðkÞ space to store these bounds. We also
design more complicated bounds by taking the sum of the
differences at individual coordinates.

Definition. Let Scp denote the set of all points for which the near-
est centroid is ccp

upperB ðccp; cc0p; ScpÞ ¼def
Xd
j¼1

maximum
�
CCccp½j� � CCcc0p½j�; Scp

�
;

where

maximumðz; SccpÞ ¼def
z
maxfCCxx½j�jxx 2 Sccpg z � 0
z
minfCCxx½j�jxx 2 Sccpg z < 0

�

For q ¼ 1; . . . ; kðq 6¼ pÞ, define

lowerB ðccq; cc0q; SccpÞ ¼def
Xd
j¼1

minimumðCCccq½j� � Ccc0q½j�; SccpÞ;

where

minimumðz; SccpÞ ¼def
z
minfCCxx½j�jxx 2 Sccpg z � 0
z
maxfCCxx½j�jxx 2 Sccpg z < 0

:

�

Proposition. For any xx 2 Sccp

Ddisðccp; cc0p; xxÞ � upperBðccp; cc0p; SccpÞ and

lowerBðccq; cc0q; ScpÞ � Ddisðccq; cc0q; xxÞðq 6¼ pÞ:

It takes Qðdnþ dk2Þ time and Qðdkþ k2Þ space in order
to calculate upperBðccp; cc0p; SccpÞ and lowerBðccq; cc0q; SccpÞðp ¼
1; . . . ; k; q ¼ 1; . . . ; k; q 6¼ pÞ for every cluster ccp.

Proof.

Ddisðccp; cc0p; xxÞ ¼ ððCCccp � CCcc0pÞ; CCxxÞ

¼
Xd
j¼1

ðCCccp½j��CCcc0p½j�Þ 
 CCxx½j�

�
Xd
j¼1

maximumðCCccp½j� � CCcc0p½j�; SccpÞ

¼ upperBðccp; cc0p; SccpÞ
Ddisðccq; cc0q; xxÞ ¼ ððCCccq � CCcc0qÞ; CCxxÞ

¼
Xd
j¼1

ðCCccq½j��CCcc0q½j�Þ 
 CCxx½j�

�
Xd
j¼1

minimumðCCccq½j� � CCcc0q½j�; SccpÞ

¼ lowerBðccq; cc0q; SccpÞ:

For efficiency, we first compute the maximum and

minimum of fCCxx½j�jxx 2 Sccpg for each dimension j ¼
1; . . . ; d and for each cluster ccpðp ¼ 1; . . . ; kÞ, and store

this information in a table of size QðdkÞ. This tabulation

process takes QðdnÞ time. Looking up the table, it is

possible to calculate upperBðccp; cc0p; SccpÞ for any cluster

ccp in QðdÞ time, and lowerB ðccq; cc0q; SccpÞ for ðk� 1Þ clus-

ters ccqðq ¼ 1; . . . ; k; q 6¼ pÞ in Q dðk� 1Þð Þ time. Repeating

this calculation for each cluster ccp ¼ cc1; . . . ; cck requires

Qðdk2Þ time and Qðk2Þ space for storing upper and

lower bounds. tu
Using the above two calculations for upper and lower

bounds, we devise the pruning procedure that checks

disðccp; xxÞ þ upperAðccp; cc0pÞ � disðccq; xxÞ þ lowerAðccq; cc0qÞ;
or

disðccp; xxÞ þ upperBðccp; cc0p; SccpÞ
� disðccq; xxÞ þ lowerBðccq; cc0q; SccpÞ
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for each xx of nn points (xx 2 Sccp for each p ¼ 1; . . . ; kÞ and for
each q ¼ 1; . . . ; kðq 6¼ pÞ. If xx meets one of the inequalities,
we can confirm disðcc0p; xxÞ � disðcc0q; xxÞðq 6¼ pÞ by skipping the
calculation of the new distances. The total computation time
of checking the above inequality is QðknÞ. Using upperB
and lowerB requires additional computational time
Qðdnþ dk2Þ and space Qðdkþ k2Þ, which is constantly
required to calculate the two bounds in each iteration. In
contrast, computing upperA and lowerA needs QðdkÞ time
and QðkÞ space.

For each xx that violates the above inequality, we compute
new distances disðcc0p; xxÞ and disðcc0q; xxÞ for q ¼ 1; . . . ; kðq 6¼ pÞ
to find the centroid nearest to xx. In the best case, no calcula-
tion is needed. In the worst case, however, it is necessary to
compute new distances disðcc0p; xxÞ for p ¼ 1; . . . ; k and nn
points, and the worst time complexity is OðdknÞ. Recall for
comparison that the assigning step of Lloyd’s algorithm
requires QðdknÞ time.

