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A Survey of Computational Methods and Databases
for lncRNA-MiRNA Interaction Prediction
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Abstract—Long non-coding RNAs (lncRNAs) and microRNAs
(miRNAs) are two prevalent non-coding RNAs in current re-
search. They play critical regulatory roles in the life processes
of animals and plants. Studies have shown that lncRNAs can
interact with miRNAs to participate in post-transcriptional reg-
ulatory processes, mainly involved in regulating cancer develop-
ment, metastatic progression, and drug resistance. Additionally,
these interactions have significant effects on plant growth, devel-
opment, and responses to biotic and abiotic stresses. Deciphering
the potential relationships between lncRNAs and miRNAs may
provide new insights into our understanding of the biological func-
tions of lncRNAs and miRNAs, and the pathogenesis of complex
diseases. In contrast, gathering information on lncRNA-miRNA
interactions (LMIs) through biological experiments is expensive
and time-consuming. With the accumulation of multi-omics data,
computational models are extremely attractive in systematically
exploring potential LMIs. To the best of our knowledge, this
is the first comprehensive review of computational methods for
identifying LMIs. Specifically, we first summarized the available
public databases for predicting animal and plant LMIs. Second,
we comprehensively reviewed the computational methods for pre-
dicting LMIs and classified them into two categories, including
network-based methods and sequence-based methods. Third, we
analyzed the standard evaluation methods and metrics used in LMI
prediction. Finally, we pointed out some problems in the current
study and discuss future research directions. Relevant databases
and the latest advances in LMI prediction are summarized in
a GitHub repository https://github.com/sheng-n/lncRNA-miRNA-
interaction-methods, and we’ll keep it updated.

Index Terms—Computational methods, lncRNA-miRNA
interaction prediction, network-based methods, sequence-based
methods.

I. INTRODUCTION

IN THE human genome, approximately 75% is transcribed,
but less than 3% encodes proteins [1], [2], [3]. In the early

days, these non-coding RNAs (ncRNAs) are considered “noise”
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in coding regions [4]. However, a growing number of studies
have found that ncRNAs play vital roles in many physiological
processes, including cell proliferation and development,
differentiation and apoptosis, and pathological manifestations
such as disease manifestation and tumorigenesis [5], [6].
In addition, according to the transcription length, ncRNAs
can be divided into small RNAs and long non-coding RNAs
(lncRNAs), where the length of small RNAs is less than 200
nucleotides (nt), and common members include miRNAs,
piwiRNAs (piRNAs), small interfering RNAs (siRNAs),
and small nucleolar RNAs (snoRNAs) [7], [8]. It has been
found that lncRNAs are participate in a variety of regulatory
functions by interacting with different kinds of biomolecules,
such as lncRNA-miRNA interaction and lncRNA-protein
interaction [9], [10]. Here, we focus on the interactions between
lncRNAs and miRNAs. The biological functional relationship
between lncRNA and miRNA can be briefly summarized
as miRNA sponge, competitively binding to miRNA
target genes, miRNA production by lncRNA, and lncRNA
degradation [11].

In recent years, many studies have been devoted to investigat-
ing the molecular mechanisms of lncRNAs and miRNAs, as well
as their interactions, which will provide new insights into the
mechanisms of disease development [12]. It is well known that
biological experiments are essential and effective methods to
accurately explore different molecules’ biological functions and
disease development mechanisms. There is growing evidence
that LMIs lead to complex regulatory networks controlling
gene expression at the transcriptional, post-transcriptional, and
post-translational levels [13]. For example, Tsang et al. found
that in human hepatocellular carcinoma, lncRNA HOTTIP
is a novel oncogenic lncRNA that is negatively regulated by
miR-125b [14]. He et al. found that in Epstein-Barr virus (EBV)-
associated cancer tissues and cells, miRNA miR-BART6-3p
can inhibit tumor cell migration and invasion by targeting and
downregulating lncRNA LOC553103, which provides a poten-
tial new diagnostic and therapeutic marker for EBV-associated
diseases [15]. Experiments have demonstrated that lncRNA
HOTAIR plays an essential role in the development of many
human cancers and can interact with miRNAs to influence
cancer development [16], including gastric cancer [17], colon
cancer [18], liver cancer [19], lung cancer [20], and pancreatic
cancer [21]. In addition, Bian et al. summarized the LMIs in liver
fibrosis [22].

Numerous studies have shown that interactions between
miRNAs and lncRNAs also affect plant life activities. These
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Fig. 1. A diagram illustrating the workflow of LMI prediction performing computational methods. Step 1: Collect lncRNA- and miRNA- related databases, as
well as LMI databases. Step 2: Develop network-based and sequence-based computational methods, the network-based methods require the use of multiple lncRNA
(miRNA) similarities to construct lncRNA-miRNA bipartite network, and the sequence-based methods only require manual or automatic feature extraction from
lncRNA (miRNA) sequences. Step 3: Evaluation methods and evaluation metrics are employed to assess the performance, and validate candidate LMIs applying
biological experiments.

TABLE I
THE WIDELY USED DATABASES IN LMI PREDICTION

interactions are crucial in plant growth, development, and re-
sponse to biotic and abiotic stresses [23]. For example, in pigeon-
pea, lncRNA_1231 is able to isolate miR-156b during flowering,
leading to increased expression of the flower-specific SPL-12
transcription factor and regulating flower development [24].
Hou et al. showed that lncRNA39026 binds miR168a and in-
hibits its function, thereby increasing the resistance of tomato
to phytophthora infestans [25]. In addition, lncRNA42705 and
lncRNA08711 are able to increase mRNA levels of MYB genes
by acting as decoys for miR159, thereby enhancing resistance
to phytophthora infestans [26]. Specifically, Lu et al. showed

that lncRNAs enhance cold resistance in winter wheat by com-
petitively binding miR398 [27]. Water deficit is an abiotic
stress, and Chen et al. found that lncRNA TCONS_00021861
can affect drought resistance tolerance in rice by sponging
miR528-3p [28]. Biswas et al. summarized the co-regulatory
functions of lncRNA and miRNA in biotic and abiotic stresses
in dicotyledons [29].

