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Abstract—Biological processes are often modelled using ordinary differential equations. The unknown parameters of these models

are estimated by optimizing the fit of model simulation and experimental data. The resulting parameter estimates inevitably possess

some degree of uncertainty. In practical applications it is important to quantify these parameter uncertainties as well as the resulting

prediction uncertainty, which are uncertainties of potentially time-dependent model characteristics. Unfortunately, estimating

prediction uncertainties accurately is nontrivial, due to the nonlinear dependence of model characteristics on parameters. While

a number of numerical approaches have been proposed for this task, their strengths and weaknesses have not been

systematically assessed yet. To fill this knowledge gap, we apply four state of the art methods for uncertainty quantification to

four case studies of different computational complexities. This reveals the trade-offs between their applicability and their

statistical interpretability. Our results provide guidelines for choosing the most appropriate technique for a given problem and

applying it successfully.

Index Terms—Computational methods, dynamic models, nonlinear systems, observability, prediction error methods, state estimation,

uncertainty

Ç

1 INTRODUCTION

THE dynamics of many biological systems can be
described by nonlinear ordinary differential equations

(ODEs). As these models usually have a number of
unknown parameters, it is necessary to calibrate them using
experimental data [1]. Most models are partially observed,
i.e., only a subset of their state variables – or functions
thereof – are measured. In practice, these measurements are
noisy, which complicates the model calibration task. Once
parameter estimates are available, the dynamic behavior of

the biological systems can be simulated by integrating the
ODEs. This calculation yields the time courses of the model
states, which are usually concentrations or other measures
of abundance of biochemical species.

Calibrated models are frequently employed in prediction
tasks [2], [3]. A prediction can in principle be any quantity or
result derived from model simulations, including state varia-
bles. As parameter uncertainties can result in prediction uncer-
tainties, a comprehensive uncertainty quantification is
essential. Fig. 1 provides a graphical illustration of the problem.

Uncertainty quantification is related to the concepts of
observability and identifiability. Broadly speaking, a model
is observable (respectively, identifiable) if it is possible to
infer its state trajectories (respectively, parameters) from
knowledge about the time course of its observables. Struc-
tural and practical observability (identifiability) analysis
methods are available for the assessment of this characteris-
tic [4]. The former take into account only the model equa-
tions, and inform about the theoretical possibility of
determining the unknowns. Therefore, these methods can
reveal deficiencies of the model structure, such as symme-
tries. The latter also take into account the data available for
model calibration. Hence, these methods inform about the
confidence/credibility of parameter estimates and predic-
tions. In this manuscript, we consider practical observability
problems arising from practical identifiability issues,
respectively prediction uncertainties resulting from param-
eter uncertainties.

Uncertainty quantification for a specific combination of
model and datasets is a non-trivial task. The extent to which
the uncertainty is propagated from parameters to predic-
tions depends not only on the practical identifiability, but
also on the sensitivity of the model to its parameters. Key
challenges are nonlinearity and dimensionality of models
considered in the field of computational biology, as well
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as the computational complexity required for simulation.
Several numerical uncertainty quantification approaches
have been proposed and a general overview is provided,
e.g., in [5]. Some methods for the assessment of prediction
uncertainty are discussed in [6], [7], [8]. Kaltenbach et al. [6]
explicitly mention lack of scalability as one of the open
issues.

While various approaches are available and applied, a
systematic assessment of strengths and weaknesses of the
state of the art methods is missing. In a previous study we
analysed three methods [9]: a local method based on the
Fisher Information Matrix (FIM) [10], a Bayesian method
based on Markov chain Monte Carlo sampling (SAM) [11],
and an ensemble modelling approach (ENS) based on opti-
mization results [12]. We applied these methods to two case
studies with a small number of parameters. In the present
work we address two important limitations of the afore-
mentioned paper: (1) we consider prediction profile likeli-
hood (PPL) [13], and (2) we enlarge the set of case studies to
allow for a deeper evaluation of the performance of the
methods, revealing the trade-offs between computational
cost and statistical rigor. We are particularly interested in
identifying methods which provide reliable estimates of the
prediction uncertainty and scale well with model size (both
in number of parameters and states). Based on these
requirements, several types of existing methods were ruled
out, including basic Monte Carlo sampling methods[6] and
methods based on polynomial chaos expansions [14], which
follow a rigorous approach with a sound mathematical
basis, but currently can only be applied to small problems.
We remark that in this work we consider the prediction
uncertainty that results from propagation of parametric
uncertainty. We do not take into account the possible uncer-
tainty about the model structure. However, the methods
considered here can also account for this type of uncer-
tainty, by encoding alternative topologies as parameterized
relationships in the ODEs.

The article is structured as follows: In Section 2, we
describe the four selected methods, the metrics used for
their evaluation, and the implementation details. In Sec-
tion 3, we apply the methods to four case studies of increas-
ing complexity, and evaluate their performance. In
Section 4, we discuss the most relevant methodological

aspects in view of the results. Finally, we present the conclu-
sions of the comparison and provide guidelines for the
application of the methods in Section 5.