We have defined two heuristic algorithms: one uses
upperA and lowerA, and the other upperB and lowerB to
prune unnecessary computations when performing kk-means
clustering using the Pearson correlation distance. We call the
former BoostKCP (boundA) and the latter BoostKCP
(boundB), where BoostKCP stands for Boosting K-means
Clustering for Pearson correlation distance.

We compare the performance of Elkan’s and Hamerly’s
methods, BoostKCP(boundA), and BoostKCP(boundB)
with respect to time and space complexity. Although indi-
vidual method accelerates Lloyd’s algorithm using lower
and upper bounds to prune unnecessary computation,
each iteration requires OðdknÞ time in the worst case. Thus,
we summarize the overhead of computing lower and
upper bounds in terms of time and space complexity
(Table 1). The entries of “time/iteration” show the asymp-
totic overhead computation time required to calculate
lower and upper bounds in each iteration by individual
algorithms. The entries for BoostKCP have been described,
while those for Elkan’s and Hamerly’s algorithms are
detailed in [42]. Table 1 shows that the time and space
complexity of BoostKCP(boundA) are smaller than those
of the other methods. In the experimental results, we will
show that BoostKCP(boundA) also outperforms the others
in terms of computational performance using real biologi-
cal data sets, confirming that BoostKCP(boundA) is a sim-
ple and powerful heuristic method for accelerating
kk-means clustering when using Pearson correlation and
standardized Euclidean distances.

3 EXPERIMENTAL RESULTS

3.1 Data Sets

We generated a synthetic data set of vectors whose ele-
ments were randomly selected from 0 to 1 using the Mers-
enne twister [46], a widely used pseudorandom number
generator with an extraordinarily long cycle of 219;937-1.
We generated data sets of 50,000 vectors of dimension dd ¼
10, 20, 50, 101, 201, 501, 1,001, and 2,001. This random data
set was an extreme example from which meaningful clus-
ters were difficult to extract. We used these sets to compare
the effectiveness of BoostKCP (boundA) and BoostKCP
(boundB) for pruning unnecessary computation.

In order to compare BoostKCP with other available
state-of-the-art pruning methods, we used three different
types of high-dimensional real biological data sets rather
than random data sets. The first real data set was a set of
vectors with human nucleosome positioning signals at
genomic positions surrounding transcription start sites
(TSSs). A nucleosome positioning signal at a genomic posi-
tion is a real value and represents the possibility of the pres-
ence of nucleosome centers at that position. From the
GENCODE database (version 7) [47], we obtained human
nucleosome positioning signals using MNase-sequencing
and the TSSs of the human reference genome hg19. We
repeated the process of merging neighboring TSSs within
1,000 bp into a group, and we selected representative TSSs
whose expression levels were maximal in individual
groups. From the representative TSSs, we excluded those
having any other TSSs within 1,000 bp on the reverse strand
to eliminate their effect. Subsequently, from the nucleo-
some positioning signal data, we generated a base set of
56,772 vectors of dimension 2,001 (�400M bytes) such that
their elements were real-valued nucleosome positioning
signals within 1,000 bp around representative TSSs and
more than half of the elements within 50, 100, 250, and
500 bp of the TSSs were nonzero. To monitor how the algo-
rithms behave for data of different dimension, from the
base set, we generated sets of vectors of dimension d ¼ 101,
201, 501, 1,001, and 2,001 by selecting the elements within
50, 100, 250, 500, and 1,000 bp of the TSSs. The last digit “1”
of dimension d indicates the TSS position. Because of
the construction of the base set, more than half of the ele-
ments in each vector are guaranteed to be nonzero. For
smaller dimensions d ¼ 10; 20, and 50, we selected every
ð2000=dÞ-th element from the base set; e.g., elements at
�1;000;�800;�600; . . . ;þ600, and þ800 bp for d ¼ 10. The
second real data set was a typical example of gene expres-
sion data, a set of 54,613 genes from 180 glioma samples
[48]. The third real data set was a set of 60,000 gray-level
images of handwritten letters in the MNIST database [49].
Each image consisted of 28 x 28 pixels, and we set dimen-
sion d ¼ 282 ¼ 784. As letters were categorized into 78
types, we set kk¼ 78.

3.2 Comparison of Computational Performance

We compared the following five methods:

� Lloyd’s algorithm [34].

