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Empirical Study of Protein Feature
Representation on Deep Belief Networks
Trained With Small Data for Secondary
Structure Prediction

Shamima Rashid™, Suresh Sundaram™, and Chee Keong Kwoh

Abstract—Protein secondary structure (SS) prediction is a classic problem of computational biology and is widely used in structural
characterization and to infer homology. While most SS predictors have been trained on thousands of sequences, a previous approach
had developed a compact model of training proteins that used a C-Alpha, C-Beta Side Chain (CABS)-algorithm derived energy based
feature representation. Here, the previous approach is extended to Deep Belief Networks (DBN). Deep learning methods are notorious
for requiring large datasets and there is a wide consensus that training deep models from scratch on small datasets, works poorly. By
contrast, we demonstrate a simple DBN architecture containing a single hidden layer, trained only on the CB513 dataset. Testing on an
independent set of G Switch proteins improved the Q; score of the previous compact model by almost 3%. The findings are further
confirmed by comparison to several deep learning models which are trained on thousands of proteins. Finally, the DBN performance is
also compared with Position Specific Scoring Matrix (PSSM)-profile based feature representation. The importance of (i) structural
information in protein feature representation and (ii) complementary small dataset learning approaches for detection of structural fold
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switching are demonstrated.

Index Terms—Deep belief networks, protein secondary structure, small dataset, G switch proteins

1 INTRODUCTION

PROTEIN secondary structure (SS) is used to infer evolution-
ary and functional relationships for newly determined
sequences. Secondary structures can guide phylogentic tree
reconstruction [1], [2], assess binding site fit to ligands [3], [4]
and guide atomic placements for contact prediction maps
[5]. As whole genome sequencing drives exome discovery,
rapid and effective methods for SS prediction that can accu-
rately model structural changes or fold switches at point
mutated sites, are a powerful complement to experimental
approaches.

Pioneering early SS prediction works were the GOR
group of methods that used information entropy functions
defined by residue frequencies [6], [7], [8] and the develop-
ment of a sliding window scheme to account for residue
correlations [9]. Next, profiles by PHD with multiple
sequence alignments [10] and PSI-BLAST [11] derived posi-
tion specific scoring matrices (PSSM) used in PSIPRED [12]
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improved prediction accuracy. PHD was also the first to
introduce a second level structure to structure neural net-
work to refine SS prediction. This two-level network archi-
tecture was effective and adopted in later works like Spine
[13] and Porter [14] that both utilized two level bidirectional
recurrent NN (BRNN). However, none of these methods
obtained a three-state SS accuracy (Qs) greater than 80%.
Besides the use of sequence based protein profiles and vari-
ous network architectures, the incorporation of structural
alignments of related templates was another attempted
direction of improvement. Several notable works that
included structural alignments from homologous templates
were Proteus [15], Porter with homology [16], and SSpro
[17]. But again, if only the template-free predictions were to
be considered, the Q3 did not exceed 80%.

The upper limit for Qs is theoretically estimated to be
between 88-90% [18], [19]. Recently, large protein datasets
and data driven deep learning methods have obtained Q3 as
high as 82%-84% [20]. SPIDER 2 developed iterative deep
learning networks and included predicted solvent accessibil-
ity and torsion angles to refine SS prediction [21]. In the next
development, SPIDER 3 employed 4 levels of iterative BRNN,
comprising 2 layers of long short-term memory (LSTM) net-
work cells each. SPIDER 3 obtained a Q3 accuracy of 84.16%
and was trained on more than 4000 proteins [22]. Porter 5.0
implemented cascaded BRNN and convolutional layers to
predict SS and reported Qs close to 82% [23]. Spencer et. al.,
used the summed predictions of two first level deep belief net-
works (DBN) fed into a second level network [24]. In the last
few years, deep convolutional neural networks (CNN) have
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been used to capture the spatial relationship in protein
sequences. RaptorX modeled the input and output layers as
conditional random fields with convolutional hidden layers
ina deep neural fields model [25]. eECRRNN used an ensemble
BRNN containing gated recurrent units with residual connec-
tions, cascaded with convolutional blocks [26], with a report-
edly high Qs of 87.3%. SecNet presented a standard CNN 4
convolutional layers deep, obtaining a Qs score of 84.3% [27].
Recently, DNSS2 integrated layers of diverse network types
including convolutional, residual, and recurrent layers
among others and reported a Q; of 84.6% [28]. Other deep
learning models include SAINT that employed an attention
mechanism with inception networks for 8-state SS prediction
[29]. All of these approaches used the largest datasets avail-
able for training, often consisting of thousands of proteins.
The SS prediction problem attracts such a volume of research,
that it is beyond the scope of this paper to treat them in the
thorough manner they deserve. Excellent reviews of SS pre-
diction methods are given in [20], [30].

The above discussed methods, have used PSSM-profile
based features often in conjunction with various protein
property descriptors. These are Meiler’s [31] parametric
representation of amino acid characteristics (as used in
[26]), Atchley factors [32] (as used in [24]) and predicted tor-
sion angles to iteratively refine predictions (such as SPI-
DER?2). SecNet and Porter 5.0 used hidden Markov Model
(HMM) derived sequence profiles using HHBIits [33] in
addition to PSSM-profiles. All methods and the deep learn-
ing network models in particular, have been trained on the
largest datasets available, often containing thousands of
proteins [34].

It seems indisputable in deep learning discourse that
training deep models on small datasets from scratch is
futile. To address the lack of data issue, one common
approach is to add a pre-trained model’s weights from
related scenarios for which large datasets are available,
known as transfer learning. Hence, a majority of research
involving prediction on small datasets has focused on trans-
fer learning, where the pre-trained network weights of
related source scenarios are used as initial layer weights.
Other synthetic data approaches such as minority oversam-
pling are also used for a small dataset scenario.

