
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024 1633

FaStaNMF: A Fast and Stable Non-Negative Matrix
Factorization for Gene Expression
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Alisa Yurovsky , and Richard A. Moffitt

Abstract—Gene expression analysis of samples with mixed cell
types only provides limited insight to the characteristics of spe-
cific tissues. In silico deconvolution can be applied to extract cell
type specific expression, thus avoiding prohibitively expensive tech-
niques such as cell sorting or single-cell sequencing. Non-negative
matrix factorization (NMF) is a deconvolution method shown to
be useful for gene expression data, in part due to its constraint of
non-negativity. Unlike other methods, NMF provides the capability
to deconvolve without prior knowledge of the components of the
model. However, NMF is not guaranteed to provide a globally
unique solution. In this work, we present FaStaNMF, a method that
balances achieving global stability of the NMF results, which is es-
sential for inter-experiment and inter-lab reproducibility, with ac-
curacy and speed. Results: FaStaNMF was applied to four datasets
with known ground truth, created based on publicly available data
or by using our simulation infrastructure, RNAGinesis. We as-
sessed FaStaNMF on three criteria – speed, accuracy, and stability,
and it favorably compared to the standard approach of achieving
reproduceable results with NMF. We expect that FaStaNMF can
be applied successfully to a wide array of biological data, such as
different tumor/immune and other disease microenvironments.

Index Terms—Deconvolution, gene expression, NMF, transcri-
ptomics.

I. INTRODUCTION

MANY Problems in Biology Require the Precise Knowl-
edge of Expression of Specific Cell types. Very im-

portantly, Cancer Research Relies on the Ability to Faithfully
Assess Tumor-Specific Expression Profiles in Parallel With
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Information From Surrounding Tissue or Immune Cells That
are Found in Bulk Patient samples, i.e., Biopsy Specimens [1].
Isolating Cells Using Flow cytometry, or Single Cell Sequencing
Is powerful, but They Do Not Scale well. These Methods are
expensive, Require Intensive Equipment resources, and Cannot
Be Used on the Majority of the World’s Existing samples, Which
are Formalin-Preserved [2], [3]. Deconvolution Is a Cheaper
in Silico Solution That Is Applicable to Archival data, and
Comprises a Class of Algorithms Aimed At Providing Robust
Insight Into the Complex Processes Occurring in Individual Cell
types, Which Is Our focus, As Well More Generally Unmixing
Individual Expression Profiles From Heterogenous samples.

In recent times, there has been tremendous growth in the
development of in silico gene expression deconvolution and
analysis tools for cancer analysis. There are methods that are
only interested in inferring tumor purity (proportion of tumor
cells in the bulk sample) that use DNA methylation profiles,
such as InfiniumPurify [4], or DNA copy number variation,
such as ABSOLUTE [5]. These methods are not appropriate for
extraction of gene-level expression profiles of tumor microen-
vironments.

The transcriptomics-based methods seek to deconvolve both
the proportion of each cell type in each sample and the cor-
responding cell type expression profiles, but present various
limitations such as assumptions about the number of cell types
present in the sample or requiring a-priori pure expression
profiles. For example, DeMixT [6] (while limited to only three
compartments) requires the input of pure expressions from 2
compartments to estimate the expression of the 3rd compartment
and their proportions. ESTIMATE [7] is limited to providing a
score of tumor purity. DSA [8] requires a-priori lists of marker
genes and CIBERSORT [9] requires a “signature matrix” com-
prised of barcode genes that are enriched in each cell type of
interest. The assumptions and requirements make these tools
non ideal for complex microenvironments.

Other deconvolution analysis tools make use of various stan-
dard decomposition methods as their primary workflow. Prin-
cipal component analysis (PCA) is employed in GO-PCA [10],
and pcaExplorer [11], while differential gene expression analy-
sis (DEA) using the DESeq2 package is used in GENAVi [12]
and BEAVR [13]. These deconvolution tools, while useful for
RNAseq analysis exploration, are not appropriate for unmixing
individual expression profiles from heterogenous samples, in
part due to producing negative values.
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The application of non-negative matrix factorization (NMF)
to transcriptomic data deconvolution was introduced as an alter-
native to PCA; NMF jettisons PCA’s constraint of orthogonality
— which typically requires linear combinations of components
with arbitrary signs [14]. The non-negativity constraint of NMF
make sense in aiding the interpretation for transcriptomic data.
Furthermore, comparison studies of matrix factorization meth-
ods have indicated that NMF and extensions of NMF offer the
most promising results for identifying clusters and subtypes
when compared to methods such as extensions of PCA [15],
partitioning around medoids (PAM) [16], hierarchical clustering
(HC) [16], [17], and DESeq2 [17].

As the best of the sample-composition-agnostic transcrip-
tomic data deconvolution methods, NMF has been implemented
by a number of packages and wrappers [18], [19]. Prior work,
DECODER [20], uses NMF and leverages NMF’s consensus
matrix, to select the best number of metasamples for mixed
sample deconvolution by iteratively applying NMF to subsets
of the expression matrix.

We present FaStaNMF (Fast and Stable NMF), a new method
that balances accuracy and speed with achieving global stabil-
ity of the NMF results, which is essential for reproducibility
(https://github.com/rmoffitt/aged). We extend the idea of taking
advantage of the NMF consensus matrix to identify the most
informative genes for each metasample from DECODER, and
use it for iterative seeding of the NMF runs, to achieve a fast,
stable, and accurate result. We do not compare FaStaNMF
against DECODER because the latter is focused on selecting
the best number of metasamples, as opposed to producing a fast
and reproduceable result, and most importantly, because it is not
based on an open-source platform.

We compare FaStaNMF against the standard approach of
achieving reproduceable results with NMF, the best sample-
composition-agnostic genomic data deconvolution method. Un-
like the standard reproduceable results of NMF, FaStaNMF
results are version and implementation independent, which is
extremely important for being able to reproduce historical results
for downstream analysis.