TABLE 1
Comparison of the Asymptotic Overhead Spent by Calculating
Lower and Upper Bounds in Addition to Lloyd’s Algorithm in

Terms of Time and Space Complexity

time / iteration memory
BoostKCP(boundA) Θ( ) Θ( )
BoostKCP(boundB) Θ( + 2) Θ( + 2)
Elkan Θ( 2) Θ( + 2)
Hamerly Θ( 2) Θ( )
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� BoostKCP (boundA).

� BoostKCP (boundB).

� Elkan’s algorithm [41].

� Hamerley’s algorithm [42], [43].
We used the first three methods to compute kk-means clus-

tering using the Pearson correlation distance. In contrast,
since the latter two algorithms were designed to process the
Euclidean distance, we used these to calculate kk-means clus-
tering using the standardized Euclidean distance, the results
of which are equal to those using Pearson correlation dis-
tance as described in the previous section. For any initial
centroid set, the above five methods give the same final clus-
tering result.

Selecting the initial set of k centroids largely affects the
final result, and for this purpose, we used Bradley and
Fayyad’s method [31] because it performed better than the
other applicable initialization methods for several criteria
[26]. After selecting the initial centroids, we measured the
elapsed time during the application of each method towards
the same initial centroid set derived from different types of
data. We excluded the time required to compute the initial
set of centroids because it was typically much less than the
time used to compute kk-means clustering. We monitored
the computational performance using an Intel Xeon CPU
E5-2670 processor with a clock rate of 2.60 GHz and 66 GB
of main memory.

We first compared the performances of BoostKCP
(boundA) and BoostKCP (boundB) using 50,000 random
vectors of dimension d ¼ 10, 20, 50, 101, 201, 501, 1,001,
and 2,001. We calculated the average elapsed time by exe-
cuting 10 trials for d ¼ 10; 20; 50; 101; 201; 501, and 1,001,
but five trials for d ¼ 2;001, due to the large amount of
computation. We observed that BoostKCP (boundA) out-
performed BoostKCP (boundB). Specifically, we calculated
the performance improvement by BoostKCP(boundA) as
the acceleration rate; i.e., the elapsed time for BoostKCP
(boundB) divided by that for BoostKCP (boundA). Fig. 1
displays the elapsed time and acceleration rate for each
dimension and for k ¼ 10; 20, and 30. In all cases except
where d ¼ 10 and k ¼ 30, BoostKCP (boundA) was faster

than BoostKCP (boundB) partly because computing lower
and upper bounds for BoostKCP(boundA), QðdkÞ, is less
expensive than computing those for BoostKCP(boundB),
Qðdnþ dk2Þ, where d is the dimension, n is the number of
data, and k is the number of clusters (Table 1). We there-
fore used BoostKCP (boundA) for our comparisons with
the other four algorithms using real data sets.

We next compared BoostKCP (boundA) with Lloyd’s,
Elkan’s, and Hamerly’s algorithms using real biological
data sets. For measuring the performance improvement by
BoostKCP(boundA), we again defined the acceleration rate
as the average elapsed time of each algorithm divided by
that of BoostKCP (boundA).

Fig. 2 shows the experimental results obtained by apply-
ing the four algorithms to the nucleosome positioning data
for dimension d¼ 10, 20, 50, 101, 201, 501, 1,001 and 2,001 and
for number of clusters k¼ 10, 20, and 30. We set these values
for k because nucleosome positioning signal vectors can be
categorized into 10–30 groups with biologically meaningful
characteristics [24]. We computed the average elapsed time
by performing 10 trials with the exception of five trials where
d ¼ 2,001. Figs. 2A, 2B, 2C show the BoostKCP (boundA)
acceleration rates compared with those of the Lloyd’s,
Elkan’s, and Hamerly’s algorithms. BoostKCP (bound A)
clearly outperformed Lloyd’s and Hamerly’s algorithms for
all parameter value combinations, and it was also faster than
Elkan’s algorithm inmost cases.

It has been reported that Hamerly’s algorithm is often
faster than Elkan’s algorithm for various low-dimensional
ðd < 50) data using the Euclidean distance [42], [43]; how-
ever, Hamerly’s algorithm did not work as well for nucleo-
some positioning data using the standardized Euclidean
distance (Figs. 2A, 2B, 2C). We remark here that the stan-
dardized Euclidean distance between two points is likely to
be much smaller than the Euclidean distance between the
two points, implying that the points are densely distributed
in standardized Euclidean space. When handling more
densely distributed points, greater care has to be taken for
pruning unnecessary computation. In each iteration, Elkan’s
algorithm carefully maintains the lower and upper bounds

Fig. 1. Comparison between BoostKCP (boundA) and BoostKCP (boundB). Randomly generated 50,000 vectors of dimension d ¼ 10, 20, 50, 101,
201, 501, 1,001, and 2,001 were grouped into k (¼ 10, 20, and 30) clusters. The first y-axis and second y-axis show the elapsed time and accelera-
tion rate, respectively.
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for the distance between each point and each centroid,
while Hamerly’s algorithm considers the closest and second
closest centroids only. For pruning unnecessary computa-
tion, put another way, Elkan’s algorithm requires more time
and space to estimate tighter bounds than does Hamerly’s
algorithm, allowing the former to be more effective in
removing unnecessary computation than the latter.