However, many of the laboratory experiments related to lncR-
NAs and miRNAs are undoubtedly expensive, complex, and
time-consuming, which are often difficult to use for certain
complex organisms, especially humans. Thousands of lncRNAs
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Fig. 2. Taxonomy of computational methods for LMI prediction.

and miRNAs have been identified in animals and plants, which
are difficult to verify by large-scale biological experiments.
There is an urgent need for computational approaches to reveal
the characteristics of lncRNAs and miRNAs and guide those
expensive and laborious laboratory experiments.

The rapid development and success of computational LMI
prediction methods can be attributed to the following two
aspects. On the one hand, with the accumulation of large
amounts of high-throughput data, great opportunities have been
created for the development of computational methods to mine
the unobserved relationships between lncRNAs and miRNAs.
On the other hand, the advancement of computer science
provides an important basis for developing practical LMI
prediction algorithms. Therefore, computational methods are
expected to help effectively screen potential LMI candidates.

As mentioned above, computational methods are cost-
effective strategies in biomedical research. In recent years, with
the development of techniques like machine learning and deep
learning, various computational models have been proposed for
application in many studies related to different biomolecules
or diseases, such as gene-disease association prediction [30],
lncRNA-disease association prediction [31], [32], [33], miRNA-
disease association prediction [34], [35], lncRNA-protein inter-
action prediction [36], [37], [38] and drug repositioning [39],
[40]. In particular, the past few years have witnessed a surge in
research on computational methods for LMI prediction. Many
methods, databases, and applications have been proposed in
the literature, and a comprehensive survey is needed to focus
on this burgeoning new direction. However, to our knowledge,
there is no comprehensive survey so far specifically regarding
the investigation of lncRNA- and miRNA-related databases and
computational methods for LMI prediction. Considering the
importance of lncRNAs and miRNAs in biomedical research,
a comprehensive review of studies on LMI prediction is sci-
entifically attractive. As shown in Fig. 1, a flowchart of LMI
prediction based on the computational approach is presented.

This review fills this gap by investigating computational meth-
ods for LMI prediction. We summarize the main contributions
of this work as follows:
� We presented databases related to animal and plant

LMI prediction, covering LMI data, and lncRNA-
and miRNA-related data (such as expression profiles,
sequences, and functions). These databases are widely used

in computational methods and are still being updated and
accessed.

� We reviewed 20 computational methods for LMI prediction
that were divided into two groups, including network-based
methods and sequence-based methods.

� We surveyed the commonly used evaluation methods and
metrics in LMI prediction. These can help researchers
effectively assess and verify the prediction ability of their
developed methods in future studies.

� We further discussed the developmental challenges in LMI
prediction and outlined several future research directions.

II. DATABASES

With the explosion of genomics, transcriptomics, and pro-
teomics data, there is a tremendous opportunity for computa-
tional methods to discover new candidate LMIs. Researchers
have established many publicly available databases or tools to
store and provide data sources related to lncRNAs and miR-
NAs, which makes it possible for computational scientists to
develop computational methods. For example, lncRNASNP v3
is a database that records a comprehensive resource of single
nucleotide polymorphisms (SNPs) in lncRNA for 8 eukaryotic
species, covering human, pig, mouse, etc. [41]. Specifically,
this database records experimentally confirmed LMIs, which
provides an accurate label for computational models. Differ-
ent data types can be utilized as lncRNA and miRNA fea-
tures, such as nucleotide sequence, expression profiles, target
genes, and putative functional annotations. LNCipedia [42] and
miRbase [43] are public databases for lncRNA and miRNA
sequences and annotations, respectively. NONCODE is a com-
prehensive knowledge database dedicated to non-coding RNAs
(excluding tRNAs and rRNAs), recording lncRNA expression
profiles and putative functional annotations [44]. microRNA.org
database provides a comprehensive resource for miRNA-target
prediction and miRNA expression profiling [45]. miRTarBase
is a comprehensive information source that stories experimental
verification of miRNA-target genes interactions [46]. Unfortu-
nately, the microRNA.org database are currently not accessible.

Some databases also specialize in recording plant lncRNA
and plant miRNA information, such as CANTATAdb 2.0,
the largest and most comprehensive plant lncRNA database
available, containing more than 200000 lncRNA sequences



SHENG et al.: SURVEY OF COMPUTATIONAL METHODS AND DATABASES FOR LNCRNA-MIRNA INTERACTION PREDICTION 2813

TABLE II
NETWORK-BASED METHODS FOR PREDICTING LMIS

from 39 species [47]. PMRD integrates massive information
of plant miRNA data, including miRNA sequences and their
target genes, secondary structure, expression profiles, genome
browser, etc [48]. GreeNC is the primary resource of plant lncR-
NAs with over 200000 annotated transcripts [49]. The database
records information about the sequence, genomic coordinates,
coding potential, and folding energy of all identified lncRNAs.
Since there is no available public database of plant LMIs,
RNAhybrid [50] and psRNATarget [51] are often employed as
LMI prediction tools. Here, we briefly summarize the common
databases involved in LMI prediction in Table I.

III. COMPUTATIONAL METHODS FOR LNCRNA-MIRNA
INTERACTION PREDICTION

With the accumulation of various genomic data, computa-
tional approaches offer new opportunities for large-scale of

screening potential LMIs. Great progress has been made in the
research of lncRNAs and miRNAs, and a number of computa-
tional models have been developed to identify LMIs. As shown
in Fig. 2, Tables II and III, based on the way of input, the compu-
tational methods for predicting LMIs are divided into two major
groups: network-based methods and sequence-based methods.

A. Network-Based Methods

Specifically, network-based methods frequently first utilize
lncRNA (miRNA) expression profile information, lncRNA
(miRNA) sequence information, lncRNA (miRNA) function
information, and known LMIs to calculate multiple similarities
of lncRNAs and miRNAs. Then, a bipartite network is con-
structed by integrating the known LMIs, lncRNA similarity, and
miRNA similarity. Finally, various machine learning models are
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TABLE III
SEQUENCE-BASED METHODS FOR PREDICTING LMIS

performed to extract features from the bipartite network and infer
LMI scores.