II. METHODS

A. NMF Approach and the Consensus Matrix

In the context of transcriptomic data, NMF performs deconvo-
lution on matrices (see Fig. 1(a)), where the rows represent genes
and the columns represent samples. After running NMF, the
multitude of genes represented in the gene expression data will
be represented by the k most prominent metasamples in the gene
expression matrix where k is the factorization rank specified by
the user. NMF will deconvolve the gene expression data matrix,
V, into two matrices W and H such that V≈W×H (Fig. 1(d)). W
will have i rows and k columns, with each column representing
the gene expressions individual to this metasample, and H will
have k rows and j columns, with each row representing the
metasample’s proportion for each sample. For example, matrix
cell Wab will represent coefficient of gene a in metasample b;
matrix cell Hcd will represent the proportion of metasample c in
sample d.

Fig. 1. NMF workflow with FaStaNMF visualizations. (a) Input matrix with
gene expressions. (b) A gene expression matrix in its original form is rarely
optimal for deconvolution. Clearing rows with variance less than one, since
genes that are equally expressed across all samples will contribute nothing
significant to the deconvolution, will help speed up the pipeline and reduce
noise. Furthermore, performing deconvolution on read counts or expression data
that is not transformed with a transformation such as a log transformation or a
variance-stabilizing transformation can lead to substantially skewed or slanted
results. (c) FaStaNMF provides a convenient visualization and the cophenetic
correlation coefficient generator to aid in the selection of k – the optimal
factorization rank for NMF. (d) Non-negative matrix factorization (NMF) is
performed on the data. (e) FaStaNMF package provides a visualization tools
help interpret the results of the deconvolution.

Before running NMF, it is good practice to clean up and
normalize the data (Fig. 1(b)). Rows with a variance of less
than one can be removed, as genes expressing such little vari-
ance across samples will not have a significant effect on the
results of NMF, but will contribute to the downstream runtime.
Clearing rows with low variance is typically only recommended
for gene expression matrices with counts that have not already
been transformed. Next, the data is optionally transformed with
log(1+x) or a variance stabilizing transformation (VST). A
log(1+x) transformation is appropriate prior to NMF as the
transformation will output non-negative values for values of
zero in the untransformed input matrix. VST will transform
the values to become approximately homoscedastic, having
constant variance unrelated to their mean values; VST is better
at stabilizing variance than log, but should be applied carefully
to sparse data [21].

After the optional data transformation, the desirable factor-
ization rank, k, should be selected for NMF. The most common
approach to finding an optimal factorization rank is to use the
cophenetic correlation coefficient as a measure [18]. Brunet et
al. [14] also proposed the cophenetic correlation coefficient as
a most appropriate measure for clustering stability. To obtain a
cophenetic correlation coefficient, NMF is run multiple times to
acquire a consensus matrix, which is the average connectivity
matrix over these runs, and the cophenetic correlation coefficient
is a measure of the robustness and stability of the clusters using

https://github.com/rmoffitt/aged
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the consensus matrix [14], [18]. The cophenetic correlation
coefficient is between zero and one, and the closer the cophenetic
correlation coefficient is to one, the more robust and stable the
clusters are [18].

Due to its importance, a cophenetic correlation coefficient
plot generator (Fig. 1(c)) is included as an optional preprocess-
ing step for FaStaNMF, displaying the cophenetic correlation
coefficient for each factorization rank k in an optionally con-
secutive range of ranks. The FaStaNMF cophenetic correlation
coefficient generator will highlight two ranks for the user: the
rank with the maximum cophenetic correlation coefficient and
the rank directly before the biggest decrease in slope before
the first positive slope in the graph is witnessed. Brunet et al.
[14] proposes using a factorization rank where the magnitude
of the cophenetic correlation coefficient begins to decrease.
The ranks suggested by the FaStaNMF cophenetic correlation
coefficient generator and the cophenetic correlation coefficients
themselves are mere suggestions, as any rank has the potential to
provide insight into the data (see Supplement Fig. 1). However,
since its first applications to gene expression data, researchers
seeking subtypes in gene expression data have repeatedly used
the cophenetic correlation coefficient as a guide for an optimal
factorization rank k for NMF [14], [20], [22].

NMF (Fig. 1(d)) works by iteratively modifying W and H until
their product approximates the gene expression matrix V. The
initial values of W and H (called seed) can be user-specified, ini-
tialized randomly, or with the results of algorithms such as Inde-
pendent Component Analysis or Nonnegative Double Singular
Value Decomposition. The objective of the NMF optimization
is to minimize the cost function, subject to the non-negativity
constraints. The cost function, or the distance between V and W
× H, can be based on the Frobenius Distance or the Kullback-
Leibler divergence, and an optional regularization term can be
added to enforce smoothness or sparsity properties on W and H
[23]. NMF iteratively solves the problem by building matrices
W and H that minimize the cost function at each iteration, using
a variety of algorithms, including those by [14] and [24].

Finally, a variety of visualizations can be used to interpret
the results of the convolution and infer biological meaning.
FaStaNMF package provides scatterplot, heatmap, and violin
plot generators (Fig. 1(e)) to interpret the results of the decon-
volution.

NMF is a stochastic approach, and care must be taken to
achieve inter-experiment and inter-lab reproducibility of results.
A trivial solution for result reproducibility is to use the same
seed, which initializes the random number generators, with
subsequent NMF runs, which will result in the identical fac-
torization. A more reasonable approach is to combine setting
the seed with running the NMF multiple times (Fig. 2(a)). NMF
returns the best fit over all the runs, i.e., the result of the run where
the factorization achieves the lowest approximation error. A
popular NMF implementation recommends setting the number
of runs to nrun = 200 to achieve a stable and reasonable result
[18].