2 METHODS

Modeling Framework and Notation.We consider ODE models,

_x ¼ f x; u; tð Þ; xðt0Þ ¼ x0ðuÞ;
y ¼ gðx; u; tÞ; (1)

in which xðtÞ 2 Rnx is the vector of state variables at time t,
yðtÞ 2 Rny is the vector of observables at time t, and u 2 Rnu

is the vector of unknown parameters. The vector field f :
Rnx �Rnu �R 7! Rnx and the mappings g : Rnx �Rnu �
R 7! Rny and x0 : R

nu 7! Rnx are possibly nonlinear.
The calibration of ODE models requires the estimation of

u from measurements of yðtÞ at nt times, ti ¼ t1; t2; . . .; tnt .
The number of measurements is nt � ny. In the application
examples, the measurement noise follows a normal distri-
bution, �k;i � Nð0; s2

k;iÞ; where k ¼ 1; . . .; ny and skðtiÞ is the
standard deviation. Thus, a noise-corrupted measurement
of the kth observable is ~yk;i ¼ ykðtiÞ þ �k;i. We denote the set
of all measurement data as D. The maximum likelihood
estimate of the vector of unknown parameters for a given
datasetD can be found by minimizing the negative log-like-
lihood function:

Jnll ¼
1

2

Xny
k¼1

Xnt
i¼1

log 2ps2
k;i

� �
þ ~yk;i � ykðtiÞ

sk;i

� �2
" #

(2)

For the maximum a posterior estimate, the negative log-pos-
terior is minimized, Jnlp ¼ Jnll � Jnp, in which the Jnp
denotes the negative logarithm of the prior evaluated at u.
The search space for u is usually constrained, e.g., by lower
and upper bounds, yielding uL � u � uU .

Predictions of the models are denoted by

z ¼ hðx; u; tÞ; (3)

in which h : Rnx �Rnu �R 7! Rnz represents a possibly
nonlinear mapping. In this study, we focus on the assess-
ment of the uncertainties in the time-dependent state vari-
able, meaning that z ¼ x. Yet, the considered analysis

Fig. 1. Illustration of the general uncertainty quantification concept. (Left:) A mathematical model of a biological system usually has unknown parame-
ters u. (Center:) These parameters are estimated by fitting the model to experimental measurements of functions yðtÞ of a subset of the states, xðtÞ.
The resulting uncertainties in the estimated parameters can be described by confidence regions. (Right:) In turn, these uncertainties translate to
uncertainties in the model predictions z; in this work we focus on predictions about the time course of the state variables, i.e., z ¼ xðtÞ:
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approaches are more flexible, which is why we provide the
equations for generic functions h.

In Sections 2.1, 2.2, 2.3, and 2.4, we describe the four con-
sidered methods for the quantification of prediction uncer-
tainties (Fig. 2). For each method, we provide a definition of
its prediction, xp

j ðtiÞ, and of its uncertainty estimates, epj ðtiÞ.
Here, j indexes for the state variables (j ¼ 1; . . .; nx) and i
indexes the time points (i ¼ 1; . . .; nt) (which do not neces-
sarily have to be aligned with the time points of the observa-
tions). In Section 2.5, we define the metrics used to quantify
the performance of the methods. In Section 2.6, we provide
descriptions on the implementation.

2.1 Approximation Approach Based on Fisher
Information Matrix (FIM)

For many decades parameters uncertainties were predomi-
nately analyzed using methods based on asymptotic statis-
tics. These methods are based on the assessment of the
variability of the parameter estimates û, given different rep-
licates of the measurements. For globally identifiable mod-
els, the variability of the point estimates is described by the
Fisher information matrix (FIM)

FIMðuÞ ¼
Xnt
i¼1

Xny
k¼1

1

s2
k;i

@ykðtiÞ
@u

� �
@ykðtiÞ
@u

� �T

; (4)

in which
@ykðtiÞ

@u
denotes the sensitivity of the k-th observable

with respect to the parameters u, evaluated at the measure-
ment time point ti and the parameter estimates û. As the
sensitivity is the first order derivative, it provides informa-
tion about the effect of small changes.

The Cram�er-Rao theorem [15] states that, if û is an unbi-
ased estimate of u (i.e., EðûÞ ¼ �u), the inverse of the FIM pro-
vides a lower bound of the covariance matrix

Cov½û� ¼ E û � �u
� �

û � �u
� �Th i

� FIM�1ðûÞ; (5)

in which �u is the true parameter vector. The parameter
covariance matrix informs about the individual and pair-
wise variability of parameter estimates along different real-
izations of the experimental data.