However, these approaches have their own drawbacks.
For instance, training a model on thousands of proteins, or
strategies such as transfer learning that assume relations
between distinct datasets can be problematic in at least two
aspects. First, the failure to generalize to new proteins that
have distinct structural segments [34] and second, an
assumption that the source domain is related to the target
domain that results in a high accuracy but loses biologically
meaningful explanations. Good generalization from limited
data is the hallmark of true intelligence [35]. Given huge
amounts of data, even a weak model can memorize the rela-
tions [36].

Although transfer learning may be effective in fields such
as image recognition which require that shape or pixel inten-
sity relations are upheld between source and target, similar
assumptions of relations between distinct protein folds may
be problematic. For instance, convergent sequences may not
share the same fold. In some fields such as precision medicine,
big data would be meaningless. Given these considerations,

works aimed at learning from small datasets without external
data remain surprisingly scarce.

A precise definition of “small dataset” remains elusive
because effective dataset size can differ greatly depending
on the chosen problem. In a previous definition, a small
dataset was taken as the highest number of training pro-
teins, beyond which the Q3 score improved no further and
denoted as the compact model of 55 proteins (SSP55) [34].
Using a Fully Complex-valued Relaxation Network (FCRN)
trained on SSPjs5, better performance compared to predic-
tors trained on thousands of SS proteins, had been demon-
strated [34]. The rationale behind the compact model
method, was to adopt a heuristically approximate solution
to find the minimal set of training proteins needed to
achieve the maximum performance on a dataset. As 55
training proteins would be insufficient to train a deep belief
network (and as the results here would prove) here, the
DBN is constrained to learn from 385 homology reduced
proteins in the benchmark CB513 dataset [37].

These 385 CB513 proteins are henceforth defined as a
”small dataset” in the rest of this paper, which is used as a
training dataset. An extremely simple but surprisingly
effective deep belief network (DBN) model trained on previ-
ously generated C-Alpha, C-Beta Side Chain (CABS)-algo-
rithm derived energy profiles is proposed. The DBN is
separately trained on PSSM-profile based feature represen-
tation for comparison. In [24], the DBN architecture con-
sisted of the summed predictions of two first tier networks
being sent to a second tier for refined predictions. Here, a
single DBN predicts the SS given CABS-algorithm based
energy profile feature representation. However for the
PSSM-profile based feature representation, a second tier
DBN is added to improve the predicted accuracy. The archi-
tecture is kept simple to reduce the computational complex-
ity of the model, since the requirement is to learn from a
small training dataset. Although recently CNN and LSTM
based architectures have emerged as two popular choices
for exploiting the sequential and spatial relationships inher-
ent in protein sequences, here DBN were selected for their
natural relationship to physical energy systems.

DBN are modeled with the Boltzmann energy function
and hence have a natural fit to the CABS-algorithm derived
energy potentials of protein structures. Minimizing the joint
energy of the Boltzmann equation (Eq. (2)) is analogous to
finding the optimal hidden parameters that correspond to
the direction of the lowest energy protein structure in the
energy landscape. This gives DBN indirect physical support
for the prediction of protein secondary structures.

The results of DBN trained with CABS-algorithm derived
features show substantial improvement over other SS pre-
dictors on a blind test dataset of G Switch proteins. An
improvement of Qs by 2.86% over the previously developed
compact training model containing 55 training proteins
(abbreviated as SSPs; -FCRN) [34] is also shown. In the rest
of the paper, the term pre-training refers to the unsuper-
vised learning of weights in the DBN and does not refer to
transfer learning.

The paper is organized as follows. Section 2 presents the
datasets and describes the PSSM-profile based and CABS-
algorithm derived feature representations used. The theory
and architecture of deep belief networks and the joint energy
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conformation with the Boltzmann equation used to model
the SS prediction problem is presented. Section 3 reports the
experimental results of 5-fold cross-validation on CB513 and
compares the network performance on the independent
blind test dataset (GSW25) against those of several recent
deep learning methods. The implications of the findings are
discussed in Section 4 and finally, Section 5 concludes the
work.

2 METHODS

Deep belief networks were trained with two types of protein
feature representations to predict secondary structures. The
two feature representations compared are (i) PSSM-profile
based features commonly used by SS predictors and (ii) the C-
Alpha, C-Beta Side Chain (CABS)-algorithm derived energy
potentials based features that had previously been generated
[38].

2.1 Datasets
CB513

The CB513 dataset developed by Cuff and Barton in 1999
[37] is used for training. Of these, 128 chains found homolo-
gous to CATH structural templates used in the generation
of energy potentials, had been removed in an earlier work
[38]. Section 2.2.2 describes the procedure. After homology
removal, the final dataset contained 385 proteins compris-
ing 63,079 residues. For five-fold cross-validation, this
homology reduced set was randomly divided into train and
test sets, containing 80% and 20% proteins respectively.

G Switch Proteins (GSW25)

This dataset was developed by [38] and contains 25 protein
chains, derived from the G4 and Gg domains of the bacterial
Streptococcus G protein [39], [40]. The G4 and G domains
adopt a 3o and 48 + « fold respectively. It is considered a
challenging dataset because a single site mutation of Lysine to
Tyrosine (K45Y) plays a role in the switching of folds. A series
of experiments have indicated that the K45Y triggers a switch
between the G4 and Gp folds [40]. While GSW25 contains
similar sequences, it was strictly used in blind test experi-
ments. The list of sequences is given in the Appendix.