While effective, we find several problems with the standard
NMF approaches. First, running the entire dataset nrun times
does not scale well for increasingly larger datasets. Secondly,

Fig. 2. Regular NMF vs FaStaNMF flow. (a) To achieve a stable and reasonable
result, regular NMF is run n times, performing deconvolution on the entire
dataset each time, and the best result is selected. (b) FaStaNMF flow performs n
deconvolutions on the reduced dataset of 1000 most variable genes and leverages
the most impactful genes from the consensus matrix to seed the final NMF runs.

the seed is tied to the implementation and version of NMF,
which implies the possibility of different starting points and
different results of the optimization when a different version
or implementation is used.

When NMF is run multiple times, in order to select the best run
which would minimize the cost function, the consensus matrix -
the average connectivity matrix over all these runs – is generated
by default. Our idea is to take advantage of the information in the
consensus matrix to identify the most consistently co-clustered
genes with which to build a set of metasamples to seed a final
deterministic NMF run, to achieve a fast, stable, and accurate
result, which is implementation and version agnostic.

B. FaStaNMF Approach

Our approach takes advantage of the NMF consensus matrix
introduced in the previous section. Due to the nature of gene
expression profiles, we don’t expect most of the features to
be informative for the purposes of deconvolution, however,
we are interested in acquiring the full expression profiles for
each metasample. Briefly, FaStaNMF is run multiple times on
a reduced dataset to generate the consensus matrix, and the
most impactful genes are selected to seed the final NMF runs
(Fig. 2(b)).

First, we select the 1000 most variable genes from the gene
expression matrix V, creating V1K. While we empirically found
this value to give stable results, we leave it as a parameter
with default set to 1000. We run regular NMF deconvolution
with nrun = 200 on V1K. The consensus matrix - the average
connectivity matrix over all these runs – is generated by default.
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We then use the consensus matrix to select mutually exclusive
sets of genes that respectively cluster together most of the time.
Briefly, a dendrogram is generated using hierarchical clustering
of the consensus matrix. The dendrogram is iteratively probed
at different levels to select genes that cluster together. We start
looking for the largest sets of genes that cluster together more
than 95% of the time. The subset of gene expressions is then
extracted for the combined set of genes, where each gene is
among the most frequently clustered genes for one of the factors,
is called Vcore. It is intuitive that the core genes will be among
the most variable genes in the set.

Next, we create the NMF seed, Wcore˙seed, by setting the
values of the core genes for each respective metasample to 1,
while setting the rest of the values to 0.001. A single NMF
deconvolution is performed on Vcore with Wcore˙seed, providing
a good starting point to coax the result toward a solution that
reflects the consensus result. We then take the result of this
deconvolution, Wcore, and then extend it to comprise the original
1000 most variable genes, to create the next seed, W1K˙seed.

At this point, we wanted to ensure that the extra genes we
added to the seed would have meaningful values that would not
interfere with the scale of the NMF deconvolution. We filled
W1K˙seed, for each added gene i, for each factor, with the row-
wise gene means for that gene from V, multiplied by the scale
factor. The scale factor was calculated by averaging the ratio
of the gene-wise row means from Wcore by the gene-wise row
means from Vcore.

Lastly, we take the result of this deconvolution, W1K and
extend it in the manner described in the previous paragraph
to create Wseed, the seed for the final NMF run. It should be
noted that in the implementation, we swapped the orders H and
W for the seed, in order to aid in the dendrogram processing
step. This design decision necessitated the two-step extension
process, in order to produce the final W matrix, with each column
representing the gene expressions individual to this metasample,
and H matrix with each row representing the metasample’s
proportion for each sample.

C. RNAGinesis: Creating Datasets for Benchmarking
Genomic Data Deconvolution

Transcriptomic data deconvolution has been performed on
many public datasets, leading to new discoveries, such as new
pancreatic adenocarcinoma subtypes [22] and work on inflam-
matory bowel disease [25]. However, in order to benchmark
the genomic deconvolution algorithms, it is necessary to have
datasets annotated with ground truth – i.e., the gene expres-
sion profile for each metasample, as well as the proportion of
each metasample in each sample. There is little such publicly
available data that does not require extensive pre-processing,
with a notable exception of experimental data mixing known
quantities of liver lung or brain tissues [26], referred to here as
LiverLungBrain.

We have created an infrastructure, called RNAGinesis (https:
//github.com/rmoffitt/rnaGinesis) for the purpose of generating
datasets with known ground truth for the benchmarking of
deconvolution datasets. RNAGinesis also provides conversion

for existing publicly available datasets (such as LiverLungBrain)
into a common format.

While there are multiple use cases for transcriptomic data
deconvolution, a lot of recent work has focused on tumor samples
[16], [22], [27], [28]. Given recent developments in sub-typing
of PDAC [22], it is clear that looking specifically at stromal,
tumor, and immune, and normal gene expression individually is
crucial to understanding the complex tumor microenvironment.

Our RNAGinesis simulation is modeled on the Pancreatic
Ductal Adenocarcinoma (PDAC) transcriptome samples from
The Cancer Genome Atlas (TCGA). Among solid cancers,
PDAC remains one of the deadliest, with an extremely low
5-year-survival rate of 4%. In addition, only about a third of
a tumor sample consists of actual tumor tissue, indicating that
the gene expression of a patient’s tumor sample is very different
from the expression of pure pancreatic tumor cells, a significant
issue when it comes to studying the disease [29]. The abundance
and composition of these PDAC transcriptome samples make
them a good candidate for the simulation modeling.

Several properties of our model can be manipulated to fit a
large number of scenarios: the number of cell types (or metasam-
ples), the similarity of the gene expression between cell types,
the distribution of the mixture of cell types, how much noise
has muddled the data, and the sample size. This allows for the
simulation of datasets that represent easiest and most difficult
data to decompose and for the evaluation of how these different
parameters affect the performance of various methods.