The parameter covariance matrix (and hence the FIM)
can be used to estimate the uncertainty in predictions. To
this end, the first order Taylor series expansion of the map-
ping h is used to propagate variability from the parameters

Fig. 2. Illustration of the employed uncertainty analysis methods. All methods seek to estimate the uncertainty in the time courses of state
variables that results from uncertainties in the parameter estimations. Each method quantifies uncertainty in a different way, as defined by
Equations (8), (12), (15) and (18). Briefly, FIM approximates the prediction uncertainty as the standard deviation calculated from the square
root of the prediction covariance matrix (8). SAM considers the credibility region as the distance between the 0.5th- and the 99.5th-percentile
of the prediction samples, which are obtained by integration with the parameter samples drawn from the posterior distribution (12). PPL also
approximates the confidence region as the width of the 99th percentile, and obtains the upper and lower levels by solving an optimization
problem constrained by the prediction values (15). ENS adopts a similar approach, but builds the confidence region with those vectors
explored during parameter estimation that yield an objective function below a certain threshold (18).
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to the predictions [16]. This yields the prediction covariance
matrix:

Cov½zðtÞ� ¼ @h

@x

@x

@u
þ @h

@u

� �
CovðûÞ @h

@x

@x

@u
þ @h

@u

� �T

; (6)

with all derivatives being evaluated at time t for parameter
û and corresponding state xðtÞ.

The covariance matrices of u and zðtÞ can only be approx-
imated using the inverse of the FIM if the FIM is invertible.
If a single parameter is locally non-identifiable, this is not
the case. In principle, this would preclude the application of
this approach to unidentifiable models. A solution is to
approximate the inverse with the Moore-Penrose pseudoin-
verse, as e.g., in [17].

The assessment of the predictions using the FIM yields
for zj at time t, the point estimate

zpj ðtÞ ¼ hjðxðt; ûÞ; û; tÞ; (7)

which is the evaluation of model simulations with the opti-
mal parameter vector û. The uncertainty of the prediction as
measured by the standard deviation is

epj ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Covjj½zðtÞ�

q
; (8)

in which Covjj½xpðtiÞ� is the jth diagonal element of
Cov½xpðtiÞ�. This approximate assessment is here denoted as
FIM-based approach, but was in previous studies also
referred to as Linear Covariance Analysis (LCA) (see [10]).

2.2 Bayesian Approach: Sampling the Posterior
Predictive Distribution (SAM)

In systems biology, measurements are often scarce and the
application of asymptotic approaches arguable. Therefore, a
broad spectrum of Frequentist and Bayesian uncertainty
quantification methods have been introduced. In Bayesian
statistics, the uncertainty of parameters is studied using the
posterior distribution

pðujDÞ ¼ pðDjuÞpðuÞ
pðDÞ ; (9)

in which pðDjuÞ denotes the likelihood of the data D given
the parameters u, pðuÞ denotes the prior distribution of u,
and pðDÞ denotes the marginal probability.

The posterior pðujDÞ encodes the available information
about the parameters. Hence, it also describes the uncer-
tainty about the parameters u taking into account the avail-
able experimental data, D, and the prior belief, pðuÞ.
Likewise, one can define the posterior predictive distribu-
tion pðzjDÞ, which is obtained by integrating over the latent
variables, simply speaking:

pðzjDÞ ¼
Z

pðzjuÞpðujDÞdu: (10)

The posterior distributions are usually not available in
closed-from. In most cases their properties are assessed
using sampling procedures such as Markov chain Monte
Carlo methods (MCMC). Since these procedures are

computationally expensive, it is crucial to use an efficient
sampling technique. The adaptive parallel tempering algo-
rithm combines the sampling from tempered posterior dis-
tributions with a local adaptation to improve sampling
efficiency. The algorithm provides ns samples from the pos-

terior distribution for the parameters, fuðsÞgnss¼1, which can
be used to quantify parameter uncertainties. The corre-
sponding samples from the posterior predictive distribution
are obtained by simulating the model for the sampled

parameters, fzðsÞ ¼ hðxðuðsÞ; tÞ; uðsÞ; tÞgnss¼1. These samples are
then used to calculate the mean predictions and their associ-
ated uncertainties. The computationally demanding step is
the sampling of the parameter posterior distribution. Once
it has been computed, the calculation of the parameter and
prediction uncertainties is efficient.

The mean prediction for zj at time point ti is

zpj ðtiÞ ¼
1

ns

Xns
s¼1

zðsÞðtiÞ; (11)

yet inmany applications the prediction obtained for themax-
imum a posterior estimate might be preferred. To quantify
the prediction uncertainty, the sample-based approximation
of the marginal distribution is considered, common choices
are the highest posterior density interval and the equal-tailed
interval. Here, we choose the latter for a credibility level of
99%, meaning that the prediction uncertainty is the distance
between the 0.5th- and the 99.5th-percentile of the samples
of the prediction, z0:5j ðtiÞ and z99:5j ðtiÞ, which yields

epj ðtiÞ ¼ z99:5j ðtiÞ � z0:5j ðtiÞ: (12)

2.3 Frequentist Approach: Prediction Profile
Likelihood (PPL)

In contrast to sampling-based methods used in Bayesian
statistics, frequentist approaches for uncertainty quantifica-
tion often use profile likelihoods. Profile likelihoods provide
a maximum projection of the likelihood on the parameter of
interest

PLulðcÞ ¼ max
uL�u�uU ul¼c

pðDjuÞ: (13)

The profile likelihood value PLulðcÞ is the maximum value
of the likelihood function attainable for ul ¼ c. The defini-
tion of statistical significance levels, e.g., based on the likeli-
hood ratio test (relating to the x2-distribution), yields the
parameter confidence intervals.