Homology Removal and Independence of Train and Test
Datasets

Careful steps were taken to ensure that the CB513 and
GSW25 datasets are independent sequentially and structur-
ally. Any related folds to GSW25 were excluded from train-
ing and DBN model development of the blind test results
presented in Table 5. First, homologous templates to CB513
proteins had already been removed in the generation of
CABS-algorithm derived energy profiles, resulting in 385
proteins. This process is described in Section 2.2.2 and in
detail in [38].

Second, the sequence identity between GSW25 and the
CB513 dataset proteins was checked to be below 25% using
the PISCES sequence culling server [41]. Third, to detect
structural homologues to GSW25, the CB513 proteins were
annotated with their respective SCOP folds [42] which iden-
tified two CB513 proteins with similar structural folds to
GSW25. This was the p-Grasp ubiquitin-like fold to which
both G4 and G domains belong, according to the SCOPe
database version 2.07 [43]. Hence, in reporting the DBN

TABLE 1
Secondary Structure Composition of Datasets
Dataset Proteins Residues Classes (%)
CB513 385 63,079 H (35), E (23), C (42)
GSW25 25 1400 H (52), E (39), C (9)

performance in Table 5, a separate five-fold cross-validation
model was developed, in which the two related CB513 pro-
teins were not used in training and were restricted to the
test partitions.

Table 1 shows the breakdown by secondary structure
composition of both datasets. The SS had been assigned in
[38] using the Dictionary of Protein Secondary Structure
program (DSSP) [44] following the common 8 to 3 state
reduction rule used in other works [13], [27]. States H, G
and I corresponding to «, 319 and 7 helices were reduced to
Helix (H). States E (extended strand) and B (isolated
p-bridge) were reduced to Sheet (E). Lastly, states T and S
(containing p-turns, loops, irregular structures and inclusive
of blanks) were reduced to Coil (C).

2.2 Protein Feature Representation

To study the effect of protein feature representation on deep
learning, position specific scoring matrices (PSSM) and
CABS-algorithm derived energy potentials were compared.

2.2.1 PSSM-Profile Based Features

Position Specific Iterative-Basic Local Alignment Search
Tool or PSI-BLAST [11] is a commonly used method to gen-
erate protein sequence profiles from an alignment of related
proteins. Distantly related protein sequences are first
detected by querying a database and a local alignment is
dynamically constructed. The E-value or expectation score
serves as a threshold for the sequences that are included in
the alignment. The probability of an amino acid occurring
at a given position in the query sequence for each column in
the alignment is then calculated and converted to log-likeli-
hood scores. The resultant matrix profile generated is
termed Position Specific Scoring Matrix ( or PSSM, an
example of which is shown in Fig. 1.

PSSM-profiles were constructed for the CB513 and
GSW25 datasets by querying target proteins against the
RefSeq database [45]. To avoid hits to low complexity regions,
transmembrane and coiled coil segments, the pfilt program '
from the PSIPRED server [46] was first used to filter the data-
base. The PSI-BLAST program from the BLAST+ toolbox [47]
was run for 3 iterations with an e-value cut-off of 10~° and
SEG filtering set to yes. All other values were left as default.
For a rationale of the choice of settings and further experi-
ments on an additional set of PSSM-profiles generated with
legacy blast (not reported), please refer to Section 3.1.

2.2.2 CABS-Algorithm Based Features

The CABS-algorithm is a lattice model to calculate reference
energies of protein alignments using knowledge-based statis-
tical potentials in its force-field computation [48]. Potentials

1. http:/ /bioinfadmin.cs.ucl.ac.uk/downloads/ pfilt/
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Fig. 1. Diagram of a Position Specific Scoring Matrix (PSSM). The first
column contains the residues of the query sequence. The first row indi-
cates the 20 possible amino acid types. A given matrix element (m;;) rep-
resents the log-likelihood score log (p;;/bi;), where p;; is the probability of
amino acid at row ¢ being of the type indicated at column j. b;; denotes
the background score of amino acid at position i being substituted for an
amino acid at position j in a substitution matrix (such as BLOSUM®62).

data for CB513 and GSW25 had been generated in a previous
work [38] and the method is briefly described here. Threading
was used to align a target protein to a library of CATH tem-
plates [49] and the reference energy computed with the
CABS-algorithm. The probabilities of a residue adopting each
of the three SS states (H, E or C) was calculated with a scoring
function [50]. A target protein residue was represented as a
27-dimensional vector, with the first 9 containing probabilities
to adopt Helix (denoted P(H)), the next 9, the probabilities of
adopting Sheet (denoted P(E)) and the final 9, those of adopt-
ing Coil (denoted P(C)). Fig. 2 shows the process. More details
are available in [34], [38].

Removal of Highly Similar Templates

Around 1000 CATH [49] templates had been down-
loaded and aligned against CB513 targets with the Needle-
man-Wunsch global pairwise alignment [51]. 97% of
alignments had similarity scores lower than 20%. Struc-
tural similarities between CB513 and CATH templates had
been removed by checking target names against Homol-
ogy-derived Secondary Structure of Proteins (HSSP) [52].
Following the removal of sequence and structural similari-
ties, 422 CATH templates and 385 CB513 proteins had
been obtained for threading and reference energy compu-
tation [38]. DSSP secondary structures were assigned to
templates and heavy atom contact maps were computed
before threading.

Threading and Computation of Reference Energy

Target to template alignment and threading had been per-
formed using a window of size of 17 residues and the CABS-
algorithm used to compute the reference energies [38]. The
reference energy function takes short and long range con-
tacts into account, based on attributes such as geometric and
chemical complementarity and adds a contact energy term
for the long-range interactions [48]. SS assignments from
best fitting (lowest energy) templates were read in for the
central 9 residues within the window of 17. Probabilities of
adopting H, E or C were then calculated by a hydrophobic
cluster similarity method from the templates [50]. This
resulted in a 27-dimensional feature vector for each protein
residue, as illustrated in Fig. 2. For full details on the genera-
tion of energy potentials, refer to [38]. An alternative sum-
mary is available in [34].

