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Data-Driven Fault Detection in Industrial Batch
Processes Based on a Stochastic

Hybrid Process Model
Stefan Windmann

Abstract— This paper presents a novel fault detection approach
for industrial batch processes. The batch processes under
consideration are characterized by the interaction between dis-
crete system modes and non-stationary continuous dynamics.
Therefore, a stochastic hybrid process model (SHPM) is intro-
duced, where process variables are modeled as time-variant
Gaussian distributions, which depend on hidden system modes.
Transitions between the system modes are assumed to be either
autonomous or to be triggered by observable events such as on/off
signals. The model parameters are determined from training
data using expectation-maximization techniques. A new fault
detection algorithm is proposed, which assesses the likelihoods
of sensor signals on the basis of the stochastic hybrid process
model. Evaluation of the proposed fault detection system has been
conducted for a penicillin production process, with the results
showing a significant improvement over the existing baseline
methods.

Note to Practitioners—Automatic fault detection makes it pos-
sible to limit the effects of faults by taking countermeasures at an
early stage. In this work, a data-driven fault detection method for
industrial batch processes is proposed, in which the underlying
process model is learned from training data. The proposed
fault detection system can be used for various industrial batch
processes without the need for complex and error-prone manual
configuration. In contrast to many other data-driven approaches
such as neural networks, only a few process cycles are required
to create a robust process model. It should be noted that in data-
driven fault detection methods, the training data should cover
a large part of the process states that occur during error-free
process cycles. The developed method is therefore particularly
suitable for cyclical processes, which, however, can have alterna-
tive process paths and variability between the process cycles.

Index Terms— Fault diagnosis, process monitoring, Hidden
Markov Models.

I. INTRODUCTION

THE main part of industrial production systems are safety-
critical systems, which require continuous and reliable

operation. Potential faults have to be detected as early as
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possible to prevent system performance degradations and in
the worst case the damage or collapse of the whole plant (see
e.g. [1], [2]). Thereby, both abrupt changes in the process
behavior, for example blockages and switching errors, and
continuous performance degradations have to be taken into
account.

The scope of this paper is the fault detection in hybrid batch
processes like the penicillin production process described
in section VII. Monitoring and fault detection for hybrid
systems entail challenges due to the fact that continuous
dynamics and discrete events are mutually dependent and
interact. Hybrid automata are the most common approach to
represent hybrid systems within the scope of fault detection
and isolation (see section II). In this approach it is assumed
that the process can be divided into distinct system modes,
i.e. phases of continuous process behavior. Transitions between
system modes are usually modeled to be deterministically
driven by discrete events (see e.g. [3]). Hidden Markov
Models (HMMs) and Segmental HMMs (SHMMs) are gen-
eralizations of this approach, which also take into account
stochastic transitions between the system modes. Stochastic
transitions can be attributed to unobservable discrete events or
autonomous changes in continuous process behavior. Existing
HMM- or SHMM-based fault detection methods are predomi-
nantly focused on modeling of progressive degradations of the
plant condition, which are adequately modeled as hidden state
sequence with stochastic transitions between failure modes
(see e.g. [4], [5]). Initial approaches to model the normal
behavior of hybrid industrial systems using HMMs have been
introduced in [6] and [7].

The method proposed in this paper is based on the work
of [6], where an HMM-based fault detection method for
piecewise stationary processes with autonomous transitions
between system modes has been developed. Piecewise sta-
tionary processes can be considered as sequences of distinct
system modes, in which the expectation values and variances
of the process variables are constant. In the work of [6],
the system modes are modeled as hidden state variables of
a HMM. Continuous process variables are assumed to be
Gaussian distributed with constant second order statistics in
each system mode.

However, for many industrial production processes such as
the penicillin production process described in section VII,
the assumption of piecewise stationary processes does not
hold. The signal progression of penicillin concentration, which

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4030-0839


WINDMANN: DATA-DRIVEN FAULT DETECTION IN INDUSTRIAL BATCH PROCESSES BASED ON SHPM 3889

TABLE I

NOMENCLATURE

is shown in Fig. 4, can for example be divided in several
segments, in which the expectation value of the observed
signal is not a constant but rather a linear or quadratic function
of the batch progress.