Following this concept, Kreutz et al. [13] introduced the
concept of prediction profile likelihoods (PPLs)

PPLxðuÞðcÞ ¼ max
uL�u�uUxðuÞ¼c

pðDjuÞ: (14)

Conceptually, the PPL provides the highest possible likeli-
hood value for a specific value of the (parameter dependent)
prediction. This translates to a optimization problem with
an equality constraint for the value of the prediction. Yet, to
avoid problems related to nonlinear equality constraints, a
reformulation that relies on artificial data points has been
presented [13]. Additionally, integration based techniques
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that are more efficient for the analysis of uncertainties of
state trajectories have also been proposed [18].

For PPLs to provide information about the prediction
uncertainties, it is necessary to define a statistical threshold.
We choose a confidence level of a ¼ 0:01 related to the like-
lihood ratio test, which yields the uncertainty measure

epj ðtiÞ ¼ zmax
j ðtiÞ � zmin

j ðtiÞ; (15)

in which zmin
j ðtiÞ and zmax

j ðtiÞ are the minimal and maximal
values of c for which PPLzjðtiÞðcÞ=pðDjûÞ > expð�Da=2Þ,
respectively. The threshold parameter Da is the a percentile
of the x2-distribution. As in the FIM-based method, the PPL
state prediction is the model simulation with the optimal
parameter vector û

zpj ðtiÞ ¼ hjðxðt; ûÞ; û; tÞ: (16)

2.4 Ensemble Modelling Approach (ENS)

The frequentist and Bayesian methods have more recently
been complemented by ensemble modelling approaches.
These approaches exploit that parameter optimization has
already explored the parameter space [12]. The parameter
vectors encountered during the optimization process which
meet a certain quality criteria, e.g., reasonable log-likelihood
values compared to the optimal point, are considered as an
ensemble.

In practice, a diverse ensemble of parameter vectors is
obtained by performing several optimizations with different
random seeds and initial points. From the set of parameter
vectors found during the optimizations, those with an objec-
tive function value smaller than a given threshold are
included in the ensemble. Statistical interpretability is
ensured by using a threshold according to the likelihood
ratio test (as for parameter and prediction profile likeli-
hoods). We use a confidence level of a ¼ 0:01. The resulting
ensemble provides an envelope for parameter and model
predictions. As the envelope is not pushed towards the
boundaries (as done in profile calculation), the resulting
parameter and prediction envelopes provide inner approxi-
mations compared to profile likelihood-based approaches.

The ensemble prediction is the average prediction of the
predictions by the ensemble

zpj ðtiÞ ¼
1

nm

Xnm
m¼1

zmj ðtiÞ; (17)

with zmj ðtiÞ denoting the prediction zj at time ti for the mth

model parameterisation in the ensemble, and nm is the num-
ber of parameter vectors in the ensemble. While in principle
the full range of the ensemble-based envelop could be used,
previous works filter extreme results. Similar to the Bayes-
ian method, the width of the 99th-percentile interval of the
ensemble (12) was employed

epj ðtiÞ ¼ z99:5j ðtiÞ � z0:5j ðtiÞ: (18)

with zperj ðtiÞ denoting the per-th percentile of the ensemble
simulations.

2.5 Performance Metrics

In this work we perform a comparative study based on pub-
lished parameter problems. To facilitate a comprehensive
assessment we used synthetic data with the same character-
istics as the published datasets for the considered problems.
Furthermore, we used as predictions of interest the com-
plete set of state variables.

To assess the performance of the methods we used the
three metrics:

2.5.1 Computational Cost

We use the CPU time of all the calculations performed to
solve a particular problem. We set a computational budget,
i.e., a maximum time for each problem per method, of 1350
hours (somewhat less than two months).

2.5.2 Agreement Between Predictions and True States

We assessed the agreement of changes in the predicted
value xp

j ðtiÞ and true value xjðtiÞ of the state variable xj at
time ti. Therefore, we subtracted from both their averages
over all time points, xp

j and xj. To obtain a dimensionless
quantity between -1 and 1, we normalize with the respective
variability. This yields the performance metric

rxj ¼
Pnt

i¼1ðxpj ðtiÞ � xp
j ÞðxjðtiÞ � xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt

i¼1ðxpj ðtiÞ � xp
j Þ2

Pnt
i¼1ðxjðtiÞ � xjÞ2

q ; (19)

for which a value of 1 indicates that the prediction and true
values are perfectly aligned up to an offset and a scaling
constant. The time grid used for the predictions was defined
so as to resemble the original experimental data points,
whenever available. The overall value of the performance
metric for a model, rx, is the average of the performance
metrics of the state variables, rx ¼ 1

nx

Pnx
j¼1 rxj .

The equation of the performance metric is identical to the
equation of the Pearson’s correlation coefficient, yet, a statis-
tical interpretation is potentially problematic.