-5 t r+8

Input Seq I I

/
/1. Threading (w=17)

2. Compute reference energy with
CABS Algorithm

KRLEHGGGVAYAI { |

5 -
3. Select templates with
lowest energy (Best !-I:\It'lllp}.ilt/)
-4 (3 i+4 E/Rcud in S5 assignments for Best Fit
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residues within w (t-4,..., 1, ... H+4)
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i (hydrophobic cluster similarity score)
PaHY WNE) L4
L
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Features

Fig. 2. Representation of features. A target residue, ¢ in the input
sequence is represented as a 27-dimensional feature vector. Repro-
duced from [34], under Open Access permission of BMC Bioinformatics.

2.3 Deep Belief Networks

The set of observations to predict protein secondary struc-
tures is defined as {(x!,y'),...,(x%y%),...,(xN,yN)},
where x' e R™ are the m-dimensional input features
describing the structure of the t*" residue. Also, y* € R™ are
the n-dimensional coded class labels. N denotes the total
number of protein residues. The coded class labels y* are
obtained by

1
t_

where ¢! is the numeric class {1, 2, 3} and corresponds to H,
E and C respectively. Formally, the prediction of secondary
structures is defined as estimating the functional relation-
ship F': x* € ™ — y* € R

Theory and Architecture. A DBN consists of one or more
Restricted Boltzmann Machines (RBM) stacked in a layer-
wise manner [53]. In an RBM, the input energy potentials
and hidden neurons are modelled with the energy configu-
ration E(x, h), shown in Eq. (2). Here, x is the visible input
layer consisting of protein features and h is the hidden layer
that learns the inherent feature patterns. In Eq. (2), z;
denotes the j' visible unit and hy, represents the k' hidden
unit . The weight connecting them is represented by W;.
The hidden and visible biases are denoted b;, and c¢;, respec-
tively. Eq. (3) gives equivalent matrix form of Eq. (2)

B, h) ==Y “ha Wi = = > b ()
J J k

if =35,
otherwise’ {1,2,3} M

k
E(x,h) = —h™Wx — ¢Tx — bTh 3)
I
P(Xt,h) _ exp( EZ‘(X 7h)) (4)

Then, the joint probability for an input protein feature x* and
the network’s hidden states is represented with the Boltz-
mann equation P(X = x*, h) as shown in Eq. (4), where Z
denotes the partition function. Observe that, for the CABS-
algorithm derived energy potentials, the minimization of the
negative log-likelihood of Eq. (4) neatly captures the second-
ary structure prediction as an energy minimization problem,
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Fig. 3. Architecture of Deep Belief Network (DBN). (a) The three-layer
architecture of an individual DBN for prediction of secondary struc-
tures. It consists of an input layer with m neurons, a single RBM in
the hidden layer and an output layer with n neurons. For CABS-algo-
rithm derived features, m = 27 and for PSSM-profile based features,
m = 420 while n =3 for the three-state SS in the output layer. The
hidden layer contains Q neurons, where w9 represents the weight
connecting the Q" hidden neuron to the n'* output neuron. (b) Over-
view of DBN architectures using two protein feature representations.
For the PSSM-profile based features a second level structure-to-
structure DBN, with input features m = 27, is stacked onto the first
level DBN.

that indirectly models the sequence to structure dependency.
Fig. 3 shows the DBN architecture.

For CABS-algorithm derived features, a DBN consisting of
a single RBM layer was trained to predict secondary struc-
tures. The input x' € ™ was scaled into the range [0,1] using
—= ;;'_“I‘I(l?n()xt). The second layer contains K hidden neurons
with a sigmoidal activation (h' = 1(1 + exp(—x")) and the
third and final layer consists of n output neurons, that use a
linear activation (7, = S°& | wyhl, ), to obtain the predicted
output. For the PSSM-profile based features, a second level
DBN whose input is the final layer activation of the first level
DBN, is used to predict secondary structures. The second
level input was read in a window of 9 residues to give m =
3 x 9 = 27 features.
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For N protein residues, the negative log-likelihood error
function to be minimized is >, —log P(x(*), which is
computationally intractable due to the partition function
term. Hence, a stochastic gradient descent approach was
used to train the DBN. The weight update rule is derived
from taking the partial derivative of L3 —logP(x®)
with respect to the hidden weight, wy;. The weight update
rules and Gibbs sampling approach in the reconstruction
step are given in Section 2.4.

2.4 Contrastive Divergence & Weight Update Rules

3 IE(x® h) dE(x,h)
log n(x®)) = o d
BW@-( logp(x')) < Wi x ) wy /. (5)

Eq. (5) shows the minimization of the partial derivative of
the negative log likelihood with respect to the weights. Since

the expectation term —(afg‘kh)h , is intractable, it is replaced
5,

with the Gibbs sampled point estimate aljéfkﬁ>
")

tive divergence (CD) algorithm. From the reconstructed

input (X) and Eq. (5), the weight update rules as shown in

Eq. (6) are obtained. Here, o denotes the learning rate

in the contras-

W = W + a(h(x®)x®" — h(z)xT) ®)
b =b + a(h(x) — h()) @)
c=c+axt -x%) €))

Similarly, the update rules for the hidden (b) and input (c)
biases are given in Eq. (7) and Eq. (8), respectively.