EPLMI
Based on the assumption that similar lncRNAs tend to have

similar patterns of interaction or non-interaction with miRNAs,
and vice versa. Huang et al. developed the first computational
model, EPLMI, which was based on a two-way diffusion graph
algorithm to predict novel LMIs [52]. The authors calculated
three types of lncRNA (miRNA) similarities by integrating
different information sources. The first type of similarity used
the lncRNA (miRNA) expression profile data to calculate the
similarity score of two lncRNAs (miRNAs) by performing Pear-
son correlation coefficient (PCC). The second type of RNA sim-
ilarity was based on putative biological functions. Utilized the
data of miRNA-target gene interactions and putative functional
annotations of lncRNAs to measure the functional similarities
of miRNA-miRNA pairs and lncRNA-lncRNA pairs, respec-
tively. The third type of similarity was calculated by performing
Needleman-Wunsch pairwise sequence alignment to calculate
the sequence similarity of lncRNAs (miRNAs). A graph-based
two-way diffusion approach was proposed to predict LMI scores.

It was divided into three steps, first, two weighted LMI networks
Al and Am were generated by integrating the known LMIs
A, lncRNA (miRNA) similarity matrix LS(MS), Al = LS ·A
and Am = A ·MS. The resource vectors of lncRNA (miRNA)
RlncRNA (RmiRNA) were calculated respectively based on the
Al and Am. In this paper, we take the example of calculating the
lncRNA resource vector, as follows:

RlncRNAa
=

nm∑
m=1

Aw
a,m ·A∗,m∑nl
i=1 A

w
i,m

, (1)

where nl and nm are the number of lncRNA and miRNA,
respectively.Aw is theAl orAm, andRlncRNA describe the cor-
relation scores during forward propagation. The resource vectors
of lncRNA (miRNA) gained from Al and Am were averaged to
computer the new resource vectors SlncRNA (SmiRNA). Sec-
ond, to obtain the correlation scores during back propagation, the
resource vectors of lncRNA were computed based on SlncRNA.

R′
lncRNAa

=

nm∑
m=1

Aw
a,m · SmiRNAm∑nl

i=1 A
w
i,m

, (2)
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Fig. 3. The flowchart of SLNPM for predicting LMIs. SLNPM consists of two computational models: similarity-based information combination (SC) strategy
(SLNPM-SC) and interaction profile-based information combination (PC) strategy (SLNPM-PC).

The two types of resource vectors were averaged to further
combine into the resource vectors of the third step, namely
S ′
lncRNA. Similarly, the resource vector of miRNAS ′

miRNA can
be yielded. Third, the resource vectors for lncRNA and miRNA
were combined into two nl × nm matrices, scorelncRNA and
scoremiRNA, respectively.

scorelncRNA =
[
S ′lncRNAT

1 , . . . , S
′lncRNAT

nl

]T
(3)

scoremiRNA = [S ′miRNA1, . . . , S
′miRNAnm] (4)

Finally, the final score matrix was calculated using the mean
of scoremiRNA and scoremiRNA, score = (scorelncRNA +
scoremiRNA)/2.

GCLMI
Additionally, by integrating the attributes of lncRNAs (miR-

NAs) and interaction networks, Huang et al. proposed an end-to-
end prediction model GCLMI that employs graph convolutional
autoencoder [53]. GCLMI mainly consists of encoder layer and
decoder layer. The feature matrixes of lncRNA and miRNA (Fl

and Fm) and the known lncRNA-miRNA adjacency matrix LM
were used as the input to the encoder. The lncRNA-miRNA
feature matrix X was first constructed by combining Fl and Fm

as follows:

X =

[
Fl 0

0 Fm

]
. (5)

The adjacency matrix A of the LMI network was expanded
as follows:

A =

[
0 LM

LMT 0

]
. (6)

In the encoder, the propagation rules between layers of the
graph convolutional network are as follows:

H(l+1) = Relu
(
D− 1

2 ÃD− 1
2H(l)W (l)

e

)
=

[
Hl

Hm

]
, (7)

where Ã = A+ I , and I is the identity matrix.D is the diagonal
degree matrix of the matrix Ã,H(l) is the output matrix of the l-th
layer, and H(0) = X . W (l)

e is the trainable weight matrix of the
l-th layer in the encoder. The output of the encoder layer had two
components, i.e., the embedding feature matrix of lncRNA Hl;
the embedding feature matrix of miRNA Hm. By introducing
the trainable weight matrix Wd, the decoder layer was then
constructed based on these separate matrices of the same original
dimensions as follows:

M ′ = HlWdH
T
m. (8)

The output matrix M ′ is the reconstructed LMI score matrix.
Finally, the GCLMI model was trained in a semi-supervised
manner using a negative sampling strategy.

SLNPM
Zhang et al. developed a new computational method SLNPM

to screen potential LMIs (Fig. 3), which was based on
sequence-derived linear neighborhood propagation [54]. In this
method, based on lncRNA (miRNA) sequences and lncRNA
(miRNA) expression profiles, the authors first adopted the lin-
ear neighborhood similarity measure method [55] to calcu-
late lncRNA (miRNA) sequence similarity SLSF (SMSF ) and
lncRNA (miRNA) expression profile similarity SLIP (SMIP ).
Then, two similarity integration strategies were proposed, in-
cluding similarity-based information combination (SC) and in-
teraction profile-based information combination (PC). Here we
employed the integration of lncRNA similarity as an example to
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describe the SC strategy.

Slnc(i, :) =

{
SLIP (i, :) if lncRNA Li has interactions
SLSF (i, :) otherwise

.

