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Abstract—Genomic selection (GS) is expected to accelerate plant and animal breeding. During the last decade, genome-wide

polymorphism data have increased, which has raised concerns about storage cost and computational time. Several individual studies

have attempted to compress the genome data and predict phenotypes. However, compression models lack adequate quality of data

after compression, and prediction models are time consuming and use original data to predict the phenotype. Therefore, a combined

application of compression and genomic prediction modeling using deep learning could resolve these limitations. A Deep Learning

Compression-basedGenomic Prediction (DeepCGP) model that can compress genome-wide polymorphism data and predict

phenotypes of a target trait from compressed information was proposed. The DeepCGPmodel contained two parts: (i) an autoencoder

model based on deep neural networks to compress genome-wide polymorphism data, and (ii) regression models based on random

forests (RF), genomic best linear unbiased prediction (GBLUP), and Bayesian variable selection (BayesB) to predict phenotypes from

compressed information. Two datasets with genome-wide marker genotypes and target trait phenotypes in rice were applied.

The DeepCGPmodel obtained up to 99% prediction accuracy to the maximum for a trait after 98% compression. BayesB required

extensive computational time among the three methods, and showed the highest accuracy; however, BayesB could only be used with

compressed data. Overall, DeepCGP outperformed state-of-the-art methods in terms of both compression and prediction. Our code

and data are available at https://github.com/tanzilamohita/DeepCGP.

Index Terms—Deep learning, autoencoder, genomic selection, data compression, genomic prediction

Ç

1 INTRODUCTION

BY 2050, 70% more food production is required to keep
pace with the expected increase in food demand and

ongoing climate change on a global scale [1]. To achieve this
challenge,we need to enhance genetic gains in plant breeding
through novel technologies [2], [3]. One such technology is
the use of genome-phenotype associations [4], [5], [6]. These
include genome-wide association studies (GWAS) [7] and
genomic selection (GS) [8]. In GWAS, candidate genes are

discovered based on the associations and selecting SNPs has
a strong impact on the trait. On the other hand, GS usually
does not intend to select important SNPs but to predict geno-
typic values based on the whole SNPs. While selecting SNPs,
the major issue would be correlation among SNPs (linkage
disequilibrium). GS is expected to be effective in improving
complex traits (e.g., crop yield) controlled by a large number
of genes, which have been difficult to improve [9].

The use of genomic data is progressing in various fields,
and a massive amount of genomic data has been generated
[10] as a resource for plant breeding [6]. Furthermore, with
the introduction of high-throughput sequencing technolo-
gies, the number of data samples also tends to be large,
resulting in challenges for storage and analysis of genomic
data in the fields of genomics, bioinformatics, and quantita-
tive genetics [11]. Moreover, the increasing size and dimen-
sion of data [12] have led to an intensified need for data
compression and compression-based data analysis. The
ability to compress genomic data will not only make it eas-
ier to store and analyze data, but also aid in streamlining
the exchange of data via Web APIs etc. [13], [14].

To effectively analyze high-dimensional data, deep learn-
ing (DL) techniques [15] have been introduced in various
fields, including genomics, genetics, and breeding. Several
DLmethods exist [16], [17], [18], [19] that can compress geno-
mic data without compromising model performance. Wang
et al. introduced a single sequence based compression
method DeepDNA to compress human mitochondrial
genome data using hybrid convolutional and recurrent deep
neural networks [20]. In DeepDNA, each of compressed

� Tanzila Islam and Chyon Hae Kim are with the Department of Systems
Innovation Engineering, Graduate School of Science and Engineering, Iwate
University, Morioka, Iwate 020-8550, Japan. E-mail: tanzilamohita@gmail.
com, tenkai@iwate-u.ac.jp.

� Hiroyoshi Iwata is with the Department of Agricultural and Environmen-
tal Biology, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan. E-
mail: hiroiwata@g.ecc.u-tokyo.ac.jp.

� Hiroyuki Shimono is with the Crop Science Laboratory, Faculty of
Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan, and also
with the Agri-Innovation Center, Iwate University, Morioka, Iwate 020-
8550, Japan. E-mail: shimn@iwate-u.ac.jp.

� Akio Kimura is with the Department of Systems Innovation Engineering,
Graduate School of Science and Engineering, Iwate University, Morioka,
Iwate 020-8550, Japan, and also with the Agri-Innovation Center, Iwate Uni-
versity, Morioka, Iwate 020-8550, Japan. E-mail: kimura@cis.iwate-u.ac.jp.