The Gibbs sampling steps to obtain X are as follows. The
contrastive divergence algorithm is applied during the unsu-
pervised pre-training to reconstruct the input protein fea-
tures by minimizing the divergence between the observed
data x*) and (Gibbs) sampled data (%).

1)  For each training sample x*

a) Perform k steps of Gibbs sampling to obtain X,
with x(t) as initial point
b) Update parameters using Eq. (6),(7), (8)

2)  Repeat for i epochs

The algorithm description and equations were based on
Geoffrey Hinton’s paper [54] and on Dr. Hugo Larochelle’s
video lectures [55], [56], [57]. The DBN code was written by
Rasmus B. Palm [58] and adapted for SS prediction here.

In the pre-training step, the DBN learns in an unsuper-
vised manner to reconstruct the given input protein fea-
tures. During the reconstruction, it extracts the underlying
higher order representation inherent in the input fea-
tures. In case of the CABS-algorithm derived energy pro-
files, correlated energy scores between neighbouring
residues and their respective secondary structures can be
captured. In the case of the PSSM-profiles, correlated
profile scores between residues and the adopted SS may
be captured.

After the reconstruction error converges, the pre-trained
weights are initialized onto a feed-forward network. In the
supervised learning stage, the network learns from the
known secondary structures to iteratively refine the weights
for a preset number of epochs. To enable a faster convergence
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TABLE 2
Comparison of CABS-Algorithm Derived and PSSM-Profile
Based Protein Feature Represenations

TABLE 3
Best Performing Test Partition on CB513,
Total of 12,327 Residues

Method K m Train Test Method Observed j Predicted j Q; (%) Q3 (%) Q. (%)
Qs (%) Q. (%) Qs (%) Q. (%) H E C

DBN-CABS 100 27 82.70(0.16) 82.02(0.33) 82.60(0.63) 81.89 (0.40) DBN-CABS II;I 4(;20 18354 A;gg g?gg 832  81.59
DBN1-PSSM 3000 420 79.49(0.76) 78.09 (1.52) 72.87(0.87) 71.20 (1.96) C 431 453 4351 83'12 ’ ’
DBN2-PSSM 1000 27 80.45(0.40) 79.31(0.59) 73.97(1.18) 72.58 (1.27) -

H 3684 227 602  81.64
DBNi— indicates the network level and features, while m and K denote the ~ DBN1-PSSM E 250 1758 571 6817  73.69 73.13
number of neurons in the input and hidden layers, respectively. The average C 878 716 3641 69.56
scores of 5-fold cross-validation are given, with standard deviation in brackets. H 3617 149 747 80.15

DBN2-PSSM E 159 1672 748 6484 7548 739
C 657 563 4015 767

of the network, the network error (y* — %) was calculated
with the hinge-loss error [59].

2.4.1 Hinge-Loss Error
The hinge-loss error is defined as

rx(y—19) yy <0
E=qy—9 0<yy <1 9)
0 yy > 1

where r is the risk factor, set to 1.01.

2.5 Performance Measures

The measures to assess the DBN performance are the (i) sin-

t
gle residue accuracy, Q3 = Y—\’,” x 100 and (ii) class-wise

accuracy Q; = % x 100, where j € {H, E,C}. The number
of correctly predicted residues in class j is denoted ¢;; and
Nj represents the total number of protein residues in class j.
The average class-wise accuracy for the three state SS is

given by (iii) Q, = =3 .

3 EXPERIMENTS

Experiments were conducted on (i) a Windows 7 PC with
3.6GHz clock speed and 8.0G RAM, running MATLAB
2012b and (ii) a Windows 10 laptop with 16.0G RAM, 1.8
GHz clock speed and MATLAB version 2019b. Some experi-
ments were repeated and the results were similar across
both machines, except for minor differences in accuracy
(<1%) caused by the random weight initialization during
pre-training and the stochastic gradient descent function.

In the case of CABS-algorithm derived energy profiles, 5-
fold cross-validation was performed twice on CB513; once
without removing the two proteins that had fold similarity to
GSW25 (results in Tables 2, 3 and 4) and once after removal
(results in Table 5). In either case, the average Q3 of five-fold
cross-validation on CB513, before and after fold similarity
removal to GSW25 was almost identical with no significant
difference. The learning rate was set to 0.1 for both types of
feature representations. More details on hyper-parameters
and choice of model settings are available in Section 3.1.

Table 2 shows the results of 5-fold cross-validation
experiments using DBN trained separately with PSSM-pro-
file based and CABS-algorithm derived energy profile based
representations. For the PSSM-profile based features, the
first level and second level structure to structure network
are shown as DBN1 and DBN2 respectively. Averages and
standard deviations for train and test partitions are given in

brackets. The results show that the CABS-algorithm derived
protein feature representation (DBN-CABS) had a substan-
tial improvement of 9.73% over the level 1 network using
PSSM (DBN1-PSSM) and 8.63% over the second level net-
work (DBN2-PSSM). Similarly, the average class wise accu-
racy Q, is much higher for the DBN-CABS model compared
to both levels of DBN-PSSM.

For PSSM-profile based protein feature representation, the
second level network (DBN2-PSSM) was able to improve the
performance by a small amount of 1.79%. However, despite
trying an extensive number of hyper parameter settings and
architecture variants, there was very little improvement in
Q3. The momentum, « and learning rate parameters were
each searched coarsely in {1076,107°,107%,1073,1072,10 '}
but the network performance did not improve further. At
best, these attempts either gave a slightly lower test Q3 (by
< 1%) compared to Table 2, or the network failed to converge.
While only the best performance is discussed here, further
descriptions of other experiments that have been performed
can be found in Section 3.1.