1) Simulation of Sample-Specific Proportions: We simu-
late the H matrix, with each row representing the cell type’s
(metasample’s) proportion for each sample. The H matrix for k
cell types is modeled with a Dirichlet distribution, which is a
multivariate beta distribution with probability density function:

1

B (α)

K∏
i = 1

xai−1
i , (1)

where B (α) =

∏K
i=1 Γ (αi)

Γ
(∑K

i=1 αi

) and α = α1, . . . , αK .

Theαparameter can be estimated with known average propor-
tions of the different cell types, which are referred to as p1, p2,
· · ·, pk. The Dirichlet distribution is dynamic, so the proportion
of a specific cell type in a single sample is, on average, equal
to the average proportion, but also can deviate from it, creating
a more realistically heterogeneous model. For example, if p1 =
0.1 and thus α1 = 0.1, then for 1000 samples, most will contain
close to 10% to tissue type 1, but there will also be a few samples
composed nearly entirely of that cell type. This is biologically
interpretable: if a typical sample contains 10% infiltrate from
normal tissue, it is still likely for a few samples in the cohort to
be nearly all normal tissue, due to the macroscopic heterogeneity
of patient specimens.

The k α parameters can be manipulated to resemble the
proportions of tissue types found in different cancers and other
mixed tissue samples, making it a flexible model that can be
applied to the study of many different diseases. The result

https://github.com/rmoffitt/rnaGinesis
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of using the Dirichlet distribution to simulate the proportions
of k different tissue types in s samples are s draws from the
distribution, assembled into H.

2) Simulation of Sample-Specific Expression: Gene expres-
sion for each cell type is modeled as

Wij ∼ N
(
μj ,

∑
j
)

(2)

using a multivariate normal distribution, where for the ith sample
and jth cell type, μj is the average gene expression of each of the
jth cell type genes and Σj is the covariance matrix of the genes
for the jth cell type. Wij is g × 1, and gene expression of all cell
types is W, a g × k matrix.

We downloaded gene expression data from TCGA for pancre-
atic tumor samples, labeled as PAAD, the TCGA code for PDAC,
consisting of the expression levels of over 52000 genes in 150
samples. The data was first filtered to remove any genes with 0 or
near-0 expression levels. Selecting the highest expressing 5000
genes in the 150 samples, μ0, the first metasample expression
profile, was done by finding the average gene expression of each
gene.

Using μ0 and Σ0, which are the average gene expression and
covariance matrix for our first cell type, we simulate the averages
and covariances for subsequent cell types through rearrange-
ments of μ0 and Σ0. Two different rearrangement methods can
be used, which will call Methods 1 and 2. Using Method 1, μ0

is completely permuted to get μj and the same rearrangement is
used to scramble the same rows and columns of the covariance
matrix. This leads to the gene expression of each tissue type
being completely orthogonal to the rest, which means there is
low correlation between the expressions of the different tissues.
On the other hand, with Method 2, μ0 and Σ0 are sorted into
rank order according to average gene expression, followed by
local rearrangement based on a swapping factor. This method
conserves rank order and preserves some correlation structure
between the gene expression of the different cell types. This is
important, as even the most dissimilar mammalian cell types
retain highly correlated gene expression profiles.

However, for gene expression data, with increasing numbers
of assayed gene variants, the covariance matrix of g2 elements
becomes very large. To implement the generation of multivariate
normal data, we employed the Cholesky decomposition of co-
variance matrix Σ0. According to the Cholesky decomposition,
Σ0 can be decomposed as follows:

Σ0 = AAT (3)

then, the following is true:

Wij = AjZ + μj (4)

where Z ∼ N(0, I), or Gaussian data with covariance I (the
identity matrix). In practice, we decompose Σ0 into A once,
and the decomposed covariance matrix A is re-ordered either
with Method 1 or 2, resulting in Aj for each of the k tissue
types. Wij are simulated with j = 1 …k and combined to form
Wi = [Wi1, ···, Wik], which is a g by k. Wi is simulated for
sample i = 1 …s. Each Wij is an independent random sample
from the multivariate normal distribution of gene expression for

the jth tissue type. This means that the jth column of each Wi are
sampled from the same distribution with identical μj and Σj.

3) Simulation of Mixtures and Random Error Term: With Wi

� Rg×k and Hi � Rk×1 both simulated to serve as the known
proportions of the k cell types and the gene expression over
g genes, respectively, for the ith sample, the two matrices can
be multiplied to obtain simulated mixed gene expression data,
which we will call Yi � Rg×1. This process is repeated for each of
the s simulated samples to result in g × s mixed gene expression
data matrix.

In order to introduce observation noise to the gene expres-
sion data, we devised a multiplicative error model. The error
is denoted by Ei = (ei1, ei2, …, eig)T, where the logarithm
of each element in the vector follows the normal distribution
N(0,σ). Thus, the general formula for simulating mixture gene
expression with random error can be expressed as

Yi = (Wi ×Hi) ∗Ei (5)

where × is the usual matrix multiplication and � is component-
wise multiplication. This error model is consistent with RNAseq
data which are counts in which variance is proportionate to the
expectation.

4) Accuracy Evaluation Methodology and Post-Processing:
An important aspect of benchmarking is a consistent evalua-
tion methodology. We use the same methodology to evaluate
the accuracy of NMF deconvolution on our Simulation Study
(Section II-C5) and on our experiments comparing the accuracy
of standard NMF vs FaStaNMF against ground truth.

FaStaNMF, NMF, and other similar deconvolutions output
two matrices: one k× s matrix H of the proportion of each sample
represented by each of the k cell types and (metasamples) and
another g × k matrix W with the expression levels of g genes
in each of the k metasamples. H is evaluated against Ĥ , the true
proportions of each tissue type as described in Section II-C1. W
is compared against Ŵ , i.e., μ1,···,k, the average gene expression
levels of each of the k cell types for g genes as described in
Section II-C2.