Manuscript received 10 December 2021; revised 6 October 2022; accepted 12
December 2022. Date of publication 5 January 2023; date of current version 5
June 2023.
This work was supported by the japan society for the promotion of science Grant
in Aid for Scientific Research<KAKENHI>Under Grant Jp19H00938.
(Corresponding authors: Chyon Hae Kim and Hiroyoshi Iwata.)
This article has supplementary downloadable material available at https://doi.
org/10.1109/TCBB.2022.3231466, provided by the authors.
Digital Object Identifier no. 10.1109/TCBB.2022.3231466

2078 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 20, NO. 3, MAY/JUNE 2023

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3203-4083
https://orcid.org/0000-0002-3203-4083
https://orcid.org/0000-0002-3203-4083
https://orcid.org/0000-0002-3203-4083
https://orcid.org/0000-0002-3203-4083
https://orcid.org/0000-0002-7360-4986
https://orcid.org/0000-0002-7360-4986
https://orcid.org/0000-0002-7360-4986
https://orcid.org/0000-0002-7360-4986
https://orcid.org/0000-0002-7360-4986
https://orcid.org/0000-0002-6747-7036
https://orcid.org/0000-0002-6747-7036
https://orcid.org/0000-0002-6747-7036
https://orcid.org/0000-0002-6747-7036
https://orcid.org/0000-0002-6747-7036
https://orcid.org/0000-0002-7328-0483
https://orcid.org/0000-0002-7328-0483
https://orcid.org/0000-0002-7328-0483
https://orcid.org/0000-0002-7328-0483
https://orcid.org/0000-0002-7328-0483
https://orcid.org/0000-0002-0742-0783
https://orcid.org/0000-0002-0742-0783
https://orcid.org/0000-0002-0742-0783
https://orcid.org/0000-0002-0742-0783
https://orcid.org/0000-0002-0742-0783
https://github.com/tanzilamohita/DeepCGP
mailto:tanzilamohita@gmail.com
mailto:tanzilamohita@gmail.com
mailto:tenkai@iwate-u.ac.jp
mailto:hiroiwata@g.ecc.u-tokyo.ac.jp
mailto:shimn@iwate-u.ac.jp
mailto:kimura@cis.iwate-u.ac.jp
https://doi.org/10.1109/TCBB.2022.3231466
https://doi.org/10.1109/TCBB.2022.3231466


sequences can have different dimensions even though the
sequences are originally in the same size. Goyal et al. intro-
duced DeepZip, which used recurrent neural networks to
compress single sequence based genomics and text data [21].
There have been few recent studies in compressing genomic
data using a non-deep learning approach. In a recent paper,
Yilmaz et al. introduced Macarons, which is a non-deep
learning based SNP selection method that uses the correla-
tions between SNPs to avoid the selection of redundant pairs
of SNPs [22]. The SNP selection method of Macarons is fast,
but it selects SNPs individually for each trait.

For GS, accurate prediction of phenotypes (strictly speak-
ing, genotypic values) of a target trait is a central and recur-
ring problem in quantitative genetics. Consequently,
several genomic prediction methods have been proposed
based on machine learning [23], [24], [25], [26], [27], [28] and
quantitative genetic models, especially under a Bayesian
paradigm [8], [29], [30], [31]. Gonz�alez et al. compared
Bayes A and Bayesian LASSO with two machine learning
algorithms (boosting and random forests [RFs]) to predict
disease occurrence in simulated and real datasets [32].
Although the differences between the methods were small,
RF outperformed other methods in most cases. Abdollahi-
Arpanahi et al. compared the predictive performance of
two deep learning methods (multilayer perceptron [MLP]
and convolutional neural network [CNN]), two ensemble
learning methods (RF and gradient boosting), and two
parametric methods (genomic best linear unbiased predic-
tion [GBLUP] and BayesB) using real and simulated data-
sets [33]. The authors pointed out that the predictive
performance of deep learning methods was marginally bet-
ter than that of parametric methods for large datasets.

Generally, previously proposed methods in the literature
had the following limitations: (i) quality of information after
the compression was uncertain, and (ii) original data was
utilized for predictions using machine-learning methods. In
contrast, in this study, the proposed method predicts phe-
notypes of target traits based on compressed genome-wide
polymorphism data instead of original (i.e., uncompressed)
data. Despite the compression of several cycles, the pro-
posed method retains high-quality information, and the
prediction accuracy of our method is similar to that of geno-
mic prediction based on the original data, which quantifies
the quality of our compression method. Furthermore, we
used multiple autoencoder networks, in which the calcula-
tion cost of the network increased linearly with the number
of genome-wide polymorphisms (i.e., the dimension of
genomic data), whereas the calculation cost of other popular
methods increased with square order, which is also another
novel aspect of the proposed method (Supplementary Sec-
tion S1, available online). To the best of our knowledge,
there are no prediction methods that can predict the pheno-
types of a target trait based on compressed genome-wide
polymorphism data using Deep Learning in animal and
plant breeding.