(9)
Similarly, the integrated miRNA similarity Sm can also be
computed. Unlike the SC strategy, for lncRNA Li without
interactions, their interaction profiles were complemented by
sequence information before calculating the integrated lncRNA
similarity in the PC strategy. The complementation process is
explained as follows:

Y (i, :) =
1

Qi

∑
ik∈N(Li)

SLSF (i, ik)Y (ik, :) , (10)

Qi =
∑

ik∈N(Li)

SLSF (i, ik) , (11)

where N(Li) is the set of k lncRNAs that are most similar to
that lncRNA Li based on SLSF , and each similar lncRNA has
at least one interaction with miRNAs. Complementary miRNA
interaction profiles can also be obtained in a similar manner.
The integrated lncRNA and miRNA similarity matrices was
computed based on the sequence similarity-complemented in-
teraction profiles. Finally, the label propagation algorithm was
applied on the SC and PC strategies to acquire the LMI score
respectively, resulting in two versions of SLNPM: SLNPM-SC
and SLNPM-PC. The propagation processes are defined as
follows:

PL = (1− α) (I − αSlnc)
−1 LM, (12)

PM =
(
(1− α) (I − αSm)−1 LMT

)T

, (13)

whereLM is the known LMI matrix and I is the identity matrix.
The labels of nodes were updated with the labels of its neighbors
with probability α, and the initial labels were kept with prob-
ability 1− α. PL(PM ) was the LMI score matrix, which was
gained by applying label propagation algorithm in the lncRNA
(miRNA) similarity graph. PL and PM were combined as the
final interaction scores Pscore = βPL + (1− β)PM , where β
represented the weighting factor.

LNRLMI
Wong et al. presented a linear neighborhood represen-

tation method, LNRLMI, to identify lncRNA-related miR-
NAs [56]. Similarly, the model measured three types of lncRNA
(miRNA) similarity utilizing lncRNA (miRNA) expression pro-
files, lncRNA (miRNA) functional annotations, and lncRNA
(miRNA) sequences. First, the lncRNA (miRNA) network was
constructed by connecting all lncRNA (miRNA) pairs whose
similarities were greater than 0. Furthermore, the weights of the
edges were set to their similarity. Then, according to the known
LMIs, edges were added to connect lncRNA and miRNA nodes
in the lncRNA and miRNA network to build the lncRNA-miRNA
bipartite network M . It can be represented by the matrix as
follows:

M =

[
LS LM

LMT MS

]
. (14)

Then, the score matrix was defined as S = MC, where C
was a weight matrix. C can be obtained by optimizing the
corresponding objective function as follows:

min
C

α‖M −MC‖2F + ‖C‖2F , (15)

where α is set to balance the two factors, and ‖ · ‖2F is the Frobe-
nius norm. The final interaction score matrix can be obtained as
follows:

S = MC∗, (16)

where C∗ is the optimized weight matrix, and the interaction
probability of lncRNA and miRNA is calculated as LM ′ in S.

LMNLMI
Hu et al. built a novel computational approach, LMNLMI,

based on fusing multiple information of lncRNAs and miR-
NAs to discover potential LMIs [57]. Like EPLMI, they first
integrated several biological data sources, including lncRNA
(miRNA) expression profiles, lncRNA putative functional anno-
tations, miRNA-target gene interactions, and lncRNA (miRNA)
sequences, to measure the three types of lncRNA and miRNA
similarities. Then, considering different similar networks that
are more or less interrelated and complementary to each other.
A network fusion approach was utilized to obtain the lncRNA
fusion network X and miRNA fusion network Y . Finally, the
matrix completion method was employed to predict the prob-
ability scores of lncRNA-miRNA pairs. The interaction proba-
bility of each lncRNA-miRNA pair can be simply expressed as
follows:

score(i, j) = xiPyTj , (17)

where P is the projection matrix to be learned. xi and yj are the
i-th and j-th rows of matrices X and Y , respectively.

GEEL-PI and GEEL-FI
By integrating graph embedding and ensemble learning, Zhao

et al. developed a model for predicting LMIs [58]. The authors
first constructed the lncRNA-miRNA heterogeneous network by
combining lncRNA sequence similarity SL, miRNA sequence
similarity SM , and known LMI network LM , as shown in (14)
above. Then, to take full advantage of the topological properties
of the heterogeneous network, three categories of graph em-
bedding methods were performed respectively, covering matrix
factorization, random walk, and neural network. Among them,
for the matrix factorization-based category, Laplace feature
mapping (LE) [59], GraRep [60], and HOPE [61] were utilized;
for the random walk-based category, DeepWalk [62] was chosen;
and for the neural network-based category, the graph autoen-
coder was adopted. The model constructed a graph embedding
ensemble learning method GEEL-PI, which was based on indi-
vidual graph embedding methods to build the basic predictor,
and further combine their predictions with an ensemble strategy
to predict LMI. In this model, lncRNA and miRNA embed-
ding representations, which were obtained from five embedding
methods, were concatenated to construct lncRNA-miRNA pair
representations. Five random forest-based classifiers were em-
ployed to predict node-pair interaction scores. Finally, Logistic



SHENG et al.: SURVEY OF COMPUTATIONAL METHODS AND DATABASES FOR LNCRNA-MIRNA INTERACTION PREDICTION 2817

Fig. 4. The workflow of GNMFLMI based on graph regularized non-negative matrix factorization for inferring LMIs.

regression was utilized to map the outcome of multiple predic-
tors to a label (LMI score).

In addition, this author also proposed a feature integration-
based graph embedding ensemble learning model, GEEL-FI,
which uses deep attention neural networks to learn lncRNA-
miRNA pair representations. The deep neural network consists
of two main parts: the attention layer and the deep fully con-
nected layer (FCL). The attention layer was applied to integrate
the five embedding representations of lncRNA and miRNA with
the adaptively assigned weights. The FCN was employed to
extract the preferred representations of node pairs and reveal
potential interactions between lncRNAs and miRNAs. Binary
cross entropy as the loss function:

loss= − 1

nl ∗ nm
nl∑
i=1

nm∑
j=1

[pij log p̂ij+(1−pij) log (1−p̂ij)] ,

(18)
where nl and nm are the numbers of lncRNAs and miRNAs,
respectively. pij denotes the true label, and p̂ij represents the
prediction label.