The measure of the difference between H and Ĥ for each of
the k metasamples is defined as

RMSE =

√√√√∑s
i=1

(
Ĥi −Hi

)
s

(6)

where s is the number of samples. Evaluation of how well the
deconvolution result estimates the expression levels of specific
cell types in a sample is done with the cosine distance:

cosdist
(
W, Ŵ

)
=

1− corr
(
W, Ŵ

)
2

(7)

where the correlation between the simulated gene expression
levels for gene g in k tissue type and the level estimated by the
convolution serves as the basis of comparison. Because different
implementation of deconvolution can produce results that are
comparable, but on a different scale (see Section II-B for our
FaStaNMF approach that attempts to keep the scale constant),
cosine distance, which uses correlation, is more appropriate
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than the absolute distance measurement when comparing gene
expression profiles.

Before accuracy evaluation, there are post-processing steps
that must be applied to the results of FaStaNMF, as well as
the standard NMF results. The H matrix will have each column
representing all the metasamples proportions for a sample. These
proportions will be relative, and need to be normalized to sum
to 1, for each sample, to be able to properly compare the results
to ground truth.

Next, since NMF decomposes the gene expression data into
k metasamples arbitrarily, this may not be in the same order as
the simulated data, or another dataset with known metasamples
and their proportions. H and W are re-ordered based on the best
rearrangement that results in lowest error across all samples.

First, we generate all possible permutations of the metasam-
ples order. For each permutation we calculate the sum of all
the correlations between W and Ŵ across all samples, and
the sum of RMSE between H and Ĥ across all samples, and
multiple the two error sums to obtain the single error score
for this permutation. We then selected the permutation with
the minimum error score, and globally re-ordered the H and W
matrices. We found that dividing the correlations by RMSE and
then selecting for the maximum score yielded identical results.

5) Effects of Varying Simulation Parameters: We varied the
simulation parameters to assess the effects of similarity of tissue
specific gene expression as well as noise on the results of
decomposition. We generated five different scenarios with varied
amount noise and degree of similarity between the tissues, each
of which included 20 simulations of 50 samples each.

For all simulations, we set the α parameters for the H matrix
to α1 = 0.3, α2 = 0.4, α3 = 0.2, α4 = 0.1. These parameters
were chosen based on proportions of tumor, stroma, immune and
normal cells generally present in pathology slides for the PDAC
tumors. Individual sample proportions in each simulation were
modeled with the Dirichlet distribution, the multivariate beta
distribution described in Section II-C1.

To generate the gene expression profiles for each sample (the
W matrix), we sampled from the multivariate normal distribution
as described in Section II-C2. To generate each individual tissue
expression vector, we used Method 2 to rearrange μ0 to get μj.
The Rearrange Factors used were Low (swapping factor = 2),
Medium (swapping factor = 80), and High (swapping factor
= 4000). Different levels of noise were simulated by varying
the error term σ: Low (σ = 1.01), Medium (σ = 5), and High
(σ = 10). Scenarios designed to test the effect of the rearrange
on the deconvolution have the Low noise setting, and scenarios
designed to test the effect of the noise on deconvolution have
the Medium rearrange level.

Fig. 3 demonstrates the effect of different rearrange level
settings on the pairwise correlations between the tissues in
the simulations. The histogram displays the combined pairwise
correlations (Pearson) between means of the tissue expressions
for the 20 runs in each of the scenarios (Low, Medium, High).
High rearrange setting results in low (0, 0.25) pairwise correla-
tions, setting up an easy to deconvolve scenario. Low rearrange
settings yields extremely high (>0.9) correlations, setting up
a problem that is more difficult to deconvolve due to extreme

Fig. 3. Histogram of the pairwise correlations of tissue expressions for the
simulations with different levels of Rearrange between the tissue expression
vectors. High Rearrange setting results in low (0, 0.25) pairwise correlations be-
tween simulated tissues, making them very different from each other, and setting
up an easy to deconvolve scenario. Low Rearrange settings yields extremely high
(>0.9) correlation between simulated tissues, setting up a problem that is more
difficult to deconvolve due to extreme similarity between the tissues. Medium
Rearrange setting results in mid-range (0.3, 0.75) pairwise wise correlations,
creating a problem of medium difficulty.

Fig. 4. The effect of rearrange factor on the hardness of deconvolution. Low
rearrange results in similar tissue expression profiles, making the problem harder,
and resulting in high error both for the H proportions matrix (measured with
RMSE), and for the W expressions matrix (measured with the cosine distance).
Medium and high rearrange scenarios have respectively lower errors for both
the H and the W, which is consistent with their respective medium and low
pairwise tissue expression correlations. The higher the Rearrange Factor, the
more difference there is between the simulated tissues, resulting in an easier
deconvolution problem.

similarity between the tissues. Medium Rearrange setting results
in mid-range (0.3, 0.7) pairwise wise correlations, creating a
problem of medium difficulty.

We evaluate the results of deconvolution with the single run of
NMF (nrun = 1), using the metrics described in Section II-C4.
The effect of Rearrange Factor on the difficulty of deconvolution
are shown in Fig. 4, and confirm the intuition from Fig. 3. Low



SWEENEY et al.: FASTANMF: A FAST AND STABLE NON-NEGATIVE MATRIX FACTORIZATION FOR GENE EXPRESSION 1639

Fig. 5. The effect of Noise Level on the hardness of deconvolution. Increasing
the noise levels results in higher error both for the H proportions matrix
(measured with RMSE), and for the W expressions matrix (measured with the
cosine distance).

Rearrange results in higher error both for the H proportions
matrix and for the W expressions. Medium and High Rearrange
scenarios have respectively lower errors for both the H and
the W. The higher the Rearrange Factor, the more difference
there is between the simulated tissues, resulting in an easier
deconvolution problem.