In this study, we developed a deep learning approach
known asDeep Learning Compression-basedGenomic Pre-
diction (DeepCGP) to compress high-dimensional genome-
wide polymorphismdata and predict phenotypes (estimated
genotypic values) of rice agronomic traits from compressed
information. DeepCGP consists of two models: (i) an

autoencoder model to compress genome-wide polymor-
phism data; and (ii) a regression model to predict the pheno-
types of a target trait based on compressed genome-wide
marker data. To demonstrate the usage of DeepCGP, we
used two different rice genome datasets, C7AIR, consisting
of 7098 SNPs (single-nucleotide polymorphisms) and
HDRA, consisting of 700000 SNPs. In this study, we demon-
strated that DeepCGP could predict the phenotypes of a tar-
get trait based on compressed genome-wide polymorphism
data, and achieved almost a similar accuracy to the predic-
tion based on the original genome-wide polymorphism data.
Additionally, we also compared the compression-based pre-
diction performance of three genomic prediction methods
(GBLUP, BayesB, and RF) to determine the general potential
of compression-based genomic prediction over the methods
for building a regressionmodel.

2 METHODOLOGY

2.1 Deep Autoencoder

To compress genome-wide polymorphism data, we used a
deep autoencoder [34], [35] (Fig. 1). This autoencoder is com-
posed of two symmetrical deep belief networks withmultiple
hidden layers: (i) an encoder network hðxiÞ, where xi 2 Rd,
an autoencoder first encodes an input xi to a hidden represen-
tation hðxiÞðlþ1Þ based on Equation (1), and (ii) a decoder net-
work x0

i, that maps the hidden representation hðxiÞðlþ1Þ back
into a reconstruction xi

0ðlÞ computed as in Equation (2):

h xið Þ lþ1ð Þ ¼ f W lð Þx lð Þ
i þ b lð Þ

� �
(1)

xi
0 lð Þ ¼ g W 0 lð Þh xið Þ lþ1ð Þ þ b0 lð Þ

� �
(2)

where f is an en encoding activation function, W ðlÞis an
encoding weight matrix, bðlÞis an encoding bias vector, g is a
decoding activation function, W 0ðlÞis a decoding matrix, and
b0ðlÞis a decoding bias vector of lth input layer to lþ 1th hid-
den layer.

The activation function of each layer except the middle
layer and decoder layer is “ReLU” [36], which scales the
negative output value to zero.

f xð Þ ¼ max x; 0ð Þ (3)

Fig. 1. Basic structure of a Deep Autoencoder.
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The activation function of themiddle layer anddecoder layer
is a “sigmoid” [36],which scales the output to the range [0, 1].

g xð Þ ¼ 1= 1þ exð Þ (4)

The reconstruction error was calculated as mean squared
error (MSE) function, which is calculated as follows:

MSE x; x0ð Þ ¼ 1

n

Xn
i ¼ 1

xi � x0i
� �2

(5)

where xi and x0i are the measured and predicted values,
respectively, and n is the number of measured values with
i 2 ½1; n�.

2.2 Overview of DeepCGP

DeepCGP (Fig. 2) model can compress genome-wide poly-
morphism data and use compressed information to predict
the phenotype of rice.

DeepCGP consists of two models. The first is an autoen-
coder model that compresses genome-wide polymorphism
data. The second is a regression model that takes the com-
pressed information generated by the autoencoder as input

and attempts to predict the genotypic values of a target trait.
Regression models such as random forests (RF), GBLUP,
BayesB, etc., can be used for prediction.

In the first model, our aim was to compress the genome-
wide polymorphism data to the maximum limit. To achieve
this, we generated several separated networks and trained the
separated autoencoder models. The separated autoencoder
models compressed the data, which was defined as Com-
press_1, c1. To further compress the genome data, c1was used
as the input, and the separated autoencoder models were
trained for the second compression. The second compression
was defined as Compress_2, c2. In this manner, the separated
autoencodermodels can compress any genomic data.

After compressing, the regressionmodelwill be established
to predict phenotypes of a target trait of genotypes (plants/
lines). In this study,we used rice germplasm accessions.

In the present study, the models were trained in three
steps:

Step 1: The separated autoencoder model was trained to
optimize Equation (5) and to compress the genome-wide
polymorphism data.

Fig. 2. DeepCGP architecture. The system consists of autoencoder models and a regression model (i.e., Random Forest [RF]). The autoencoder
model compresses the genome-wide polymorphism data and the regression model (RF) predicts the phenotypes of traits based on compressed
genome-wide polymorphism information.
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Step 2: The regression model mapped the compressed
information to phenotypes of the target traits of rice germ-
plasm accessions.