GNMFLMI

Wang et al. developed a new method based on graph regu-
larized non-negative matrix factorization for LMIs prediction
(Fig. 4), and they transformed the prediction task into a
recommender system problem [63]. The integrated lncRNA
and miRNA similarity matrix were first obtained by utilizing
lncRNA Gaussian interaction profile kernel (GIPK) similarity,
lncRNA expression profile similarity, miRNA GIPK similar-
ity, and miRNA expression profile similarity. The p-nearest
neighbor graph was then employed to acquire the affinity graphs
SL and SM for lncRNA and miRNA from the similarity matrix.
Finally, the authors devised a model based on non-negative
matrix factorization to find two low-dimensional potential fea-
tures U and V for calculating the LMI score with the following
equation.

min
U,V

∥∥LM−UTV
∥∥2
F
+β

(‖U‖2F +‖V ‖2F
)
+λlTr

(
ULlU

T
)

+ λmTr
(
V LmV T

)
, (19)

where β is the sparseness constraint coefficient to adjust the
sparsity of U and V . λl and λm are the graph regularization
parameters. Ll = Dl − SL and Lm = Dm − SM denote the
graph Laplacian matrices of SL and SM , respectively. Dl and
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Dm are the diagonal matrixes. ‖ · ‖2F is the Frobenius norm, and
Tr(·) is the trace of the matrix. Updating the matrices U and V
according to the above equations until convergence or reaching
the upper limit of the iteration. The LMI score matrix can be
calculated by UTV .

LMFNRLMI
Liu et al. proposed a new computational model based on

matrix factorization to reveal the potential interactions of lncR-
NAs with miRNAs [64]. In this model, the potential factor
vectors of matrix factorization are represented as probability
scores by logistic functions using known interaction informa-
tion and neighbor similarity. First, the authors introduced the
p-nearest neighbor to the similarity matrix and integrated it
into the regularization items. Among the similarities include
lncRNA (miRNA) sequence similarity, lncRNA (miRNA) ex-
pression profile similarity, and lncRNA (miRNA) function sim-
ilarity. Then, the authors proposed a logistic matrix factorization
based on neighborhood regularization to find the potential low-
dimensional features matrixes U and V of lncRNA and miRNA.
lncRNA and miRNA interaction score pij was measured by the
following equation:

pij =
exp

(
uiv

T
j

)
1 + exp

(
uivTj

) , (20)

where ui and vj denote the i-th and j-th rows of U and V .
LMI-DForest
Consider that DeepForest can efficiently leverage input fea-

tures to generate differently grained feature vectors, and has
highly competitive performance with deep neural networks in
a wide range of tasks [65]. Wang et al. developed a deep
learning framework to infer LMIs by integrating DeepForest and
autoencoder model [66]. It consists of two main parts, first, the
authors input lncRNA and miRNA expression profile features
into autoencoder to extract potential low-dimensional represen-
tations of lncRNAs and miRNAs. Then, the low-dimensional
representations were then fed into the random forest-based deep
forest to predict potential LMIs.

SNFHGILMI
Fan et al. proposed a heterogeneous graph inference method

based on similar network fusion to predict lncRNA-related
miRNAs [67]. They first integrated sequence information and
experimentally verified interactions to calculate the lncRNA
(miRNA) sequence similarity SL(SM), and lncRNA (miRNA)
GIPK similarity KL(KM). In this paper, two similarity fusion
methods were proposed. One is a simple linear fusion as follows:

WL(i, j) = αSL(i, j) + (1− α)KL, (21)

WM(i, j) = αSL(i, j) + (1− α)KM, (22)

where α ∈ (0, 1) is the weight parameter. The other is a non-
linear fusion method called similar network fusion (SNF). Here
lncRNA is used as an example, which is expressed as follows:

WL = (SLsnf +KLsnf ) /2, (23)

WL =
(
WL+ (WL)T + I

)
/2, (24)

where, SLsnf and KLsnf are lncRNA sequence similarity and
lncRNA GIPK similarity obtained by SNF algorithm. I is the
identity matrix. Similarity, integrated miRNA similarity WM
can also be obtained. Combining the WL, WM and the known
LMI matrix LM , the heterogeneous graph inference algorithm
was adopted to predict the potential interaction scores.

Wi+1 = λWL×Wi ×WM + (1− λ)W0, (25)

where λ ∈ (0, 1) is the decay factor. W0 is the initial interaction
adjacency matrix of lncRNA-miRNA. A new interaction matrix
is generated by iteration, and when the difference between
Wi+1 and Wi is less than a certain threshold value, the matrix
converges, and the LMI score matrix is obtained.

LMI-INGI
Zhang et al. developed a computational method to predict

potential LMIs based on interactome network and graphlet inter-
action (Fig. 5) [68]. First, the authors also calculated three types
of lncRNA (miRNA) similarities, including lncRNA (miRNA)
sequence similarity, lncRNA (miRNA) expression profile sim-
ilarity, and lncRNA (miRNA) functional similarity. Second,
the authors constructed a lncRNA graph GL and a miRNA
graph GM by using lncRNA and miRNA similarity values,
respectively. Third, the number of graphlet interaction isomers
between node i and node j in GL and GM was calculated. Here
the graph GL was shown as an example.

Nij (Ik) =
∑

l∈V (GL)

∑
m∈V (GL)

bijbilbjlbimbjmblm, (26)

bst =

{
ast s and t has a link in Ik
1− ast s and t has no link Ik

, (27)

where V (GL) is the set of nodes in GL, l and m are the
other two nodes besides node i and node j. If there was a link
from node s to node t, ast was equal to the similarity value
between the two nodes, otherwiseast = 0. Similarly, the number
of graphlet interaction isomers between two miRNAs in GM
can be computed. Fourth, the LMI probabilities were calculated
based on the graphs GL andGM , respectively. For example, for
graph GL, the authors obtain the lncRNA-miRNA pair scores
Slnc, as follows:

Slnc(i, j) = VlncXlnc, (28)

Xlnc(k, j) =
∑

p∈p(i)

Npj (Ik)∑
l∈L Npl (Ik)

, (29)

where P (i) is the set of lncRNAs known to be associated with
miRNA, and L is the set of other lncRNAs. k is the type of
graphlet interaction isomers. Vlnc is the weight matrix, which is
measured based on training set.

Vlnc = SlncX
T
lnc

(
XlncX

T
lnc

)−1
(30)

Similarly, for the miRNA graph GM , the interaction scores Sm

of the lncRNA-miRNA pairs can also be derived. Finally, the
Slnc and Sm were averaged as the final interaction scores of
lncRNA-miRNA pairs S = (Slnc + ST

m)/2.
NDALMA
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Fig. 5. The workflow of LMI-INGI based on interactome network and graphlet interaction for predicting LMIs.