2.5.3 Agreement Between Uncertainty Estimates and

Observed Error

We assessed the agreement of changes in the predicted
uncertainty epj ðtiÞ and the actual error ejðtiÞ ¼ jxpj ðtiÞ �
xjðtiÞj for state variable xj at time ti. Therefore, we sub-
tracted from both their averages over all time points, epj and
ej. To obtain a dimensionless quantity between -1 and 1, we
normalize with the respective variability. This yields the
performance metric

rej ¼
Pnt

i¼1ðepj ðtiÞ � epj ÞðejðtiÞ � ejÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
i¼1ðepj ðtiÞ � epj Þ2

Pnt
i¼1ðejðtiÞ � ejÞ2

q : (20)

As before, a value of 1 indicates a good agreement of pre-
dicted uncertainties and actually errors, meaning that in the
case of large predicted uncertainties also the error is large.
The overall performance metric for a model, re is the aver-
age of the performance metrics of the state variables,
re ¼ 1

nx

Pnx
j¼1 rej .
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2.6 Implementation and Availability

Parameter optimization tasks were performed using the
MATLAB version of the enhanced scatter search (eSS)
method included in the MEIGO optimization toolbox [19],
combined with the MATLAB version of AMICI [20] for
model simulation. The initial parameters were generated
using latin hypercube uniform sampling.

For the PPL method we used an optimization-based
approach [21], and for SAM we used an adaptive parallel
tempering algorithm [11]. We used the implementation of
both methods available in the MATLAB toolbox Data2Dy-

namics [22]. For numerical integration, Data2Dynamics
and AMICI rely on the SUNDIALS solver CVODES [23]. For
initialization of the algorithms, we used the optimal param-
eter vector found by the eSS method.

We implemented in-house MATLAB scripts for the FIM
and ENS analyses, as well as for the evaluation of the
MCMC samples to obtain the prediction posterior samples.
In the FIM analyses of the unidentifiable models (all but the
a-pinene) we used the Moore-Penrose pseudoinverse as a
replacement of the inverse of the FIM. When computing the
pseudoinverse of a matrix A, singular values smaller than a
threshold given by max(size(A))*eps(norm(A)) were
treated as zero, where eps is Matlab’s floating point accu-
racy. The complete implementations of the case studies ana-
lysed in this work (including the MATLAB code,

computational results and the respective version of the
used toolboxes) are available on ZENODO (doi:10.5281/
zenodo.5995941).

FIM and ENS results were obtained in a multi-core PC
running Windows 7 64-bit with 16 GB RAM and 12 cores,
Intel Xeon 2.30 GHz with MATLAB version R2017b. SAM
and PPL results were obtained in a multi-core HPC cluster
running Fedora 25 64-bit in a computing node using up to
16 cores allocating 300 MB of memory per core with MAT-
LAB version R2017b. Both environments have similar – but
not identical – computing power. To allow a fair compari-
son, we have scaled their CPU times according to the result
of the LINPACK 100 benchmark,1 which is a common mea-
sure of computational performance. To this end we used
the C version of the LINPACK benchmark. Executing this
test on both computers yielded 2301.46 MFLOPS in the Win-
dows system and 3922.43 in the HPC cluster, i.e., a ratio of
1.70. Thus, we divided the CPU times of the Windows sys-
tem by 1.70 and reported them in Fig. 3 A.

3 CASE STUDIES AND RESULTS

To assess the performance of the four uncertainty analysis
methods described in the preceding section, we applied
them to four case studies of increasing complexity. They
possess in the order of 101, 102, 103, and 104 predictions;
these numbers represent number of state variables times
number of time points.

The main characteristics of the four case studies are
shown in Table 1. In the following, we describe the applica-
tion of the methods to each case study.

3.1 Isomerization of a-Pinene

As a first case study and a sanity check of the different meth-
ods, we considered a fully observed model for isomerization
of a-pinene [24]. It describes the thermal isomerization of

Fig. 3. (A) Approximate computation times, in hours, needed by each method and case study. Since the results were obtained using two different
computing environments, the CPU times reported for FIM and ENS have been scaled to ensure a fair comparison, as explained in Section 2.6. For
the FIM method, the computation time corresponds to the optimization used to obtain the optimum. For the ENS method it includes all the optimiza-
tion runs used to obtain the parameter vectors in the ensemble. For SAM it includes the sampling time, which was performed with adaptive parallel
tempering. We set a maximum CPU time per problem of 1350 hours (slightly less than two months); calculations with PPL hit this limit for all but the
smallest model: for EGF and JAK-STAT, PPL completed 35% and 2% of the calculations in the allowed time, respectively. For the largest case study
(BM1) PPL was deemed as not applicable (therefore shown in black). (B–C): Agreement between predictions and true states (19) and between pre-
diction uncertainty quantified by each state and actual prediction error (20), for all methods and case studies. The prediction uncertainties are those
of the 95% percentile. Results for 99% and 68% were also calculated but are not shown here, since they do not vary for the FIM method and the differ-
ences are relatively small for SAM and ENS, showing that the metric is robust with respect to the choice of the confidence level. The values shown
are the mean 	 the standard deviation for each state. For all but the smallest model (a-pinene) the PPL method only produced results for a fraction
of the predictions before exceeding the computation time limit. The percentage of predictions that could be calculated is shown with an asterisk. For
the most computationally expensive model (BM1) this method was not applicable, which is noted as N/A.