Step 3: After mapping each compression with pheno-
types, we trained a regression model.

2.3 Datasets and Data Pre-Processing

In this study, we used two datasets of different sizes to dem-
onstrate the broad applicability of our model. Based on
these datasets, we evaluated our model using two metrics:
(i) how precisely we compress data, where a better compression
model is expected to minimize the loss of information in
compression, and (ii) how successfully the compressed genome-
wide polymorphism can predict genotypic values of a target trait,
where we expect a prediction performance close to the origi-
nal data.

C7AIR: The first dataset used was the Cornell-IR LD Rice
Array (C7AIR) [37], which offers a second-generation SNP
array containing 189 rice accessions for 7098 markers from
the Rice Diversity project. The 189 lines had estimated geno-
typic values for plant height.

HDRA: The second dataset was the high-density rice
array (HDRA) [38]. The HDRA dataset consisted of 1568
diverse inbred rice varieties with 700000 SNPs. Among
these lines, the genotypic averages of 34 traits were esti-
mated for 388 lines [39], with some missing records. As 29
genotypes had more than or equal to 10 missing data, while
359 had less than 10 missing data, we chose 359 lines in 18
traits (Table 1). Furthermore, the genotype dataset was for-
matted as a bed matrix in vcf format, in which each entry
was scored as 0, 1, or 2, where 1 was identified as heterozy-
gous. Since the accessions used in the study were all inbred
lines and were expected to be homozygous in most SNPs,
we considered 1 as a missing value and converted 0 and 2
to categorical values A (adenine), C (cytosine), G (guanine),
and T (thymine). Subsequently, we saved the output in the
csv format. Furthermore, we used the ‘gaston’ package [40]
in R for this conversion.

We pre-processed categorical values (A, C, G, and T) for
both datasets by applying one-hot encoding. In addition, all
genomes were encoded into one-hot encoding using a 4-bit
coding scheme; that is, x 2 Rd�4, where d is the length of the
genome sequence. “A,” “C,” “G,” and “T” are encoded by
“1000”, “0100”, “0010”, and “0001”, respectively. The C7AIR
and HDRA dataset has �13% and �10% missing genotypes,

respectively. Therefore, we encoded the missing values “N”
by “0000” (Supplementary Fig. S2, available online).

After processing the raw data through one hot encoding,
the dimensions of the C7AIR and HDRA data were 189 �
28392 and 1568 � 2800000, respectively. As the dimension
of the input data was large, an input data splitting tech-
nique was applied, which reduced the computational time.
We used the NumPy hsplit to split the one-hot encoded
array horizontally (axis ¼ 1, i.e., 28392 and 28,00000 for
C7AIR and HDRA, respectively). For C7AIR and HDRA,
each split contained 189 � 28 and 1568 � 28 of data, respec-
tively, that is, an input layer with 28 neurons in each net-
work. Moreover, 1014 and 100000 separated autoencoder
networks were employed for the C7AIR and HDRA data-
sets, respectively (Supplementary Fig. S3, available online).

2.4 Implementation for Compression Modeling

An autoencoder model was utilized to compress the
genome-wide polymorphism data. Each dataset was divided
into training (60%), testing (20%), and validation sets (20%)
using the scikit-learn ‘train_test_split’ library. To achieve the
optimum performance of a compression model, for both
datasets, we executed Keras wrapper class ‘KerasRegressor’,
which permitted us to tune hyperparameters (Table 2) using
scikit-learn’s ‘RandomizedSearchCV’. Since the dimension
of the C7AIR dataset is low, we tuned the hyperparameters
on a whole dataset. For the HDRA dataset, we tuned the
hyperparameters on a small subset of training data i.e., first
1000 splits of data where each split contained (1568� 28).

For the C7AIR genotype data, the selected model had
three hidden layers in both the encoder and decoder net-
works. In Compress_1, the input layer of a network has 28
nodes, the first hidden layer has 14 nodes, the second hidden
layer has 7 nodes, with a code size of 3. For further compress-
ing the data, the first compression data (c1) was used as an
input in Compress_2. In Compress_2, the input layer of a net-
work has 36 nodes, the first hidden layer has 28 nodes, and
the second hidden layer has 10 nodes, with a code size of 5.
Both compressions were trained with the Adam optimizer
using a learning rate of 0.001. ReLU activation was applied to
all layers of the encoder and decoder, except the middle and
last layers, for which we applied the sigmoid activation func-
tion. The model was trained with MSE loss, and the mini-
batch size was 52 for Compress_1 and 32 for Compress_2.
The epochswere set to 200 for both the compressions.