Figs. 2D, 2E, and 2F display the average elapsed time
when using each combination of d and k values; however,
there is insufficient information as to how these times dif-
fered, since the elapsed time in each trial largely depended
on the selection of the initial k vectors. To understand this
further, we investigated how the elapsed time in each trial
changed depending on the number of iterations when
we applied BoostKCP (boundA), Elkan’s, and Lloyd’s

algorithms to the nucleosome positioning signal data of
dimension d ¼ 501 for k ¼ 10; 20, and 30. We did not con-
sider Hamerly’s algorithm because its performance was
similar to that of Lloyd. Fig. 3A shows that how elapsed
time of individual algorithm changes for ten different ini-
tial sets of centroids. The figure shows that the elapsed
time of each algorithm increased in proportion to the num-
ber of iterations. A major difference between the three
algorithms was that the elapsed time of Elkan’s and
Lloyd’s algorithms increased for larger values of k, but
that of our pruning method was almost independent of k,
which explains why the acceleration rate increased for
larger values of k, as seen in Fig. 2.

To gain a better understanding of this, Fig. 3B presents
an in-depth analysis, showing the elapsed time in each

Fig. 2. Performance improvement by BoostKCP (boundA) using nucleosome positioning data of dimension d ¼ 10, 20, 50, 101, 201, 501, 1,001, and
2,001. (A-C) Acceleration rates by BoostKCP (boundA) for each of Lloyd’s, Hamerly’s, and Elkan’s algorithms. The lines for BoostKCP(boundA)
show the constant rate of 1, the elapsed time for BoostKCP (boundA) divided by itself. Nucleosome positioning data were grouped into k clusters
where k¼ 10 (A), 20 (B), and 30 (C). To make the comparison fair, we supplied all the algorithms with the same set of initial centroids that we gener-
ated using Bradley and Fayyad’s method. (D-F) The average elapsed time of BoostKCP (boundA), Lloyd’s, Hamerly’s, and Elkan’s algorithms.
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iteration of the three algorithms. Each iteration time for
Lloyd’s algorithm is almost constant because the algorithm
does not avoid unnecessary computation, while each itera-
tion time for BoostKCP (boundA) and Elkan’s algorithm
for k ¼ 10; 20, and 30 decreased markedly after the first
few steps. In later steps, the elapsed time of BoostKCP
(boundA) became almost independent of the value of k,
giving the account that its overall elapsed time was almost
proportional to the number of iterations but independent
of k, as shown in Fig. 3A. In contrast, the elapsed time of
Elkan’s algorithm in each iteration increased for larger val-
ues of k. This is because in each iteration, Elkan’s algo-
rithm maintains a large array of lower and upper bounds
for the distance between each �56K points and each k cen-
troid at an expense. In contrast, BoostKCP (boundA) needs
to calculate only the lower and upper bounds for each k
centroid (Table 1).

We then applied the three algorithms to the gene
expression data, a set of 54613 vectors of dimension

d ¼ 180. Because the dimension was fixed, we grouped
the data into k ð¼ 2; 3; 10; 20; 30; ; 70Þ clusters of genes to
determine if BoostKCP (boundA) achieved better perfor-
mance with larger values of k. Fig. 4 shows the average
elapsed time for ten trials and the acceleration rate of
BoostKCP (boundA). The three algorithms used Bradley
and Fayyad’s method to generate the same set of initial
centroids. BoostKCP (boundA) outperformed Elkan’s
and Lloyd’s algorithms for each k except for the case
that the acceleration rate by BoostKCP (boundA) for
Elkan’s algorithm was 0.988 when k ¼ 2. The accelera-
tion rates were 1.02, 1.13, and 1.32 when k ¼ 3, 10, and
20, respectively. The acceleration rate increased for larger
values of k, which was consistent with the performance
improvement that we observed for the nucleosome posi-
tioning data in Fig. 2.