TABLE 1
Main Features of the Case Studies Used in This Paper: Number
of Unknown Parameters (nu), State Variables (nx), Measured

Observables (ny), Time Points (nt), and Predictions
(np ¼ nx � nt)

nu nx ny nt np

a-pinene 5 5 5 9 45
EGF 48 28 6 12 336
JAK/STAT 27 25 20 128 3 200
BM1 383 104 5 105 10 920

1. https://netlib.org/utk/people/JackDongarra/faq-linpack.html
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a-pinene to dipentene and allo-ocimene, which in turn yields
pyronene and a dimer. There are thus five state variables in
the model, all of which can be measured at nine time points,
including the initial conditions. Assuming first order kinet-
ics, the model has five rate constants that are the unknown
parameters.

All parameters of this model were practically identifiable
and the FIM could be inverted. For the ENS method we
built an ensemble with 4000 parameter vectors through
optimization. We found that this number could be obtained
with a low computational cost, and adding more vectors
did not alter the results. For the SAM method we created a
Monte Carlo chain with 100 000 samples. Identifiability led
to low dispersion in the parameter values included in the
ensemble and in the SAM samples, as seen in Fig. 4.

All approaches were applicable and computation times
were in the order of minutes for all methods (Fig. 3 A). Fur-
thermore, all methods achieved good agreement of pre-
dicted and true state (Fig. 3 B) as well as predicted
uncertainty and error (Fig. 3 C). The prediction uncertain-
ties were relatively small (Fig. 5).

3.2 EGF Signaling

As a second case study, we considered a model [25] that
describes the nerve growth factor (NGF)-induceddifferentiation

of neuronal cells. Itmodels the effect of two growth factors,NGF
and the mitogenic epidermal growth factor (EGF), in rat pheo-
chromocytoma (PC12) cells. NGF an EGF phosphorylate extra-
cellular regulated kinase (Erk) through different signaling
pathways. The resulting model has 28 states, six of which are
measured at twelve time points, and 48 unknown parameters.
Thus, this model was larger than themodel for isomerization of
a-pinene, and only partially observed. This hampered parame-
ter identifiability, which led to a large uncertainty in the values
of the parameters. Indeed, for some parameters a wide range of
values allowed for a good fit to the data (Fig. 4). The results for
the ENS method are based in 2 400 parameter vectors and the
results for the SAMmethod on 38 000 samples.

For the experimental designs used in [25], the considered
model for EGF signalling was locally practically non-identi-
fiable. Due to this, the FIM is not invertible; hence, as men-
tioned in Section 2.1, we calculated the FIM-based
uncertainties using the Moore-Penrose pseudoinverse.
Non-identifiability, in turn, led to a decrease in the accu-
racy of the predictions. That said, all methods were able
to obtain good predictions (Fig. 3 B); however, accuracy
of the estimate of the prediction errors decreased for
most methods (Fig. 3 C). The performance degradation
was particularly notable in FIM, for which the agreement
decreased roughly from 0.8 to 0.5. While the decrease of

Fig. 4. Dispersion of the parameter values. For ENS and MCMC, we show the values of the parameter vectors included in the ensemble and in the
MCMC samples, respectively. For FIM, we draw parameters from a normal distribution using the standard deviation calculated from the inverse of
the FIM. For PPL, we show the optimal parameter vectors calculated at each step of the profile.
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PPL was not as pronounced, this method only calculated
uncertainty estimates for approximately 35% of the pre-
dictions before reaching the computation time limit.

Fig. 6 shows the results of the different methods for this
case study for a representative subset of 10 of the 28
model state variables.

Fig. 5. Results of the different approaches for the a-pinene example. The solid black lines are the predictions of the state trajectories, and the dashed
red lines the true states. The grey areas show the percentiles of the predictions calculated with each method (dark grey: 68:27%, light grey: 95:45%,
lighter grey: 99%).

Fig. 6. Results of the different approaches for 10 representative states of the EGF signaling pathway example. The solid black lines are the predic-
tions of the state trajectories, and the dashed red lines the true states. The grey areas show the percentiles of the predictions calculated with each
method (dark grey: 68:27%, light grey: 95:45%, lighter grey: 99%). Note that, for this case study, PPL only produced results for a subset of the states
within the allowed computation time.
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3.3 JAK/STAT Signalling

As a third case study, we considered a model for JAK2/
STAT5 signaling [26]. The purpose of themodel is to elucidate
the role of two transcriptional feedback regulators in erythro-
poiesis. The response to erythropoietin stimulation first acti-
vates receptor and JAK2 phosphorylation, and then
phosphorylates the latent transcription factor STAT5. This
model has 25 states and a relatively large number of outputs
(20), but only a few of them are direct measurements of state
variables, while most of them are functions of a subset of the
states. Therefore, they do not provide as much information as
itmight seemat first sight. Thismodel sharedmany character-
istics with the model for EGF signalling, but the number of
experimental conditions was substantially higher, resulting
also in an ten-fold larger number of predictions. As before,
the FIM was not invertible and the Moore-Penrose pseudoin-
verse was applied for FIM-based uncertainty quantification.
Furthermore, the PPL calculation finished within the consid-
ered time constraints only for 2% of predictions.