TABLE 1
Selected Traits Id and Name (HDRA Dataset)

Trait Id Trait Name Trait Id Trait Name

1 Flowering time at Arkansas 10 Florets per panicle
2 Flag leaf length 11 Panicle fertility
3 Flag leaf width 12 Seed length
4 Awn presence 13 Seed width
5 Panicle number per plant 14 Seed length width ratio
6 Plant height 15 Blast resistance
7 Panicle length 16 Amylose content
8 Primary panicle branch number 17 Alkali spreading value
9 Seed number per panicle 18 Protein content
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The architecture selected for HDRA genotype data was
very similar, except for the number of compressions, training
epochs, and network structure. The data was compressed to
the greatest extent as theHDRAdataset had very high dimen-
sions. The number of nodes in each layer was [28, 14, 7, 3],
[30, 15, 5], and [25, 14, 5] for Compress_1, Compress_2, and
Compress_3, respectively. Compress_1 was trained with 200
epochs and 52 batch sizes, Compress_2 with 100 epochs and
32 batch sizes, and Compress_3 with 150 epochs and 32 batch
sizes. Moreover, the remaining parameters were the same as
those for the C7AIR network.

The compression model was implemented using Keras
functional API [41], which is written in Python and built on
top of Tensorflow.

2.5 Random Forests (RF)

In the present study, random forests (RF) [42], [43] were used
to predict the phenotypes of a target trait. RF is an ensemble
machine learning algorithm consisting of individual decision
trees. RF is often a collection of hundreds to thousands of
trees, where each tree is built using a bootstrap sample of the
original data. The final random forest predictor is computed
by averaging the tree predictors over trees, which does not
include the given observation in the bootstrap sample. Each
tree minimizes the average mean squared generalization
error or predictive error, which is used to assess the predic-
tive accuracy. The construction of the RF algorithm can be
described in the following steps [44]:

1. Draw ntree bootstrap samples from the original or
compressed marker scores.

2. Grow a random forest tree Tb for each bootstrap data
set. At each node:
i. Randomly selectmtry variables for splitting.
ii. Grow the tree so that each terminal node has no

fewer than the node size cases.
3. Aggregate the prediction from each tree for predic-

tion by majority voting and assembling the output of
trees fTbgB1 .

An RF can be mathematically expressed as:

y0i ¼ 1

B

XB
b ¼ 1

Tb xið Þ (6)

where each predictor TbðxiÞ is a decision tree [45] con-
structed with a bootstrapped sample B of the marker geno-
type score (or the compressed score) xi at iteration b(for
b ¼ 1; . . . . . . ; B bootstrap samples).

2.6 GBLUP and BayesB

Moreover, we used GBLUP and BayesB as the commonly
used Bayesian regression methods for genomic prediction.
The GBLUP model equation is:

y ¼ 1mþWuþ e (7)

where y is the vector of the phenotypes of a target trait, m is
the grand mean, 1 is a vector of ones (all-ones vector), u is
the vector of estimated genotypic values, W is the design
matrix that relates the genotypic values to samples (i.e.,
varieties/lines), and e is the vector of residual errors. In this
study, we only had one phenotypic record for each variety/
line,W is an identity matrix of size n, where n is the number
of varieties/lines. The vector u is assumed to follow a multi-
variate normal distribution u � Nð0; Gs2

gÞ, where 0 is a
vector of zeros (all-zero vector), s2

g is the genetic variance
explained by genome-wide polymorphisms, and G is the
genomic relationship matrix calculated as ZZ0 = m, where
Z is the matrix of original or compressed marker scores,
and m is the dimension of the original or compressed
marker scores. Each column of the matrix of marker scores
Z, is scaled to have mean 0 and variance 1 prior to the calcu-
lation of G.

The model equation of BayesB is:

y ¼ 1mþXaþ e (8)

where X is the matrix of unscaled original or compressed
marker scores, and a is the vector of the original and com-
pressed marker effects. When the marker scores are uncom-
pressed, each element of X represents SNP genotypes,
where 0 represents the homozygous genotype of the refer-
ence allele and 1 represents the homozygous genotype of
the non-reference allele. When the marker scores are
uncompressed, each element of X take values of 0 or 1
according to the compressed data. The prior distribution of
a marker effect ak (k-th element of a) is assumed to follow a
normal distribution with zero mean and marker specific
uncertainty variance s2

ak
, and the variance s2

ak
is assumed to

follow the same scaled inverse chi-square distribution. A
detailed explanation of the BayesB model can be found in
[29], [31].