We also applied BoostKCP (boundA) and Elkan’s algo-
rithm to a data set of handwritten letters (d ¼ 784) to
obtain 78 (¼ kÞ groups (different letters). The average

Fig. 3. In-depth performance analysis on k-means clustering of nucleosome positioning data. (A) Analysis of clustering nucleosome positioning data
of dimension d ¼ 501 by BoostKCP (boundA), Elkan’s and Lloyd’s algorithms. Hamerly’s algorithm was not considered because Lloyd’s and
Hamerly’s algorithms performed similarly. A dot represents the number of iterations (x-axis) and the elapsed time (seconds) of each experiment of
10 trials for k ¼ 10, 20 and 30. (B) Elapsed time of each iteration (including the assigning and updating steps) in typical trials.
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acceleration rate of the 10 trials was high (2.18 – 2.46) pre-
sumably because the number of clusters was large. Fig. 5
shows the elapsed time, acceleration rate, and number of
iterations for each of the ten trials. The iteration numbers
are likely to be smaller than those in Fig. 3A because the
images of the handwritten letters are grouped inherently.
In general, the number of iterations depends on individual
data, and it tends to be smaller when the focal data have
inherently discriminating groups of similar vectors that
are relatively easier to categorize. In contrast, randomly
generated data avoid this data skewness; thus, the algo-
rithms spend more time searching for centroids.

We have so far examined situations when the number
of clusters ðkÞ ranges from two to 78 simply because these
numbers of groups are of interest in real biological applica-
tions. We here investigate whether BoostKCP (boundA) out-
performs Elkan’s and Lloyd’s algorithms for larger values
of k, such as k ¼ 100 and 500. Indeed, Fig. 6 illustrates that
BoostKCP (boundA) was the winner when the three algo-
rithms were used to cluster the nucleosome positioning
data of dimension d ¼ 10, 20, 50, 101, and 201 into k ¼ 100
and 500 groups.

4 CONCLUSION

High-dimensional data, such as epigenome data, nucleo-
some positioning, and gene expression patterns, are
quite common in biological research. K-means clustering

Fig. 5. The elapsed time, acceleration rate, and number of iterations of
each of ten attempts to cluster handwritten letter images of dimension
784 (¼d) into 78 (¼k) groups using BoostKCP (boundA) and Elkan’s
algorithm.

Fig. 4. Performance improvement by BoostKCP (boundA) using gene expression data of dimension d ¼ 180 to group the data into k (¼2, 3, 10, 20,
30, . . ., 70) clusters. (A) Acceleration rates by BoostKCP (boundA) for each of Elkan’s and Lloyd’s algorithms. (B) Average elapsed time of 10 trials.
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using the Pearson correlation and standardized Euclidean
distances has proven useful for obtaining novel insight
from such large-scale biological data sets; however, it is
likely to be a computationally intense task, thus demanding
a method for accelerating computational performance for
high-dimensional biological data. We have addressed
the problem of eliminating unnecessary calculations

associated with the kk-means clustering algorithm. In this
paper, we introduced BoostKCP, a simple but powerful
heuristic method that has proved useful for reducing the
computational time. We applied BoostKCP to three types of
real biological data sets of dimension d ¼ 10, 20, 50, 101,
180, 201, 501, 784, 1,001 and 2,001 to perform k-clustering
for kk ¼ 2, 3, 10, 20, 30, 40, 50, 60, 70, 78, 100, and 500.

Fig. 6. Performance improvement by BoostKCP (boundA) using nucleosome positioning data of dimension d ¼ 10, 20, 50, 101, and 201 to group the
data into k¼ 100 and 500 clusters. (A;C) Acceleration rates by BoostKCP (boundA) for each of Elkan’s and Lloyd’s algorithms when k¼ 100 (A) and
k¼ 500 (C). (B;D) Average elapsed time of ten trials for BoostKCP (boundA), Elkan’s, and Lloyd’s algorithms when k¼ 100 (B) and k¼ 500 (D).
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BoostKCP outperformed Elkan’s, Lloyd’s, and Hamerly’s
algorithms in most cases. Our concept is also applicable to
kk-medians clustering, which uses the median of points in a
cluster as the cluster representative, and this method is
applied frequently to generate tight clusters.

ACKNOWLEDGMENTS

The authors thank Yuta Suzuki for his valuable suggestions.
This work was supported in part by MEXT (Grant-in-Aid
for Scientific Research A 23241058, Global COE program
“Deciphering Biosphere from Genome Big Bang”, Innova-
tive Cell Biology by Innovative Technology).

REFERENCES

[1] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” in
Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 25, pp. 14863–14868.