The effect of Noise Level on the hardness of deconvolution
is demonstrated in Fig. 5. Increasing the noise levels results in
higher error both for the H proportions matrix (measured with
RMSE), and for the W expressions matrix (measured with the
Cosine Distance).

III. RESULTS

Both for the internal FaStaNMF deconvolution and for the
standard NMF evaluation, we used the standard NMF R imple-
mentation [18]. Unless otherwise specified, default parameters
were used for random seeding, as well as for the optimization
algorithm (Brunet) [14].

A. Datasets Used

Using the RNAGinesis infrastructure detailed Section II-C,
we created and evaluated four datasets to compare FaStaNMF
against the standard NMF approach. The Simulation dataset is
synthetic data with the first tissue based on the PDAC expression
profiles. ResampledSingleCell comprises mixed tissue samples
based on sampling of three types of single cells from pancreas
scRNAseq. PDACFiveTissue dataset is five compartment mix-
ture sampled from a PDAC single cell sequencing experiment.
LiverLungBrain dataset contains microarray expression of liver,
brain, and lung tissues in known proportions.

1) Simulation Dataset: The simulated dataset contains 50
samples, with expression levels for 5000 synthetic genes for

three synthetic metasamples. We created a toy scenario which
would correspond to a very easy deconvolution problem.

Individual sample proportions, were modeled with the Dirich-
let distribution, the multivariate beta distribution described in
Section II-C1, with the α parameters for the H matrix set to α1
= 0.3, α2 = 0.5, α3 = 0.2.

For this experiment, individual W matrices were created to
be identical. The expressions of the first tissue were set to μ0

from the RNAGinesis simulation based on the PDAC expression
profiles. Expressions for the other two tissue were created using
Method1 – complete permutation of the values, resulting in or-
thogonal gene expressions for the metasamples (see Supplement
Fig. 4(a)).

2) ResampledSingleCell Dataset: We obtained the data from
the single cell transcriptome atlas of the human pancreas [30]
using scRNAseq R package. The data contained expression
values for 12385 genes across 2126 single cells, corresponding
to 10 tissues.

Using the RNAGinesis infrastructure and the raw data from
[30], we created a new benchmarking dataset – SingleCellMu-
raro; SingleCellMuraro has 50 mixed tissue samples with the
known ground truth: each sample has the gene expression data
matrix, V, and two matrices W and H such that V = W × H.
Briefly, we obtained the pure cell type gene expression profiles
as centroids from the three most abundant cell types (alpha, beta,
and ductal) from this single-cell RNAseq data set, creating three
metasamples. We then generated H, W and V matrices for each
of the 50 mixed tissue samples.

To create the H matrix, we set α1 = 0.5, α2 = 0.2, α3 =
0.3, representing alpha, beta, and ductal cells, and modeled the
individual H proportions for each sample using the Dirichlet
distribution, the multivariate beta distribution with probability
density function as in Section II-C1.

To create the W matrix for each sample, we randomly sampled
500 cells of each of the three tissue types, and averaged the val-
ues for each tissue type, generating individualized metasample
expression profiles (see Supplement Fig. 4(b)). Then for each
sample j, the mixed expression matrix Vj is calculated, where Vj

= Wj × Hj.

3) PDACFiveTissue Dataset: We obtained the data from the
PDAC single cell atlas [31], and selected all single cells which
were classified as tumor (29K), normal (5K), stroma (21K),
immune (2K), and endocrine (1K).

To create the H matrix, we set α1 = 0.2, α2 = 0.2, α3 =
0.2, α4 = 0.2, α5 = 0.2, representing tumor, normal, stroma,
immune, and endocrine cells, and modeled the individual H
proportions for each sample using the Dirichlet distribution, the
multivariate beta distribution with probability density function
as in Section II-C1.

To create the W matrix for each sample, we randomly sampled
500 cells of each of the five tissue types, and averaged the val-
ues for each tissue type, generating individualized metasample
expression profiles for each of the 50 samples (see Supplement
Fig. 4(c)). Then for each sample j, the mixed expression matrix
Vj is calculated, where Vj = Wj × Hj.

4) LiverLungBrain Dataset: We downloaded GSE19830
[26], containing 42 mixed samples of liver, brain, and lung
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tissues in different, known, mixing proportions with three repli-
cates. There are micro-array expression values of 31099 genes
for the each of the mixed tissue samples. The data was log-
transformed with microarray normalization (RMA).

We converted the data from [26] with RNAGinesis to create
the LiverLungBrain dataset in common format. Ground-truth
gene expression profiles for the metagenes were obtained by
averaging the replicates with 100% proportion of liver, lung,
and brain tissue, respectively (see Supplement Fig. 4(d)).

B. Speed

To compare the runtime of FaStaNMF vs. NMF, we measured
user time under comparable server utilization settings. For each
algorithm, and for each dataset, we evaluate several duplicate
nrun settings, ranging from nrun = 100 to nrun = 1000 to
generate error bars (Fig. 6).

We see that while NMF outperforms FaStaNMF for datasets
with a small number of genes (Fig. 6(a) Simulation and Fig. 6(b)
ResampledSingleCell), FaStaNMF is significantly faster for
LiverLungBrain, a large dataset which is more representative of
typical RNAseq data, as well as of the future datasets (Fig. 6(d)).
The transition happens between 12 and 16 thousand genes, as
FaStaNMF is faster for PDACFiveTissue (Fig. 6(c)).

NMF spends its time on re-running the algorithm on the entire
dataset nrun times. In contrast, FaStaNMF performs nruns on
a small, constant size subset of the entire dataset. FaStaNMF
spends a significant proportion of time on parsing the dendro-
gram, whose structure is dependent on the consensus matrix.