Zhang et al. proposed a computational method to infer po-
tential lncRNA-related miRNAs by applying network distance
analysis [69]. In this paper, they first used lncRNA (miRNA)
sequence similarity and lncRNA (miRNA) GIPK similarity
to obtain the integrated lncRNA (miRNA) similarity matrix
LS(MS). Then, for the lncRNA similarity network, the network
distance matrix of lncRNA was measured using the network
distance algorithm, as follows:

Dladjij =
Dlij√
σi × σj

, (31)

where Dl = 1/LSi. σi and σj are the average distance of the
i-th and j-th lncRNA from all other lncRNAs in the original
lncRNA network, respectively. Similarly, the network distance
matrix of miRNADmadj

ij can be derived. Finally, the confidence

scores of lncRNAs and miRNAs were calculated as follows:

Cli =

∑Nl

j=1 Dladjij

Nl
−

∑Rm

j=1 Dladjij

Rm
, (32)

where Nl is the number of lncRNA and Rm is the total number
of lncRNAs known to interact with a given miRNA. Similarly,
the confidence scoreCm of miRNAs can be obtained. The score
conversion was applied to get the interaction scores of lncRNAs
and miRNAs. The final score is the average of the two conversion
scores.

GCNCRF
Recently, Wang et al. proposed a GCN and conditional ran-

dom field (CRF) based method, GCNCRF, to predict human
LMIs [70]. The authors first calculated lncRNA (miRNA) se-
quence similarity SL (SM ) of and the GIPK similarity KL
(KM ) of lncRNA(miRNA). Same as (21) and (22), a linear fu-
sion approach was adopted to obtain the fused lncRNA (miRNA)
similarity WL (WM ). Given lncRNA similarity WL, miRNA
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similarityWM and LMIsLM , the adjacency matrix of the LMI
network is expressed as follows:

A =

[
WL LM

LMT WM

]
. (33)

In addition, the authors utilized a random walk with restart in
the lncRNA (miRNA) similarity matrix WL (WM ) to extract
the lncRNA (miRNA) features Fl (Fm). The feature matrix of
the interaction network was defined as follows:

X =

[
Fl 0

0 Fm

]
. (34)

Given the adjacency matrix A and the feature matrix X of
the LMI network, graph convolution encoder was performed
to extract the topological features of the nodes. The propagation
rules are defined as follows:

H(l+1) = Relu
(
D− 1

2AD− 1
2H(l)W (l)

e

)
, (35)

where D is the degree matrix of A, W (l)
e is the trainable weight

matrix, andH(0) = X .Relu is the nonlinear activation function.
To ensure that similar lncRNA/miRNA nodes have similar em-
beddings, the authors introduced a CRF layer with an attention
mechanism to update the obtained preliminary embeddings.
Finally, the authors acquired the lncRNA-miRNA score matrix
by decoder layer.

A′ = QlWl(Wm)T (Qm)T, (36)

where Wl and Wm are trainable weight matrices, respectively.
Ql and Qm are lncRNA and miRNA node embeddings learned
in the CRF layer.

B. Sequence-Based Methods

In contrast to the network-based method, the sequence-based
method only utilizes the lncRNA and miRNA sequence infor-
mation. There are two ways to encode features in this type
of method. The first way is to manually extract features from
the lncRNA (miRNA) sequences by using k-mer, composition
transition distribution (CTD), GC content, base pair number, etc.
Then deep learning models like convolutional neural network
(CNN) and Long Short-Term Memory (LSTM) are employed to
extract deep features and predict the probability of LMIs. The
second way is that lncRNA and miRNA sequences are encoded
by one-hot encoding and fed into deep learning models such as
CNN, LSTM, gated recurrent unit (GRU), etc., to extract deep
features and infer interaction scores automatically.

LncMirNet
Considering that few computational methods are available

for discovering potential interactions between lncRNA and
miRNA based on sequence level, Yang et al. developed a com-
putational method for predicting LMIs based on deep CNN
(Fig. 6) [71]. The authors first extracted four types of fea-
tures from lncRNA and miRNA sequences using four meth-
ods, including k-mer [72], composition transition distribution

(CTD) [73], doc2vec [74], and role2vec [75]. Then, Histogram-
Dd was performed to convert the four categories of feature vec-
tors of lncRNA (miRNA) into corresponding matrices respec-
tively, and integrates them into node feature matrix with a size
of 20×20×4. Third, the feature matrix of lncRNA and miRNA
were input into CNN to extract deep features, respectively. After
crossing multiple CNN layers, respectively, the lncRNA tensor
and miRNA tensor were combined and input into the FCLs to
predict potential LMIs.

CIRNN
All of the above methods are widely employed for animal

LMI prediction, and several approaches were proposed for
plant LMI prediction. By integrating CNN and independently
recurrent neural network (IndRNN), Zhang et al. developed a
deep learning model, CIRNN, to infer plant LMIs [76]. CIRNN
consists of CNN and IndRNN. First, the authors used the CNN
layer to extract features from lncRNA and miRNA sequences
automatically. Second, the features were sampled and processed
by the pooling layer to obtain the most suitable features for
classification. Third, the obtained feature was inputted into the
IndRNN layer to further understand the dependencies between
features. Finally, the FCLs were performed to discover plant
LMIs.

PmliPred
Kang et al. proposed a model with deep learning and shallow

machine learning to infer plant LMIs [77]. One of the deep learn-
ing models, CNN-BiGRU, consists of CNN and bidirectional
gated recurrent unit (BiGRU). In this deep learning model, the
raw sequence of lncRNA and miRNA after concatenation was
encoded by one-hot encoding as input to CNN-BiGRU. CNN
was employed to extract the feature map from the encoded
sequences, and compress them into a one-dimensional vector by
a flatten layer. The vector was fed into BiGRU, and the decision
was output by the FCLs. For the machine learning model, the
authors manually constructed the k-mer, GC content, number of
base pairs, and minimum free energy (MFE) [78] of lncRNA and
miRNA to form the feature vector as the input of random forest.
Finally, inspired by fuzzy set theory, the trained CNN-BiGRU
and random forest were hybridized based on fuzzy decisions to
obtain the final LMI scores.