[2] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmi-
trovsky, E. S. Lander, and T. R. Golub, “Interpreting patterns of
gene expression with self-organizing maps: Methods and applica-
tion to hematopoietic differentiation,” in Proc. Natl. Acad. Sci.
USA, vol. 96, no. 6, 1999, pp. 2907–2912, 1999.

[3] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene
expression data: A survey,” IEEE Trans. Knowl. and Data Eng.,
vol. 16, no. 11, pp. 1370–1386, Nov. 2004.

[4] P. D’haeseleer, “How does gene expression clustering work?”Nat.
Biotechnol., vol. 23, pp. 1499–501, 2005.

[5] T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman, G.
Giannoukos, P. Alvarez, W. Brockman, T.-K. Kim, R. P. Koche,
W. Lee, E. Mendenhall, A. O’Donovan, A. Presser, C. Russ, X.
Xie, A. Meissner, M. Wernig, R. Jaenisch, C. Nusbaum, E. S.
Lander, and B. E. Bernstein, “Genome-wide maps of chroma-
tin state in pluripotent and lineage-committed cells,” Nature,
vol. 448, pp. 553–60, 2007.

[6] N. D. Heintzman, G. C. Hon, R. D. Hawkins, P. Kheradpour, A.
Stark, L. F. Harp, Z. Ye, L. K. Lee, R. K. Stuart, and C. W. Ching,
“Histone modifications at human enhancers reflect global cell-
type-specific gene expression,” Nature, vol. 459, no. 7243, pp. 108–
112, 2009.

[7] P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz, A. Minoda,
N. C. Riddle, J. Ernst, P. J. Sabo, E. Larschan, A. A. Gorchakov,
and T. Gu, “Comprehensive analysis of the chromatin landscape
in Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 480–
485, 2010.

[8] S. Roy, J. Ernst, P. V. Kharchenko, P. Kheradpour, N. Negre, M. L.
Eaton, J. M. Landolin, C. A. Bristow, L. Ma, and M. F. Lin,
“Identification of functional elements and regulatory circuits by
Drosophila modENCODE,” Science, vol. 330, no. 6012, pp. 1787–
1797, 2010.

[9] L. Handoko, H. Xu, G. Li, C. Y. Ngan, E. Chew, M. Schnapp, C. W.
H. Lee, C. Ye, J. L. H. Ping, F. Mulawadi, E. Wong, J. Sheng, Y.
Zhang, T. Poh, C. S. Chan, G. Kunarso, A. Shahab, G. Bourque, V.
Cacheux-Rataboul, W.-K. Sung, Y. Ruan, and C.-L. Wei, “CTCF-
mediated functional chromatin interactome in pluripotent cells,”
Nat. Genetics, vol. 43, pp. 630–8, 2011.

[10] T. Liu, A. Rechtsteiner, T. A. Egelhofer, A. Vielle, I. Latorre, M. S.
Cheung, S. Ercan, K. Ikegami, M. Jensen, and P. Kolasinska-
Zwierz, “Broad chromosomal domains of histone modification
patterns in C. elegans,” Genome Res., vol. 21, no. 2, pp. 227–236,
2011.

[11] J. Ernst and M. Kellis, “ChromHMM: Automating chromatin-state
discovery and characterization,” Nat. Methods, vol. 9, no. 3,
pp. 215–216, 2012.

[12] M. M. Hoffman, O. J. Buske, J. Wang, Z. Weng, J. A. Bilmes, and
W. S. Noble, “Unsupervised pattern discovery in human chroma-
tin structure through genomic segmentation,” Nat. Methods, vol. 9,
no. 5, pp. 473–476, 2012.

[13] J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S.
Liu, and B. Ren, “Topological domains in mammalian genomes
identified by analysis of chromatin interactions,” Nature, vol. 485,
no. 7398, pp. 376–380, 2012.

[14] S. M. Johnson, F. J. Tan, H. L. McCullough, D. P. Riordan, and A.
Z. Fire, “Flexibility and constraint in the nucleosome core land-
scape of Caenorhabditis elegans chromatin,” Genome Res., vol. 16,
no. 12, pp. 1505–1516, 2006.

[15] W. Lee, D. Tillo, N. Bray, R. H. Morse, R. W. Davis, T. R. Hughes,
and C. Nislow, “A high-resolution atlas of nucleosome occupancy
in yeast,” Nat. Genetics, vol. 39, pp. 1235–1244, 2007.

[16] I. Whitehouse, O. J. Rando, J. Delrow, and T. Tsukiyama,
“Chromatin remodelling at promoters suppresses antisense tran-
scription,” Nature, vol. 450, pp. 1031–5, 2007.