To show unambiguously that the difference in speed is due to
the number of genes and not the dataset composition, we gener-
ated two Gaussian noise datasets (sampling from a distribution
with mean = 5000 and sd = 1000) with 5K and 30K genes
respectively. Supplement Fig. 5 demonstrates that FaStaNMF is
slower for the 5K genes dataset, and faster for 30K genes dataset.

Based on these results, we expect the FaStaNMF speedup to
become noticeable when the number of genes is representative
of whole-transcriptome experimentation. While the number of
known protein coding genes has been fairly stable, the investiga-
tion of splice variants is rapidly increasing [32]. For example, the
Chess dataset, a new comprehensive collection of human genes,
used deep RNA sequencing to observe more than 100000 new
gene isoforms and a smaller number of new genes to the previous
catalogue of human genes and transcripts [33].

As the number of genes (or features) increases, the perfor-
mance difference between NMF and FaStaNMF is expected to
increase. While filtering datasets before NMF can address speed
issues, the ability to generate NMF scores for all genes in a
dataset facilitates robust and unbiased downstream applications
and analyses.

C. Accuracy

To compare the accuracy of FaStaNMF vs. NMF, we mea-
sured the error of deconvolution of the H proportions matrix with
RMSE, and the error of deconvolution of the W gene expressions
matrix with the cosine distance, as detailed in Section II-C4. We
compared the accuracy of a single NMF run (nrun= 1), vs. NMF

Fig. 6. Speed of FaStaNMF vs. NMF. We measured the runtime in minutes
for different nrun settings for each algorithm, with replicate settings to create
the error bars. We note that while NMF outperforms FaStaNMF for datasets
with a small number of genes (a) simulation and (b) ResampledSingleCell). The
transition happens between 12 and 16 thousand genes, as FaStaNMF is faster for
(c) PDACFiveTissue. FaStaNMF is significantly faster for (d) LiverLungBrain,
a large dataset which is more representative of real experimental scenarios.

with nrun = 200, vs FaStaNMF with nrun = 200 on our four
datasets. Each setting was replicated ten times with a different
random seed to generate a distribution of results.

Fig. 7 shows, that as expected, a single run of NMF gives the
worst accuracy for the H matrix. We demonstrate that the accu-
racy of FaStaNMF is better — the error is lower — than NMF for
three out of four datasets for the same nrun setting. While this is
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Fig. 7. Accuracy of deconvolution for the H proportions matrix (measured
with RMSE). For each of the four datasets, presented in panels (a), (b), (c), and
(d), we measured the accuracy of running NMF with nrun=1, vs. NMF with nrun
= 200, vs FaStaNMF with nrun = 200. Each setting was replicated ten times.
As expected, a single run of NMF gives the worst accuracy. We demonstrate that
the accuracy of FaStaNMF is better – the error is lower – than NMF for three
out of four datasets for the same nrun setting. While this is most pronounced
for the simulation dataset (a) with p-value < 2.2e-16, a subtle but still visible
accuracy improvement exists for the other datasets: ResampledSingleCell (b)
with p-value = 0.01, and LiverLungBrain (d) with p-value = 2.5e-06. In this
figure we demonstrate the magnitude of error on a zero-based axis; Supplement
Fig. 2 zooms in on the difference between FaStaNMF and NMF for nrun = 200.

most pronounced for the Simulation dataset (Fig. 7(a)), a subtle
but still discernable improvement exists for the ResampledSin-
gleCell and LiverLungBrain datasets (Fig. 7(b) and (d)). The
p-values for the improvement of accuracy of FaStaNMF_200
over NMF_200 were measured with Welch Two Sample t-test,
and showed statistical significance for three datasets, with p <
2.2e-16 for Simulation, p = 0.01 for ResampledSingleCell and
p = 2.5e-06 for LiverLungBrain.

Fig. 8 shows that a single run of NMF gives the worst accuracy
for the W matrix, except for the LiverLungBrain (Fig. 8(d)),
where it performs similarly well. The p-values for the im-
provement of accuracy of FaStaNMF_200 over NMF_200 were
measured with Welch Two Sample t-test, and showed statistical
significance for all four datasets. For the Simulation dataset
(Fig. 8(a)), FaStaNMF shows small visible improvement with
p-value = 1.2e-08, while for the other datasets, the accuracy

Fig. 8. Accuracy of deconvolution for the W gene expression matrix (measured
with cosine distance). For each of the four datasets, presented in panels (a), (b),
(c), and (d), we measured the accuracy of running NMF with nrun = 1, vs. NMF
with nrun = 200, vs FaStaNMF with nrun = 200. Each setting was replicated
ten times. We see that the accuracy of W deconvolution is much higher for
W, than for H (see Fig. 7). As expected, a single run of NMF gives the worst
accuracy, except for the LiverLungBrain (c), where it performs equally well. For
the Simulation dataset (a), FaStaNMF shows small visible improvement over
NMF for the same nrun setting (p-value = 1.2e-08), while for the other datasets,
the accuracy improvement is minimal, but still statistically significant: p-value
= 6.3e-09 for ResampledSingleCell (b), p-value = 0.009 for PDACFiveTissue
(c), and p-value= 4.2e-07 for LiverLungBrain (d). In this figure we demonstrate
the magnitude of error on a zero-based axis; Supplement Fig. 3 zooms in on the
difference between FaStaNMF and NMF for nrun = 200.

improvement is minimal, but still statistically significant: p-
value = 6.3e-09 for ResampledSingleCell (Fig. 8(b)), p-value
= 0.009 for PDACFiveTissue (c), and p-value = 4.2e-07 for
LiverLungBrain (Fig. 8(d)).

Overall, we note that the accuracy of deconvolution is better
for W than for H. We also demonstrate that overall, FaStaNMF
performs better than NMF in terms of accuracy of deconvolution,
given the same settings.