PmliPEMG and Kang’s Method
Kang et al. also proposed an ensemble deep learning model

by combining multi-level information enhancement and greedy
fuzzy decision making to discover potential plant LMIs [79].
The authors first used k-mer and g-gap [80] to extract continuous
and discontinuous sequence features from the raw sequences of
lncRNAs (miRNAs). In addition, RNAfole was utilized to obtain
secondary structure descriptions of lncRNAs and miRNAs. Sta-
tistical dots and brackets extracted continuous and discontinuous
structural features of lncRNAs (miRNAs). Then, the base model
ConvLSTM was built based on CNN and LSTM. A matrix Fcf
was formed as the input of ConvLSTM by arranging vertically
the values of each dimension of the complex feature vector of
lncRNA and miRNA.

Fcf = [Kmerseq, Ggapseq,Kmerstr, Ggapstr] , (37)
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Fig. 6. The flowchart of LncMirNet based on deep convolutional neural network for LMI prediction.

where Kmerseq and Ggapseq are continuous and discontinu-
ous sequence features of lncRNAs (miRNAs). Kmerstr and
Ggapstr denote the continuous and discontinuous structural
features of lncRNAs (miRNAs). In addition, the authors adopted
an attention mechanism to assign weights to the output of the
LSTM layer.

Fatt (yd) = vT tanh (Wyd +B) , (38)

ωd = softmax (Fatt (yd)) ,

nd∑
d=1

ωd = 1, (39)

A =

nd∑
d=1

ωdyd, (40)

where v denotes the parameter matrix, W and B are the weight
matrix and bias vector, respectively. yd is the d-th output of the
LSTM layer, nd is the number of outputs of the LSTM layer. ωd

represents the weight of the d-th layer, A is the output after the
attention mechanism enhancement. Finally, the FCLs were ap-
plied to predict the interaction probability for lncRNA-miRNA
pairs. The model adopted fuzzy decision to integrate three basic
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Fig. 7. The flowchart of MD-MLI based on capsule network, IndRNN with attention mechanism, and Bi-LSTM for discovering LMIs.

models and introduces greedy index to select the base model to
improve efficiency and generalization ability.

Moreover, Kang et al. also proposed a dual-path parallel
ensemble pruning-based approach to predict potential lncRNA-
related miRNAs using PmliPEMG as the base model [81].

MD-MLI
A data-driven hierarchical deep learning framework, MD-

MLI, was developed by Song et al. (Fig. 7) [82]. The frame-
work can efficiently extract sequence-derived (intrinsic) and
secondary structure features. MD-MLI consists of three com-
ponents: capsule network, IndRNN with an attention mech-
anism, and Bi-LSTM. For the capsule network part, first,

sequence-derived features of the lncRNA-miRNA pairs were
folded to form sequence feature images, which were fed into 2D
convolution layers to learn high-level features. The sequence-
derived features of lncRNA and miRNA include k-mer fre-
quency, GC content, base pair number, and Minimum Free
Energy (MFE). Then the capsule network was then employed
further to extract the high-level representation of the lncRNA-
miRNA pairs. For the indRNN part, first, the universal expres-
sion of lncRNA and miRNA secondary structures were obtained
using the bpRNA toolbox [83], respectively. Second, the two se-
quences were combined into a standard sequence, which denotes
a matrix by using one-hot encoding as the input of indRNN.
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The indRNN layer integrated the attention mechanism to learn
the global position information of the secondary structure of
the lncRNA-miRNA pair. Finally, the outputs of the two parts
were fused into the Bi-LSTM network to learn the correlation
between LMI sequence features. FCLs were performed to obtain
classification results.

preMLI
Yu et al. proposed a deep learning model based on rna2vex

pre-training and deep feature mining mechanisms for detecting
potential interaction between lncRNAs and miRNAs [84]. The
authors first trained a distributed representation of k-mer based
on word2vec [85], which was a helpful word embedding training
method consisting of a shallow two-layer neural network. Based
on the pre-training tool rna2vec, low-dimensional and high-
quality vectors can be acquired to represent k-mer words. Then,
a hybrid structure of CNN and bi-directional gated recurrent unit
(Bi-GRU) was proposed to learn the local features of lncRNA
and miRNA, as well as to capture the long-term dependence of
local features. In addition, an attention mechanism was added to
adaptively integrate the features of different layers of Bi-GRU.
Finally, lncRNA and miRNA vectors were cascaded as inputs to
the FCLs to obtain interaction scores.

IV. MODEL EVALUATION

To comprehensively evaluate the performance of compu-
tational methods, leave-one-out cross-validation (LOOCV),
5-fold cross-validation (5-cv), and 10-fold cross-validation
(10-cv) are often utilized for performance evaluation. LncRNA-
miRNA interaction prediction can be considered as a classifi-
cation task, and some traditional machine learning metrics are
often employed to measure the prediction performance of
computational methods, including sensitivity (Sen), specificity
(Spe), precision (Pre), recall (Rec), accuracy (Acc), F1-score
(F1), the area under the receiver operating characteristic curve
(AUC), the area under the precision-recall curve (AUPR),
Matthews correlation coefficient (Mcc), etc., and whose formu-
las are defined as follows:

Sen =
TP

TP + FN
, Spe =

TN
TN + FP

, (41)

Pre =
TP

TP + FP
, Rec =

TP
TP + FN

, (42)

ACC =
TP + TN

TP + FN + TN + FP
, (43)

F1 =
2 Precesion × Recall

Precesion + Recall
, (44)

Mcc=
TP × TN − FP × FN√

(TP+FN)× (TP+FP)× (TN+FN)× (TN+FP)
,

(45)

where TP (FP) denotes true (false) positive samples and
TN (FN) denotes true (false) negative samples. The receiver
operating characteristic curve and the precision-recall curve are
plotted based on sensitivity, specificity and precision, recall,
respectively. In addition, ablation experiments and parameter

sensitivity analyses are also used to further measure the
capability of computational methods. Ablation experiments are
conducted to assess the importance of a module in the proposed
method, while parameter analyses are applied to explore the
sensitivity of the parameters. Several methods also perform case
studies to further assess the prediction power of the models [58],
[63], [67], [69]. There are two main types of case studies, one
of which utilizes the trained model to score all unlabeled
lncRNA-miRNA pairs. The primary purpose of this way is to
test the practical ability of the proposed method for inference
of unknown LMIs. The second type is to validate the power
of the model to predict relevant miRNAs for novel lncRNAs
without any know interacted miRNAs. It usually requires
removing all miRNAs that interact with a specific lncRNA in
the training samples. Either way, the top-candidate interactions
are chosen and then verified by using databases and literature.
For plant LMI studies, they will select multiple test datasets of
different plants to detect the cross-species prediction capabilities
of the model.