[17] A. Valouev, J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H.
Peckham, K. Zeng, J. a. Malek, G. Costa, K. McKernan, A.
Sidow, A. Fire, and S. M. Johnson, “A high-resolution, nucleo-
some position map of C. Elegans reveals a lack of universal
sequence-dictated positioning,” Genome Res., vol. 18, pp. 1051–
63, 2008.

[18] T. N. Mavrich, C. Jiang, I. P. Ioshikhes, X. Li, B. J. Venters, S. J.
Zanton, L. P. Tomsho, J. Qi, R. L. Glaser, S. C. Schuster, D. S.
Gilmour, I. Albert, and B. F. Pugh, “Nucleosome organization
in the Drosophila genome,” Nature, vol. 453, pp. 358–362, 2008.

[19] R. K. Chodavarapu, S. Feng, Y. V. Bernatavichute, P.-Y. Chen, H.
Stroud, Y. Yu, J. a. Hetzel, F. Kuo, J. Kim, S. J. Cokus, D. Casero,
M. Bernal, P. Huijser, A. T. Clark, U. Kr€amer, S. S. Merchant, X.
Zhang, S. E. Jacobsen, and M. Pellegrini, “Relationship between
nucleosome positioning and DNA methylation,” Nature, vol. 466,
pp. 388–92, 2010.

[20] A. Valouev, S. M. Johnson, S. D. Boyd, C. L. Smith, A. Z. Fire, and
A. Sidow, “Determinants of nucleosome organization in primary
human cells,”Nature, vol. 474, pp. 516–520, 2011.

[21] X. Wang, G. O. Bryant, M. Floer, D. Spagna, and M. Ptashne, “An
effect of DNA sequence on nucleosome occupancy and removal,”
Nat. Publishing Group, vol. 18, pp. 507–509, 2011.

[22] Z. Zhang, C. J. Wippo, M. Wal, E. Ward, P. Korber, and B. F. Pugh,
“A packing mechanism for nucleosome organization reconsti-
tuted across a eukaryotic genome,” Science, vol. 332, pp. 977–80,
2011.

[23] J. Wang, J. Zhuang, S. Iyer, X. Lin, T. W. Whitfield, M. C.
Greven, B. G. Pierce, X. Dong, A. Kundaje, Y. Cheng, O. J.
Rando, E. Birney, R. M. Myers, W. S. Noble, M. Snyder, and Z.
Weng, “Sequence features and chromatin structure around the
genomic regions bound by 119 human transcription factors,”
Genome Res., vol. 22, pp. 1798–1812, 2012.

[24] A. Kundaje, S. Kyriazopoulou-Panagiotopoulou, M. Libbrecht, C.
L. Smith, D. Raha, E. E. Winters, S. M. Johnson, M. Snyder, S. Bat-
zoglou, and A. Sidow, “Ubiquitous heterogeneity and asymmetry
of the chromatin environment at regulatory elements,” Genome
Res., vol. 22, pp. 1735–1747, 2012.

[25] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recog. Lett., vol. 31, no. 8, pp. 651–666, 2010.

[26] H. A. Kingravi, M. E. Celebi, and P. A. Vela, “A comparative
study of efficient initialization methods for the k-means clustering
algorithm,” Expert Syst. Appl., vol. 40, pp. 200–120, 2012.

[27] E. W. Forgy, “Cluster analysis of multivariate data: Efficiency ver-
sus interpretability of classifications,” Biometrics, vol. 21, pp. 768–
769, 1965.

[28] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Stat-
ist. Probability, 1967, pp. 281–297.

[29] T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical Comput. Sci., vol. 38, pp. 293–306, 1985.

[30] I. Katsavounidis, C. C. Jay Kuo, and Z. Zhang, “A new initializa-
tion technique for generalized Lloyd iteration,” IEEE Signal Pro-
cess. Lett., vol. 1, no. 10, pp. 144–146, Oct. 1994.

[31] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-
means clustering,” in Proc. 15th Int. Conf. Mach. Learn., 1998,
pp. 91–99.

[32] D. Arthur and S. Vassilvitskii, “k-meansþþ: The advantages of
careful seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete
Algorithms, 2007, pp. 1027–1035.

[33] T. Su and J. G. Dy, “In search of deterministic methods for initial-
izing K-means and Gaussian mixture clustering,” Intell. Data
Anal., vol. 11, no. 4, pp. 319–338, 2007.