Table 3 shows the confusion matrices and class-wise
accuracies for the best performing test partitions corre-
sponding to the DBN models given in Table 2. Consistent
with other works [13], [30], Helix proved the easiest struc-
ture to predict, followed by Coil and Sheet.

In table 4, the reported k—fold cross-validated Qs scores
for several works are presented. All method names in tables
have been capitalized for consistency. The highest Q3 score
(84.3%) was obtained by SecNet, while DBN-CABS obtained

TABLE 4

Comparison of Reported Cross-Validation Scores on CB513
Method Q3 (%) No. of Training Proteins Source
SECNET 84.3 8563 [271]
DBN-CABS 82.6 385 This Work
ECRRNN 81.2! 11948 [27]
RAPTORX 82.3 5600 [25]
FCRN 82.14 385 [60]
FLOPRED 81.3 387 [38]
PSIPRED 79.2 Not available? [25]
JNET 76.4 480 [61]

U Initially reported as 87.3% [26], owing to a lenient SS assignment scheme
that reduces the isolated B-bridge residues (B) to Coil instead of Sheet. Follow-
ing the same stringent 8 to 3 state SS reduction rules used here results in a
lower score [27].

2 Not stated in publications or on the web-server.
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TABLE 5
Methods Comparison on G Switch Proteins (GSW25)
Method Observed j Predicted j Q; (%) Q3 (%) Q. (%)
H C

H 683 39 94.6

DBN-CABS E 23 376 147 68.87 83.22 81.26
C 24 106 80.31
H 680 42 94.19

SSP55-FCRN* E 25 384 137 70.33 80.36 70.25
C 51 61 46.22
H 665 38 92.11

FLOPRED* E 41 380 125 69.6 78.72 68.3
C 49 57 43.19
H 688 34 95.3

SSP55-DBN-CABS E 63 241 242 4414 69.79 58.61
C 72 48 36.37
H 556 116 77.01

PROTEUS2* E 17 302 227 55.32 61.72 45.63
C 2 124 6 4.55
H 609 107 84.35

PORTER5.0 E 100 153 293 28.03 59.72 56.15
C 17 74 56.07
H 479 119 124 66.35

SECNET E 53 283 210 51.84 58.79 54.81
C 0 61 46.22
H 519 104 71.89

PSIPRED* E 167 243 136 44.51 57.36 49.16
C 5 41 31.07
H 490 165 67.87

DNSS2 E 106 165 275 30.22 51.43 49.12
C 9 65 49.25
H 368 162 192 50.97

SSPRO* E 13 312 221 57.15 50.43 42.61
C 1 105 26 19.7
H 616 106 84.35

RAPTORX E 266 258 28.03 49.08 56.15
C 83 49 56.07
H 573 133 79.37

SPIDER3 E 172 329 8.25 47.22 40.07
C 87 43 32.58
H 289 374 40.03

DBN1-PSSM E 12 128 406 23.45 34.93 39.35
C 0 72 54.55

All method names are capitalized for consistency.
*indicates that scores were reported in [34].

a slightly lower performance of about about 1.7%. Besides
DBN-CABS, FCRN and FLOPRED, all other methods in
Table 4 had been developed on sequence based feature
representation such as PSSM or HMM based profiles. A Q3
score of 87.3% was initially reported by eCRRNN [26].
However, a direct comparison of this high score may not be
fair due to the use of a more lenient 8 to 3 state SS reduction
rule [27]. In the lenient scheme, isolated g-bridge (B) resi-
dues are assigned to Coil instead of Sheet. Upon following
the same SS assignment rule as adopted in this paper, the
Q3 score of e€CRRNN was calculated to 81.2% [27].

Table 5 compares the DBN performance with several
deep learning methods on the independent GSW25 dataset.
The highest performance was obtained by the proposed

model (DBN-CABS) at 83.22%, which is higher by 2.86% over
the previously developed compact model (known as SSPs3-
FCRN). Most of the other prediction models” Q3 were below
70% which indicates the challenge of the GSW25 test set.
Despite all of them being trained on much larger datasets, the
difficulty remained. In particular as shown in the confusion
matrices of Table 5, a substantial number of Sheet residues
were wrongly predicted as Coils, resulting in Qg as low
8.25% (SPIDER3). The worst Coil accuracy, was Q¢ of 4.55%
(PROTEUS2). The best Helix and Coil class-wise accuracies
were shown by DBN-CABS (Qy = 94.6%, Q¢ = 80.31%) and
the best Sheet accuracy, Qg = 70.33% was given by SSPjs-
FCRN. A comparison of the average class-wise accuracy (Q,)
indicates that DBN-CABS shows a substantial improvement
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of 11.01% over the second-best compact model (SSP55-FCRN)
and a vast improvement over the other methods. Finally the
DBN1-PSSM model failed spectacularly at Qs = 39.35%,
demonstrating the inability to learn sufficiently from the
small training dataset using PSSM-profiles.

3.1 Hyperparameter Settings and other Experiments
In the unsupervised pre-training stage, the learning rate and
momentum parameters were set to 0.1 and 0.05 respec-
tively. In the supervised training stage, the learning rate
was 5 x 107 while momentum was 107%. The number of
epochs was 50 during the pre-training stage and 5000 for
the supervised learning stage. The batchsize for both stages
was kept the same at 2113.

To obtain a higher DBN performance especially for the
PSSM-profile based features, up to 5 hidden layers were
added and the batch sizes were varied from 1 to 5000. The
Rectified Linear Unit (ReLU) and Tangent activation func-
tions were also trialed in the hidden layers, followed by the
Softmax function in the output layer. The Meiler properties
[31] (steric graph shape index, polarizability, volume,
hydrophobicity, iso-electric point), and one-hot encoding of
residues were incorporated with PSSM-profile based feature
representation. To increase the number of samples, Syn-
thetic Minority Oversampling (SMOTE) was also attempted
for the PSSM-profile based features. None of these attempts
resulted in Q3 higher than 75% when training the DBN with
PSSM-profile based features from the CB513 dataset.