2.7. Implementation for Prediction Modeling

In the present study, three prediction models, such as RF,
GBLUP, and BayesB were used. In addition, we used com-
pressed information as input and extracted the compressed
data as a matrix from each dataset. Furthermore, we pre-
pared the estimated genotypic values of a target trait

TABLE 2
Hyperparameters Determined for C7AIR and HDRA Datasets

Hyperparameters C7AIR HDRA

Compress_1 Compress_2 Compress_1 Compress_2 Compress_3

Neurons 28, 14, 7, 3 36, 28, 10, 5 28, 14, 7, 3 30, 15, 5 25, 14, 5
Batch Size 52 32 52 32 32
Epochs 200 200 200 100 150

Learning rate, batch size, and loss function hyperparameters were considered by tuning the values from one range above and below the default range provided in
TensorFlow. An optimum learning rate was searched for the Adam optimizer from often-used logarithmic scale values of {0.01, 0.001, 0.0001}. Furthermore, we
experimented with batch sizes {16, 32, 52, 64} and searched for minimum loss from mean squared error, binary cross-entropy, and mean absolute error loss.
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omitting missing entries and arranged them in the same
order as the compressed data. A prediction model for each
trait was built separately. To evaluate the accuracy of the
prediction models and to compare the accuracy among dif-
ferent compression levels, 10-fold cross-validation with five
repetitions were applied, and the results were averaged. We
used the same folds for all compression levels to ensure that
the results were directly comparable. Furthermore, the pre-
diction ability using the correlation coefficient between the
estimated and predicted genotypic values was evaluated.
Moreover, we evaluated the accuracy of a prediction model
based on the original uncompressed genome-wide poly-
morphism data. Before building the prediction model, we
processed the original uncompressed data converting A,T,
G,C to 0 and 1 and NA to average values of 0s and 1s,
respectively.

A RF model was implemented using the ‘ranger’ R pack-
age [46], which is the fastest and most memory-efficient
package to analyze high-dimensional data [42]. To train the
RF model, we used default parameter settings of the
‘ranger’ function (num.trees: 500, mtry: square root of the
number of tuning hyperparameters). To implement GBLUP
and BayesB, we used the ‘BGLR’ package [47] in the R lan-
guage. The MCMC (Markov Chain Monte Carlo) was run
for 25000 iterations with a 5000 burn-in period for both
GBLUP and BayesB.

All experiments in this study were conducted on a PC
with an Intel(R) Core (TM) i9-10980XE, 3.00 GHz CPU, 128
GB RAM, GPU RTX 3090, and a 64 bit Windows 10 pro
operating system.

3 RESULTS

3.1 Compression of Genome-Wide
Polymorphism Data

The first experiment in this study was aimed to demonstrate
the compression ability of DeepCGP for genome-wide poly-
morphism data. C7AIR and HDRA datasets were used to
train separated stacked autoencoders and evaluate the model
by calculating the training time and information loss. Further-
more, the compression ratios were calculated for both data-
sets; compression ratio is defined as the dimension reduction
relative to the uncompressed size, and is given as follows:

Compression Ratio ¼ 1� h=x � 100 (9)

where h is the dimension after compression and x is the
dimension before compression. Table 3 lists the dimensions

of the compressed data, training time, MSE loss, and com-
pression ratio for the C7AIR and HDRA datasets.

3.2 Prediction of Phenotypes Based on the
Compressed Data

To evaluate the accuracy of the models and to investi-
gate the compressed data, the prediction models were
fitted to the compressed data. Fig. 3A and 3B shows the
prediction accuracy of RF for different compression lev-
els, including non-compression for both datasets. We
considered the compression level according to the com-
pression ratio percentage, which was 0% (original
uncompressed data), 57% (57.14%), and 94% (94.01%) for
the C7AIR dataset and 0% (original uncompressed data),
57% (57.14%), and 98% (98.57%) for the HDRA dataset.
For the C7AIR dataset (Fig. 3A) an accuracy similar to
that of the original data (with an average difference of
approximately less than 3%) was attained even at 94%
compression. For the HDRA dataset (Fig. 3B), the accu-
racy obtained outperformed that of the original data
after 98% compression (with an average difference of
approximately 5%) for all the selected 18 traits (Table 1).
Moreover, DeepCGP could successfully predict pheno-
types even after high-level compression.

The predictive performance was compared between
RF and two quantitative genetic models, BayesB [8] and
GBLUP [48] (Supplementary Tables S1 and S2, available
online). Both models are commonly used in genomic pre-
diction; Figs. 4A and 4B display the predictive perfor-
mance of BayesB, GBLUP, and RF for the C7AIR and
HDRA datasets.