The computations times for FIM, SAM and ENS methods
were comparable (Fig. 3 A). Furthermore, all methods
achieved a good agreement between predicted and true
state variables (rx > 0:9), but lower than for the two pre-
ceding case studies (Fig. 3 B). The agreement between pre-
dicted uncertainty and actual error were re > 0:75 except
for PPL, which falls to 0.372. Fig. 7 depicts the predictions
and uncertainties estimated by all methods for a representa-
tive subset of states.

3.4 Insulin Signaling (BM1)

As a fourth case study, we considered a model for insulin
signaling in mice [27]. It also considers the interaction of
insulin signaling with oxidative stress, and it includes tran-
scriptional feedback through the FOXO transcription factor,
which controls long-term adaptation. Thus, the model con-
sists of several interconnected modules, with over one hun-
dred states and almost four hundred parameters. However,

only five states are measured. This was by far the largest
and most computationally demanding model. Indeed, the
PPL method – which already struggled with the two previ-
ous problems – did not complete any calculations within
the allowed computation time. The performances of the
other three methods were comparable to their performances
on the two previous problems, albeit with a higher compu-
tational cost. Figs. 3 and 8 show the results of the different
methods for this case study.

4 DISCUSSION OF METHODOLOGICAL ASPECTS

4.1 Approximation Approach Based on Fisher
Information Matrix (FIM)

The FIM-based method is computationally cheap, but it has a
number of limitations. First, it is strictly local, being calculated
from a single parameter vector. In the presence of non-identi-
fiability, the true vector can be very different from the esti-
mated (optimal) one, affecting the results. Second, the
confidence intervals estimated from the FIM are always sym-
metric, which might violate constraints (e.g., positivity
bounds). Third, this method relies on a linearisation, and can
be overly optimistic if nonlinearities are present. For the finite
sample case, it is expected to give inaccurate results in the
presence of strong nonlinearities. Our computational results
have confirmed this theoretical expectation. Finally, if the
model has non-identifiability issues, the FIM cannot be
inverted and a pseudoinverse has to be used [17]. This was
the case for three of the four case studies analysed here, and it
is a very common scenario in systems biology models. How-
ever, to calculate the pseudoinverse it is necessary to specify a
threshold, whichmay affect the results.

4.2 Bayesian Approach: Sampling the Posterior
Predictive Distribution (SAM)

The Bayesian approach enables the assessment of uncertain-
ties in a comprehensive manner. Yet, the posterior distribu-
tion needs to be approximated at first. This step tends to be

Fig. 7. Results of the different approaches for 10 representative states of the JAK-STATexample. Only the simulations corresponding to the first three
experimental conditions are shown, to improve visualization. The solid black lines are the predictions of the state trajectories, and the dashed red
lines the true states. The grey areas show the percentiles of the predictions calculated with each method (dark grey: 68:27%, light grey: 95:45%, ligh-
ter grey: 99%). Note that in the x1 case the Yaxis scale is different for each method.
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computationally challenging, especially for increasingly
complex models where MCMC methods tend to suffer from
convergence issues. For the model of JAK/STAT signalling
we found that the predictions for the state variables were
“shifted” when compared to the ground truth (Fig. 7). This
probably implies that the MCMC chain did not properly
sample from the posterior distribution. Yet, this was not the
case for the other models. Therefore, one should make sure
that the samples are converged to the posterior distribution
before further analyses.

4.3 Frequentist Approach: Prediction Profile
Likelihood (PPL)

Unlike the Bayesian approach, the use of PPLs require
individual calculations for each model prediction. This ren-
ders the methods computationally demanding if a large
number of predictions needs to be assessed. This has been
reflected in the EGF, JAK-STAT and BM1 model, as only a
fraction of the predictions were covered in the computation
time limit considered. In this regard, it must be noted that
the high performance computing infrastructure used in the
present study had a time limit of 48 hours for each job.
Possibly, longer run times for individual jobs could allow
more calculations to finish. We considered the use of
advanced integration-based PPL calculation implemented
in Data2Dynamics, but did not succeed. Hence, while pro-
viding stringent statistical guarantees, the use of PPLs is
challenging.