3.1.1 Sliding Window Size

There has been no consensus on the optimal sliding window
size (w) to model the long range interactions between resi-
dues. Various window sizes have been used in the following
works: in PSIPRED [12], w = 15, in SPIDER?2 [21], w = 17, in
DNSS [24], w = 19 and in SECNET [27], w = 29. Neverthe-
less, it has generally been agreed that for odd sizes of w in
13 < w < 27, the effect on Q3 is not too severe (< 1.1%) [13],
[21], [24]. Here, the sliding window was set to 21 like in Spine
[13] and RaptorX [25]. The resultant PSSM contained F =
20 * 21 feature columns. A protein chain N residues long
was encoded as an Nx[' matrix for DBN training.

3.1.2 Blast Settings

Due to the constrained training dataset size, the choice of
query database and PSI-BLAST settings were made with
stringent criteria. The RefSeq database was selected to only
include cleaned, well-curated and representative proteins
[62] as well as a low e-value threshold of 10~ (compared to
0.01 or 0.001 chosen in most works). The RefSeq database
was carefully filtered to avoid low complexity and trans-
membrane regions which could produce stray hits to
CB513, which consists of mostly globular proteins. The strict
criteria with a smaller database and high cut-off values
used, had a resultant trade-off that 15 sequences failed to
produce hits. For these, the e-value threshold was relaxed to
100 and the PAM70 matrix was used for proteins shorter
than 100 residues to generate the PSSM-profiles.

The PSSMs generated by the psiblast program from the
BLAST+ software suite contain internally scaled (transformed)
scores, which are typically integers in a narrow range such as

[-10, 10]. Due to the loss of precision from the transformation,
another set of PSSM was generated by the blastpgp program
from blast-2.2.19 (legacy blast). The makemat program by
IMPALA [63] was then used to recover the unscaled PSSM.
The resultant PSSM profile scores fell in a wider range of
[-1000, 1000], but they still failed to improve Qs scores
beyond 73%.

4 DISCUSSION

Role of Protein Feature Representation in Q3 Accuracy

All results indicate that the choice of protein feature
representation is extremely important when training a deep
learning model from scratch on a small dataset. For models
using sequence based input such as PSSM or HMM profiles,
large numbers of training proteins are needed to ensure
Qs > 80%. For example in Table 4, the top performing pro-
gram SECNET had been trained on more than 8000 proteins
and had 1.7% higher accuracy than DBN-CABS. However,
for a training set that was more than 22 times the size of the
small dataset, the gain in accuracy is less than 2%. As the
results of Table 5 indicate, the use of large training datasets
results in a trade-off in the sensitivity to new datasets. Most
SS prediction programs were developed on thousands of
training proteins, which may have affected the generaliza-
tion ability to new sequences with distinct site specific struc-
tural shifts, as is the case for GSW25.

The results of the DBN-CABS model are likely due to the
joint energy configuration of the DBN successfully captur-
ing the CABS-algorithm derived energy profiles. The joint
energy function in Eq. (3) relates the model parameters (hid-
den nodes (h) and weights (W)) with the CABS-algorithm
derived features represented by x. The CABS-algorithm
derived features employ knowledge-based statistical poten-
tials in the force-field calculation, which consist of unique
context-dependent potentials. The potentials depend on the
local geometry of the protein main chain, which determines
the secondary structure. The CABS algorithm derived fea-
tures also account for the conformational preferences of pro-
tein sequence fragments since they contain proper averages
of structural regularities of thousands of known proteins.
During training, the optimum model weights and hidden
state for a given input residue’s features that will minimize
the joint energy configuration given by E(x, h) are learnt.
Then, minimizing the gradient of the negative log-likeli-
hood of Eq. (4) to achieve network convergence is likened to
finding the direction of the energy landscape that contains
the lowest-energy secondary structures. This allows DBN to
extract the energy based structural relationships present in
the features to effectively predict secondary structures, as
shown for the G Switch Proteins dataset.

One major reason for the performance of DBN-CABS
compared to sequence profile based features, could be the
loss of precision by PSSM-profile based representation. Due
to the use of repeated integer values being mapped to the
same structure space in the PSSM-profiles, the context-
dependent structure signals could be overlapping across
the three SS classes. This is demonstrated with the principal
components analysis shown in Fig. 4. Both the PSSM-pro-
files based and CABS-algorithm energy profiles based fea-
tures were scaled to lie in [0,1]. Next, 500 residues were
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Fig. 4. Principal Components Analysis of two types of feature represen-
tation on the CB513 dataset. The PSSM-profile based representation is
shown in (a) and the CABS-algorithm derived energy profile based
representation in (b). Randomly chosen 500 residues were selected for
visualization. The same 500 residues are depicted in both (a) and (b).
One circle denotes a single protein residue. Helix, Sheet and Coil struc-
tures are shown as red (H), orange (E) and grey (C) circles, respectively.
Clearly, compared to one dense cluster in (a), three visible clusters col-
oured according to their respective SS structures are seen in (b), indicat-
ing the ease of class-wise seperation for the CABS-algorithm derived
energy profile based features.

selected at random for the visualization. The first three com-
ponents (i.e., top three axes of highest variance) were visual-
ized with Python’s matplotlib library (version 3.3.3).