D. Stability

Another measure of deconvolution is stability of the top
(most prominently expressed) genes for each metasample. The
stability of this list is extremely important for the downstream
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Fig. 9. Stability of genes staying at the top of the ordered metasample list
across 50 runs of each method. We show perfect stability for Simulation dataset
for both NMF and FaStaNMF in the top 10 positions (lines overlap), which
is not surprising given the relative simplicity of the deconvolution problem
that was set up, with low pairwise correlations of tissue expression. For the
ResampledSingleCell dataset, we see that FaStaNMF has higher stability than
NMF for positions 6-10; however, this difference is not statistically significant.
For the PDACFiveTissue and LiverLungBrain datasets, FaStaNMF has higher
stability than NMF, with the Wilcox paired rank sum test p-value of 0.05 for
both.

application; chiefly, interpretation of exactly which cell types
are found to exist in a sample.

To select the top genes, each metasample column of W is
sorted in descending order of the difference between the value
of a gene minus the mean of the values of this gene in the other
metasamples. We selected top 10 genes for each metasample
for each dataset. To compare FaStaNMF vs. NMF, for each
of the datasets, we ran each algorithm 50 times, with different
random seeds, and nrun = 200, the default values suggested by
[18] to achieve stability. We used the results of the 50 runs to
calculate the probabilities of stability for each dataset, for each
metasample, and for each of the top 10 positions: the probability
of a gene present in the 1st position for one of the runs staying
in the top 10 positions for the subsequent runs, the probability
of a gene present in the 2nd position for one of the runs staying
in the top 10 positions for the rest of the runs, etc.

Fig. 9 shows our stability results. We see that we have perfect
stability for Simulation dataset for both NMF and FaStaNMF in
the top 10 positions, not surprising given the relative simplicity
of the deconvolution problem that was set up, with low pairwise
correlations of tissue expression. For the ResampledSingleCell
dataset, we see that FaStaNMF has higher stability than NMF for
positions 6-10; however, this difference is not statistically sig-
nificant. For the PDACFiveTissue and LiverLungBrain datasets,
FaStaNMF has higher stability than NMF, with the Wilcox
paired rank sum test p-value of 0.05 for both.

We extended the stability calculations to examine the top 30
and the top 50 positions (see Supplement Fig. 6). In all cases,
we found that FaStaNMF is either more stable than NMF with
very low p-values, or stability varies but NMF is NOT more
stable than FaStaNMF with statistical significance. We note that
for the Simulation dataset, stability decreases as we look at
the lower ranked positions. Aside from the experimental results
presented here, we claim that FaStaNMF is more stable in prin-
ciple, as it is not dependent on the implement or version of the
NMF.

In order to the demonstrate that the stability of tissue-specific
compartments is due to the underlying biological stability of

gene expression, we ran GSEA on the three deconvolved com-
partments from the LiverLungBrain dataset. Running GSEA on
the C8 collections from MSigDB, we found one compartment
enriched for lung, one for brain, and one for gastro-intestinal
pathways.

IV. DISCUSSION

Our evaluation of the benefits of FaStaNMF vs. the stan-
dard NMF approach used evaluation methodology and datasets
created with our RNAGinesis infrastructure and modeled on
real biological data. RNAGinesis can simulate gene expression
data representing mixtures of multiple cell types with different
variances and gene expressions which are tuned for a variety
of scenarios. This in silico design for the simulation of data
with varying properties can be used for benchmarking existing
methods and helping develop new ones for mixed-tissue decon-
volution and studying tumor heterogeneity.

Our goal in developing FaStaNMF was to improve on NMF,
where NMF is currently the best of the sample-composition-
agnostic transcriptomic data deconvolution methods. In partic-
ular, while the standard NMF approach of setting the random
seed and repeating NMF deconvolution a few hundred times
on the entire expression matrix does produce a stable and re-
produceable result, we found two problems which we overcome
with FaStaNMF. One problem is that the reproducibility depends
on the starting point, the saved seed, which ties the results to
a particular version and implementation of NMF. The other
problem is that as transcriptomic datasets are growing in size, the
brute force approach of iteratively running NMF on the entire
expression matrix will become increasingly time consuming.

We overcome both problems by taking advantage of the
information in the consensus matrix to identify the most infor-
mative genes for each metasample and to use them for iterative
seeding of the NMF runs. Having the bulk of the computation
performed on a small constant-size subset will scale well for
increasing transcriptomic datasets, while using a small set of
most informative genes as a seed to the final NMF run achieves
a stable, and accurate result.

V. CONCLUSION

FaStaNMF made improvements over NMF in the areas of
accuracy, stability, and speed, with different performance gains
depending on the size and composition of the data.

For speed, we see that while NMF outperforms FaStaNMF
for datasets with a small number of genes, FaStaNMF is sig-
nificantly faster for a large dataset which is more representative
of real and future datasets. Future improvements will focus on
making the FaStaNMF core, the parsing of the dendrogram, even
faster.

For all four benchmark datasets, FaStaNMF performs better
than NMF in terms of accuracy of deconvolution, given the
same settings. While in some cases the improvement is tiny,
it is statistically significant.

We found that FaStaNMF is either statistically significantly
more stable than NMF, or stability varies but NMF is NOT more
stable than FaStaNMF with statistical significance. To rephrase,
FaStaNMF is better than or equivalent to NMF for stability.
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Future areas of improvement include exploring the alterna-
tives to the current error function, which is sensitive to outliers.
The effect of outliers can be reduced with the log transformation,
but this makes us lose sensitivity on the low end of the spectrum.

Another area of improvement will focus on compartment
deconvolution that retains the benefits of NMF, while being able
to deconvolve the true profiles of individual patients’ tumors.
Cancer research and the ability to offer individualized cancer
therapies increasingly relies on being able to characterize the
unique properties of patients’ tumors by assaying the gene
expression of individual samples. Implicit in this process is the
ability to faithfully assess tumor-specific expression profiles in
parallel with information from surrounding tissue or immune
cells that are found in patient samples.
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