4.4 Ensemble Modelling Approach (ENS)

As the ENS method exploits the results of parameter optimi-
zation, it is applicable even for high-dimensional models.
Furthermore, if proper thresholds are used, the results can
be interpreted as inner approximations to the confidence
intervals obtained using PPLs. Yet, we encountered a num-
ber of open questions. First, the appropriate size for the
ensemble is unclear. Unlike in the other methods, there is
no clear-cut criterion to determine the number of parameter

vectors that should be included in it. A practical solution is
(1) allocate an affordable computational budget to the opti-
mizations used to obtain the parameter vectors, (2) build
test ensembles of increasing size, and (3) stop when adding
more vectors does not change the ensemble predictions. If
the maximum ensemble size attainable in this way is too
small, more optimizations can be performed. This is the
approach followed in the present work. Second, the criteria
for including a parameter vector in the ensemble is unclear.
It would be particularly interesting to know if a relaxation
of the threshold would provide better approximations to
the confidence intervals obtained using PPL methods (while
sacrificing that a strict inner bound is obtained). Third, it
remains open if additional criteria should be used (in the
optimization process) to enforce diversity of the vectors in
the ensemble and how this would effect the results. If the
ensemble does not contain sufficient diversity, there is a
risk of underestimating uncertainty. The way in which these
choices affect the results is worthy of further investigation.

5 CONCLUSION

In this paper we have compared four different approaches
for uncertainty quantification in dynamic biological models:
FIM, SAM, ENS, and PPL. These four methods estimate the
uncertainty of the time-dependent state variables. We found
that several factors should be taken into account when
choosing a method for a specific problem.

In regard to accuracy of the uncertainty estimates, the
four methods showed good agreement for the a-pinene
model. This is the simplest of the case studies considered,
since it is the smallest one, linear, and fully observed. For
the larger and more complex (nonlinear) models, more dif-
ferences appeared, as expected. For those three case studies,
SAM and ENS yielded more accurate estimations of the
uncertainty of the predictions than FIM. Yet, the confidence
intervals often did not cover the true trajectory. This might
be due to conceptual limitations or technical problems (e.g.,

Fig. 8. Results of the different approaches for 10 representative states of the BM1 example. The solid black lines are the predictions of the state tra-
jectories, and the dashed red lines the true states. The grey areas show the percentiles of the predictions calculated with each method (dark grey:
68:27%, light grey: 95:45%, lighter grey: 99%).
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convergence of the MCMC sampler for SAM). PPL calcula-
tions did not outperform FIM due to computation time
limitations.

In regard to statistical interpretability, Bayesian and Fre-
quentist approaches have arguably themost rigorous founda-
tions. ENS is arguably the technique with less theoretical
justification, although, since we have used it with an uncer-
tainty metric defined in the sameway as that of SAM, it could
be regarded as a low-cost approximation of a Bayesian
approach. ENS may also be considered as an inner approxi-
mation of PPL, which provides a lower bound on the uncer-
tainty estimates, since by construction its envelopes are
narrower than those obtainedwith aworking PPLmethod.

Another key consideration is computational cost. The FIM-
based method is the cheapest one, since it only requires one
successful optimization in order to find an optimal parame-
ter vector. The most expensive one is the PPL approach,
which can become very expensive – and even inapplicable –
for large models. The computational costs of ENS and SAM
are in the same order of magnitude (although ENS is gener-
ally cheaper than SAM) and they are intermediate between
FIM and PPL.

Parallelization is away of reducing thewall clock timeof the
computations. In this regard, it should be noted that PPL is
easily parallelizable, while other approaches such as FIM and
ENS are not. Yet, the most computationally demanding step
of these methods is the parameter optimization, which can be
performed with different techniques. In principle, paralleliz-
able strategies such as multistart optimization could be used
to this end [28]; however, in the present work this step was
performed with a metaheuristic optimization method that is
less amenable to parallelization. SAM methods are generally
more difficult to parallelize, but there are also approaches to
exploit computation resources [29].

Our results suggest a trade-off between computational
scalability, on the one hand, and accuracy and statistical
rigor on the other. At one end of the trade-off there is the
FIM-basedmethod, which should be chosen only if the other
approaches are computationally too expensive for the prob-
lem under consideration. At the other end there is the PPL
method, whose computational cost hampers its application
to high-dimensional problems. ENS and SAM lie between
both extremes; while ENS has a lower computational cost,
SAMprovides a clearer statistical interpretation.

In this studies we did not assess the flexibility of the differ-
ent uncertainty analysis approaches. While the four methods
are generally applicable to every nonlinear ODEmodel, a dif-
ferencemay exist if not only the parameter values but also the
model structure is uncertain. While in the present work we
have not considered this possibility, such uncertainty can eas-
ily be taken into account in the ENS and the SAM framework
by building an ensemble of models with different structures.
For PPL and the FIM-based approach one could encode the
existence of different possible structures using additional
“on/off” parameters, turning the parameter estimation to a
mixed-integer optimization problem. In general the topic is
related tomodel averaging.

We note that in this study a specific set of state-of-the-art
optimization, profile calculation and sampling methods
was used. This selection influences the results. Yet, we
made an effort to select efficient and robust approaches

within the respective classes, based on previous benchmark-
ing studies (e.g., [28], [30]) and own experiences. We expect
that the qualitative findings are robust to the choice of the
methods as well as models. Accordingly, we expect this
assessment to be of broad relevance.
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