We evaluated the predictive performance of the original
uncompressed data to the compressed data for both datasets.
In the C7AIR dataset, the largest predictive performance was
achieved by RF (0.72), followed by GBLUP (0.68) and BayesB
(0.67), despite 94% compression. Contrarily, after 98% com-
pression, the largest predictive performance of the HDRA
dataset was delivered by BayesB (0.64) followed by GBLUP
(0.63) and RF (0.60). The results suggest that RF yielded the
highest accuracy of prediction for both original uncompressed
data and compressed data of low-dimensional datasets (i.e.,
C7AIR). In contrast, it is difficult to apply BayesB to a high-
dimensional original uncompressed dataset (i.e., HDRA)
owing to computational requirements. Therefore, we avoided
calculating the prediction accuracy for the original uncom-
pressed HDRA dataset, which is considered as N/A in
Fig. 4B. However, BayesB was applied to compressed HDRA

TABLE 3
Compression Analysis for C7AIR and HDRA Datasets

C7AIR (189, 7098) HDRA (1568, 700000)

Compress_1 Compress_2 Compress_1 Compress_2 Compress_3

Dimension (189, 3042) (189, 425) (1568, 300000) (1568, 50000) (1568, 10000)
Training Time 01h:25m:54s 00h:10m:33s 10d:20h:3m:28s 23h:30m:25s 6h:34m:40s
MSE Loss 0.051 0.039 0.0156 0.0749 0.0911
Compression Ratio 57.14% 94.01% 57.14% 92.86% 98.57%

We calculated MSE loss for each autoencoder and then showed the average MSE loss after each compression. We compressed the C7AIR data up to approximately
94.01% and HDRA data up to approximately 98.57%. The compression levels of our model can be adjusted depending on storage requirements3.2 Prediction of
phenotypes based on the compressed data
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data, and its prediction accuracy outperformed both GBLUP
and RF. After 98% compression, the predictive performances
of BayesB model were 0.01 and 0.04 higher than that of
GBLUP and RF, respectively.

Figs. 5A, 5B, and 5C show the prediction accuracies of RF,
GBLUP and BayesB models, respectively, for the selected 18
traits (Table 1) of the HDRA dataset. After 98% compression,
the predictive accuracy of trait id 16 was higher than that of
low compression levels for GBLUP. The prediction times for
RF, GBLUP, and BayesB were shorter at higher compression
levels (Table 4). RF demonstrates the lowest time for both
datasets at all compression levels compared to the othermeth-
ods. For the HDRA dataset, BayesB takes a longer time for
predicting even after applying compression; BayesB cannot
be applied to the original data (i.e., 0%) owing to computa-
tional requirements, hence it is considered asN/A.

3.3 Compare With Other Compression Methods

We compared the compression performance of DeepCGP
with Macarons which is a SNP selection method that takes
into account the correlations between SNPs to avoid the
selection of redundant pairs of SNPs. For comparing Maca-
rons with our method DeepCGP, first, we selected SNPs
using Macarons by setting the k values to 300000 (57%),
50000 (93%) and 10000 (98%). Then, we predicted the accu-
racy of phenotype using the Random Forest regression
method. For predicting the phenotype, we used the same
cross validation id as of DeepCGP to ensure that the results
are directly comparable.

Fig. 6 shows the prediction performance of DeepCGP
and Macarons. The methods are compared for three differ-
ent levels of compressions (57%, 93% and 98%) for the
HDRA dataset. The y-axis shows the averaged prediction

Fig. 3. RF prediction relative accuracy (A) C7AIR (B) HDRA datasets.
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accuracy across all the 18 traits (Supplementary Fig. S4, S5,
available online). Although the selection method of Maca-
rons is fast, the downside of this approach is to select SNPs
for each trait. On the other hand, in DeepCGP, we can com-
press the data for all the traits using a single task. And the
prediction accuracy of our deep learning based method

DeepCGP is higher than Macarons, which proved that a
deep learning based compression method would be better
able to learn meaningful information compared to non-
deep learning based compression method.

4 DISCUSSION

High dimensional genome-wide polymorphism data are
extensively utilized for plant and animal breeding; this
necessitates for the development of innovative platforms
that can considerably reduce the resources required for stor-
age and processing. Studies have shown that the intrinsic
biological patterns found in genomic data provide a unique
opportunity for researchers to compress high-dimensional
genome-wide polymorphism data. Several individual stud-
ies have been conducted to compress the genome data and
predict phenotypes. However, in most studies, there is
uncertainty regarding the quality of data after compression
and compressed data are not used during the prediction
method. For instance, a fast reference-free genome compres-
sion method [16] used an autoencoder to compress genome

Fig. 5. Prediction accuracy of HDRA dataset (A) RF (B) GBLUP and (C) BayesB.