Fig. 4b indicates that using CABS-algorithm based fea-
tures results in three visibly distinct clusters, compared to
the PSSM profile based features which form a single cluster
Fig. 4a, making the former more effective for the DBN
model. Consistent with the findings in Tables 2 and 3, learn-
ing discriminable representation from PSSM-profile based
features is difficult and many thousands of training proteins
may be needed for a good Qs score. In Fig. 4b, the location of
the three clusters with respect to each other, reflects the dif-
ficulty of prediction of the classes observed here and in
other works; namely Helix (H) and Sheet (E) classes are
well separated in the feature space, with Coils (grey circles)
being the overlap class. Wrongly classified Helix or Sheet

residues are overwhelmingly likely to be predicted as Coil
rather than Sheet or Helix. As shown in Table 3 for the
DBN2-PSSM model, more than 83% of wrongly classified
Helices and Sheets belong to the Coil class. It is unclear why
the PSSM-profile based features were rather unsuccessful in
replicating the success of the small training dataset with
DBN models.

As other works employing large training datasets (rang-
ing in the thousands) have demonstrated high accuracies
(Qs > 80%) in using PSSM-profile based features with deep
learning networks [22], [24], [27], the main reason could be
that much more data samples are needed to learn an ade-
quate feature representation for the reconstruction step. In
the case of CB513, all PSSM values were discrete numbers
in the range [—17, 14] and could not be discriminated easily
by the DBN with the limits of the small dataset.

In contrast, the findings of Table 2 show that using the
CABS-algorithm derived feature representation results in an
excellent model using a single layer RBM. It is capable of
detecting large structural changes for small changes in
sequence. Hence, the residues’ structural correlations are
captured effectively by the joint energy configuration
(Eqg. (3)) in the DBN-CABS model. DBN-CABS illustrates the
potential use in protein design or engineering applications
where there are few pre-existing homologous sequences or
large changes in folds for small site specific substitutions.
Other work such as done by Tubiana et.al., has also pre-
sented evidence of the effectiveness of RBM in capturing fea-
tures related to protein secondary structure motifs and in the
generation of new lattice protein sequences [64].

Independence of Train and Test Datasets

The performance of DBN-CABS in Table 5 cannot be
attributed to homology or direct assignment of SS between
train and test datasets, for two reasons. First as described in
Section 2, strict protocol had been implemented to establish
train and test independence. Second, other SS prediction
programs had been trained with highly similar proteins to
GSW25. For instance, Proteus? [65] contains PDB ID 2IGD
in its train dataset, which is about 60% similar to the G4 and
Gp domains. The Porter 4.0 train dataset [66] contain PDB
IDs 2J5Y and 3FIL, which again are at least 58% similar to
the G4 and Gp domains. Yet, the results show that the pres-
ence of similar training proteins need not indicate that the
model can be accurate for unseen datasets and that over-
training can occur on large datasets.

It is emphasized that the DBN model demonstrated here
has been very carefully developed after sequence similarity
and fold similarity have been removed between the CB513
and GSW25 datasets, and that GSW25 was strictly used in
blind tests. Hence, it represents an ab-initio form of second-
ary structure prediction without direct assignment of struc-
tures from templates.

For PSSM-profile based features, the stacking of more
RBM layers did not improve performance. In many instan-
ces, the Q3 deteriorated upon adding more layers, most
likely due to being constrained on a small training set (<
400 proteins). Hence, the architecture was kept simple,
which has the benefit of reduced computational complexity
and rapid prediction of structures.

One drawback of the proposed model is that it is compu-
tationally intensive to generate CABS-algorithm derived
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energy profiles as compared to standard PSSM-profile
based features. For a protein with 100 residues, it took
approximately 26 hours to generate the potentials on a
Linux machine with 8G RAM and 2.3GHz of processor
speed. For a protein with 100 residues, the time to generate
PSSM-profiles with BLAST+ was approximately 2 hours
(speed improves with availability of identical hits) as tested
on a Linux machine with 8G RAM and 3.6GHz of processor
speed. Another drawback of the proposed approach is that
the CABS-algorithm is not publicly available for energy pro-
file generation on larger datasets.

Here the experiments were reported based on pre-gener-
ated potentials for CB513 and GSW25. Therefore, it is diffi-
cult to compare with more benchmark datasets. However,
for reproducibility and comparison of the results reported,
the CB513 and GSW25 energy potentials are available upon
request. A next step would be the use of predicted struc-
tural fragments from public ab-initio models (such as
QUARK [67]) to build a set of quasi-energy based profiles.

5 CONCLUSION

The DBN model, trained with CABS-algorithm derived pro-
tein feature representation (DBN-CABS) demonstrated here,
showed improvement in secondary structure prediction and
is capable of detecting large fold changes for small position
changes in the sequence. DBN-CABS obtained higher Q3 (of
more than 8%) and also higher class-wise accuracies com-
pared with PSSM-profile based features (DBN2-PSSM) on
the CB513 dataset. In a blind test dataset consisting of G
Switch Proteins, the DBN-CABS model showed improve-
ment in accuracy of almost 3%, over a previously developed
compact model. Despite being trained on a small dataset con-
taining less than 400 proteins, the findings indicate that Q;
accuracy was substantially improved compared to previ-
ously developed SS predictors that were trained on thou-
sands of proteins.

This work investigates the importance of protein feature
representation and clearly indicates that for deep learning to
be successful on a small dataset, informative protein features
that incorporate energetics are vital to detect sensitive fold
changes. Potential applications include cases where the requi-
site designed proteins may not have enough homologues
(e.g., neutralizing antibodies for a novel virus or specific drug
targets). It presents a methodololgy for scientists to build
deep predictive networks by training on compact datasets
based on energy profiles. Finally, it signifies the need for con-
tinued research into small data approaches in future work.
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