[34] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[35] F. D. Gibbons and F. P. Roth, “Judging the quality of gene expres-
sion-based clustering methods using gene annotation,” Genome
Res., vol. 12, no. 10, pp. 1574–1581, Oct. 2002.

ICHIKAWA AND MORISHITA: A SIMPLE BUT POWERFUL HEURISTIC METHOD FOR ACCELERATING k-MEANS CLUSTERING OF... 691



[36] F. Geraci, M. Leoncini, M. Montangero, M. Pellegrini, and M. E.
Renda, “K-Boost: A scalable algorithm for high-quality clustering
of microarray gene expression data,” J. Comput. Biol., vol. 16,
no. 6, pp. 859–873, Jun. 2009.

[37] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.
Church, “Systematic determination of genetic network
architecture,” Nat. Geneicst, vol. 22, no. 3, pp. 281–285, Jul. 1999.

[38] R. Sharan and R. Shamir, “CLICK: A clustering algorithm with
applications to gene expression analysis,” in Proc. Int. Conf. Intell.
Syst. Molecular Biol., vol. 8, 2000, pp. 307–316.

[39] F. De Smet, J. Mathys, K. Marchal, G. Thijs, B. De Moor, and Y.
Moreau, “Adaptive quality-based clustering of gene expression
profiles,” Bioinformatics, vol. 18, no. 5, pp. 735–746, May 2002.

[40] K. L. Clarkson, “Nearest-neighbor searching and metric space
dimensions,” Nearest-Neighbor Methods Learning Vis.: Theory Prac-
tice, pp. 15–59, 2006.

[41] C. Elkan, “Using the triangle inequality to accelerate k-means,” in
Proc. Int. Conf. Mach. Learn., 2003, p. 147-153.

[42] G. Hamerly, “Making k-means even faster,” in Proc. Symp. Data
Mining, 2010, pp. 130–140.

[43] J. Drake and G. Hamerly, “Accelerated k-means with adaptive
distance bounds,” in Proc. 5th NIPS Workshop Optimization Mach.
Learn., 2012.

[44] V. C. Osamor, E. F. Adebiyi, J. O. Oyelade, and S. Doumbia,
“Reducing the time requirement of k-means algorithm,” PLoS
One, vol. 7, no. 12, p. e49946, 2012.

[45] M. H. Fulekar, Bioinformatics: Applications in Life and Environmental
Science. New York, NY, USA: Springer, 2009.

[46] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Modeling Comput. Simulation, vol. 8, no. 1,
pp. 3–30, 1998.

[47] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans,
F. Kokocinski, B. L. Aken, D. Barrell, A. Zadissa, S. Searle, I.
Barnes, A. Bignell, V. Boychenko, T. Hunt, M. Kay, G. Mukherjee,
J. Rajan, G. Despacio-Reyes, G. Saunders, C. Steward, R. Harte, M.
Lin, C. Howald, A. Tanzer, T. Derrien, J. Chrast, N. Walters, S.
Balasubramanian, B. Pei, M. Tress, J. M. Rodriguez, I. Ezkurdia, J.
van Baren, M. Brent, D. Haussler, M. Kellis, A. Valencia, A. Rey-
mond, M. Gerstein, R. Guigo, and T. J. Hubbard, “GENCODE:
The reference human genome annotation for The ENCODE proj-
ect,” Genome Res., vol. 22, no. 9, pp. 1760–1774, Sep. 2012.

[48] L. Sun, A. M. Hui, Q. Su, A. Vortmeyer, Y. Kotliarov, S. Pastorino,
A. Passaniti, J. Menon, J. Walling, R. Bailey, M. Rosenblum, T.
Mikkelsen, and H. A. Fine, “Neuronal and glioma-derived stem
cell factor induces angiogenesis within the brain,” Cancer Cell,
vol. 9, no. 4, pp. 287–300, Apr. 2006.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

Kazuki Ichikawa received the BS degree from
the Department of Bioinformatics and Systems
Biology, Faculty of Science, The University of
Tokyo, in 2012. He is a graduate student at the
Department of Computational Biology, Graduate
School of Frontier Sciences, The University of
Tokyo.

Shinichi Morishita received the BS, MS, and
PhD degree from the Department of Information
Science, Graduate School of Science, The Uni-
versity of Tokyo. He is a professor in the Depart-
ment of Computational Biology, Graduate School
of Frontier Sciences, The University of Tokyo.
He published more than 100 papers on logic
programming, database systems, data mining,
optimization algorithms, genome assembly,
epigenomics, genome evolution, chromatin struc-
ture, RNAi, transcriptome, phenome, and per-

sonal genomics. He is a member of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

692 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 4, JULY/AUGUST 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