Fig. 4. Comparison of BayesB, GBLUP, and RF model prediction accuracies (A) C7AIR (B) HDRA datasets.

TABLE 4
Prediction Times of RF, BayesB, and GBLUP for C7AIR and HDRA Datasets

Methods C7AIR HDRA

0% 57% 94% 0% 57% 93% 98%

RF 9.26s 5.36s 4.29s 01h:53m: 50s 55m:24s 12m:39s 3m:31s
GBLUP 38.79s 41.1s 37.5s 2h:16m: 37s 2h:13m: 5s 2h:12m: 34s 2h:12m: 21s
BayesB 12m:43s 3m:29s 49.03s N/A 7d:5h: 1m:31s (Average time per trait) 1d:21h: 39m:43s 08h:57m: 20s

Fig. 6. Comparison of prediction performance with Macarons.
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data, which could maintain the compression ratio at an
acceptable level, while reducing the compression time for a
small part of the gene. However, they did not include any
information about the quality of the data obtained after
compression. In contrast, the proposed method in this study
was scalable for high-dimensional data owing to its design
that uses a large number of autoencoders in parallel and
iteratively, and retains high-quality information from com-
pressed data that can be used for any kind of data analysis
instead of the original data. Montesinos-L�opez et al. sug-
gested that DL prediction performance was higher for high-
density data sets when compared to conventional genomic
prediction models [49]. Li et al. provided an integrated
framework to conduct GWAS and GS in crops, with an
environmental dimension that enhanced prediction perfor-
mance in breeding for future climates [50]. However, to the
best of our knowledge, to date no research has been con-
ducted on the combined application of a compression and a
prediction model. In this study, we developed a DL based
compression-based genomic prediction model, DeepCGP,
which substantially improved breeding and crop yields
while providing a considerable reduction in storage require-
ments related to DNA sequence data.

The most prominent advantage of using DL for compres-
sion is its ability to learn meaningful information from the
underlying genetic architecture. This method is capable of
modeling complex patterns with less intense computer
requirements than other algorithms. The experimental results
obtained in this study are extremely promising as we were
able to provide phenotype predictions by evaluating the
robustness of compressed data. The compression levels of our
model can be adjusted depending on the storage require-
ments or prediction accuracy level. In addition, we investi-
gated the predictive performance of three popular prediction
methods, RF, BayesB, andGBLUP, to evaluate the potential of
compression-based analysis. The results showed that the pre-
dictive performance of BayesBwas slightly higher than that of
GBLUP and RF. However, application of BayesB to the origi-
nal uncompressed HDRA data was not possible, as the
method was extremely time-consuming for analyzing high-
dimensional data (Table 4). For this reason, it is important to
compress high-dimensional genomic data to apply methods,
such as the BayesB method. Furthermore, it is important to
compress data to address the computational challenges for
managing large-scale genomic data, including storage, proc-
essing, complex data analyses, visualization, retrieval, and
sharing [51]. Transporting large genome-wide marker data
from one database to another (via the Internet), and sharing
data among multiple databases using API (e.g., Breeding
APIs BrAPI) [13] requires transportation efficiency as well as
computational efficiency. These can be achieved by compress-
ing the genome-widemarker data.

In addition, Deep Learning is still on the way of improve-
ment and currently is not suitable to make suggestions for
SNP sets. In another word, finding SNP sets using Deep
Learning can be an important and a large research theme
although we did not try it in this paper. Future work
includes analyzing gradients on each element of the neural
network that predicts phenotypes from SNP data.

A potential limitation of our approach is that we used
diverse rice germplasm data to predict phenotype from the

compressed data. We have not yet conducted experiments
to different datasets such as soybean or human genome
data. Hence, researchers have to use this new method with
caution as DeepCGP’s information loss can occur when
applying it to the other datasets.

5 CONCLUSION

In conclusion, a novel deep learning model DeepCGP as a
new paradigm was introduced to compress genome-wide
polymorphism data that successfully predicts phenotype
from the compressed information. DeepCGP methodology
can potentially consider complex modeling into account.
For example, lower-dimensional compressed data allow us
to explicitly include interactions among polymorphisms
(epistasis) in BayesB owing to the smaller dimensions (i.e., a
smaller variable number) of the compressed data. Another
novelty of the proposed method is that it provides a combi-
natorial application using DL for genomic prediction, which
may substantially improve the computational efficiency of
DL by using compressed data as input variables. The pro-
posed method also provides a strong alternative for com-
pressing high-dimensional genomic data and predicts
phenotypes from compressed data, which is beneficial for
saving storage as well as computational time.
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