V. DISCUSSION AND FUTURE DIRECTIONS

Though promising advances have been made in computational
methods for predicting LMIs, each method has advantages and
limitations, thus, researchers need to choose the appropriate
computational method for their needs. In this section, we discuss
some of the crucial problems with each type of method in the
current study and outline several research directions for further
investigation.

For network-based methods, the key is to construct a lncRNA-
miRNA heterogeneous network, then use graph algorithms, such
as matrix factorization and graph convolutional network, to ex-
tract features and predict scores. This category has the advantage
of allowing for full learning of the network’s structural informa-
tion. Another advantage of the network-based method is that it
is simple and reliable for understanding algorithm theory and
computational operations. However, the models of this category
usually depend on known LMIs and can suffer from possible
prediction bias caused by imbalanced learning samples. For
example, EPLMI requires to utilize known LMIs information
for message passing. In addition, the data quality might impact
the prediction performance for network-based algorithms, which
frequently need to combine multiple data sources. However,
sequence-based methods often outperform network-based meth-
ods by relying solely on the sequence information of lncRNAs
and miRNAs. However, the success of this type of method lies
in the effective extraction high-level features through different
deep learning models, such as CNN, LSTM, and GRU. For
example, LncMirNet performs CNN to learn non-linear features
from sequence information of lncRNAs and miRNAs, and it pro-
duces accurate predictions. However, most non-linear features
extracted by deep learning-based models are poorly interpreted.
Moreover, these models typically have high time and space com-
plexity. GCNCRF and preMLI are network-based and sequence-
based methods, respectively, both of which have been proposed
recently and have achieved the best prediction performance.
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Data Quality. For network-based methods, expression profile
information, sequence information, and functional information
of lncRNAs and miRNAs are frequently combined to construct
heterogeneous networks. While each of these resources has
unique aspects and advantages, it is also critical to recognize that
some of them tend to have high noise, incompleteness, and im-
precision. Additionally, like PMRD database and microRNA.org
database, are rarely updated or inaccessible. More importantly,
there is no stored database of experimentally validated plant
LMIs, which often require RNAhybrid and psRNATarge predic-
tions to obtain labels. This approach may provide an inaccurate
and unreliable label for computational models. Closer collab-
oration between computer scientists and biomedical scientists
improves the data quality and opens data sharing is essential
for future research. This is so that machine learning methods
often require high-quality data to produce accurate prediction
performance.

Interpretability. Sequence-based methods often perform deep
learning to extract non-linear features from lncRNA and miRNA
sequences. A significant challenge facing deep learning meth-
ods is interpretability. Due to the complexity of deep neural
networks, it is challenging to provide biological explanations
for LMI studies. However, it is essential to assess model per-
formance and understand the underlying regulatory mecha-
nisms through interpretability in bioinformatics. In future work,
method design needs to take into account the interpretation and
visualization of complex relationships, transforming the ”black
box” of deep learning into a ”white box” that can be interpreted
meaningfully from a biological perspective.

Negative Sample Selection. Computational methods used for
LMI prediction tend to require both positive samples (known
LMIs) and negative samples (unknown LMIs) to train models.
In practice, negative samples are frequently rare or missing, and
most studies solve this problem by randomly selecting negative
samples from unlabeled data. More importantly, however, these
unlabeled data may not necessarily be truly negative samples,
which can affect the prediction performance of the model.
Currently, this problem can be effectively improve using PU-
learning, an unsupervised learning technique that learns from
positive and unlabeled data. There is abundant room for further
development in negative sample selection and PU-learning.

Scalability. The current applications of LMI prediction meth-
ods include two aspects, animal LMI prediction and plant LMI
prediction. As mentioned by PmliPEMG, due to the differences
of ncRNAs in humans and plants (Different RNA polymerases
transcribe them). As a result, LncMirNet achieves good perfor-
mance in animal interaction prediction, but is unsatisfactory in
plants. There is still much room for development on creating a
general framework to extend the two problems into one.

Multi-Task Prediction. LncRNA-disease association predic-
tion and miRNA-disease association prediction are also two
popular tasks. Studies have shown that lncRNAs and miR-
NAs typically interact and participate in the development of
diseases. Therefore, Sheng et al. integrated lncRNA-disease
associations, miRNA-disease associations, and LMIs to con-
struct a triple heterogeneous graph and proposed an end-to-end
learning framework to extract lncRNA and disease features and

use them for lncRNA-disease prediction [32]. However, they
ignore the learned miRNA features. It is entirely feasible to
develop an unsupervised learning-based multi-task prediction
model to extract lncRNA, miRNA, and disease features for
predicting simultaneous LMI, lncRNA-disease association, and
miRNA-disease association.

Combining Computational and Biological Experiments. Bio-
logical experiments are often neglected by computational scien-
tists who focus more on algorithm-level performance evaluation.
Most of them only employed classification metrics to assess the
performance of the model, including accuracy, F1-score, AUC,
and AUPR. Only Kang et al. performed PmliPred to predict
plant LMIs, and then applied qRT-PCR to detect their expression
levels and identify the interactions. Therefore, computational
scientists and biologists should cooperate closely in future re-
search to further understand the relationships between lncRNAs
and miRNAs.

VI. CONCLUSION

LMIs can reveal various biological functions and mech-
anisms. Computational methods to screen reliable candidate
LMIs are an important and promising approach. This review
is the first to summarize the latest research on LMI prediction,
and to survey databases, computational models, and evaluation
metrics. First, we outline LMI databases, lncRNA- and miRNA-
related databases, which are commonly utilized in animal and
plant LMI prediction. Second, we reviewed 20 computational
models for predicting LMIs and divided them into two cate-
gories, network-based methods and sequence-based methods.
Third, we summarize the typical evaluation methods and metrics
used in computational methods. Finally, we discuss the future
challenges and directions of LMI prediction research.
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