A substantial novelty of the proposed method is the intro-
duction of a stochastic hybrid process model (SHPM), which
allows to model gradually changing system behavior in hidden
system states, and, therefore, to reduce the number of hidden
states compared to HMMs with piecewise stationary emission
distributions. In contrast to existing fault detection systems

based on SHMMs (see e.g. [5]), the hidden states of the
proposed SHPM do not correspond to different failure modes,
but to different process phases that are traversed during a fault-
free process. Thus, it is possible to learn the structure and
the parameters of the SHPM from observations of the normal
process behavior. Model learning is accomplished in two
phases: In the first phase, an initial process model is learned
using a novel heuristic, which includes both discrete events
and continuous signals. Top-down segmentation and bottom-
up merging methods are introduced for this task. In the second
phase, the model is refined with an expectation-maximization
algorithm, which is commonly used in a similar form to
learn SHMMs in the context of automatic speech recognition
(see e.g. [8]). Finally, a novel fault detection methodology is
derived in this paper, in which the SHPM is used to assess the
likelihood of faults in hybrid batch processes (see section VI).

The remaining part of the paper is structured as follows:
In section II, a summary of the related work is given. Sub-
sequently, the underlying probabilistic framework for fault
detection in industrial production processes is outlined in
section III. The proposed process model and model learn-
ing algorithms are introduced in section IV and section V,
respectively. The novel fault detection method is described in
section VI. In section VII, the overall fault detection approach
is evaluated in two application scenarios. Section VIII gives
a conclusion. The most important notations used in this paper
are shown in Table I.

II. RELATED WORK

Generally speaking, three classes of algorithmic approaches
exist for the detection of faults and anomalous situations
in industrial production processes: signal-based, knowledge-
based and model-based methods [9].

1) In signal-based methods, features such as mean values,
trends or peaks are extracted in time domain or frequency
domain from the measured signals. Expert knowledge is then
used to assess whether the feature values indicate faults [9].
The advantage of this approach is that it does not require
a complex model describing the system behavior, since the
analysis relies on features that are derived from the signal
waveforms. On the other hand, signal-based fault detection
methods often need a high number of classification rules to
discriminate between all possible combinations of symptoms.
Hence, this approach is used for small modules rather than for
complex manufacturing systems.

2) Knowledge-based fault detection methods employ large
volumes of historic data to check the consistency between the
observed process behavior and the knowledge base, leading to
a decision about a possible fault with the aid of a classifier.
Knowledge-based approaches can be further classified into
qualitative methods and quantitative methods [9], where in par-
ticular quantitative methods are of great practical importance.
Qualitative methods employ symbolic representations of the
input data such as rules or sequences of symbols. The large
part of the existing quantitative knowledge-based methods
is based on transformations of the multivariate input signals
into a low-dimensional subspace. In particular, artificial neural
network (ANN) methods (see e.g. [10], [11]) and multivariate
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analysis (MVA) methods such as principal component analysis
(PCA), independent component analysis (ICA), partial least
squares (PLS), and canonical correlation analysis (CCA) are
used to transform the input signals [9]. For fault detection,
statistics as in particular the squared prediction error (SPE)
resulting from the reconstruction of the input data and the
T 2 statistics of the dimension-reduced data are evaluated.

The advantage of knowledge-based fault detection methods
compared to signal-based approaches is that they can be used
in different application fields without much prior knowledge
and configuration effort. On the other hand, the automatic
generation of ANNs requires large historical data sets, while
the basic forms of the MVA methods are limited to linear
dimensional reductions. To close the gap, non-linear MVA
methods have been developed such as kernel PCA-based
methods [12], [13], kernel PLS-based methods [14], kernel
ICA-based methods [15] or combinations of deep belief
networks and CCA-based methods [16]. The core of the
knowledge-based fault detection methods is further limited
to processes where the dependencies between the measured
signal values and the dimension-reduced features do not
change. Some recent approaches overcome this limitation by
carrying out the dimensional reductions depending on the
current process phase [17], [18]. However, processes, in which
the distributions of the process variables change gradually, can
only be modeled inadequately with the existing MVA methods.

3) Model-based fault detection methods employ a model
to simulate the normal process behavior [9]. If the actual
measurements vary significantly from the simulation results,
the behavior is classified as anomalous (see e.g. [2], [3], [19]).
Model-based approaches allow to monitor complex processes
even in the case of gradually changing process behavior.
Furthermore, no complicated decision rules are required as far
as sufficiently accurate process models are available. However,
in practice, model-based methods require a high level of
manual model creation effort or a sufficient amount of data for
automatic identification of the model parameters. Therefore,
model-based methods are particularly suitable for processes
with a limited number of system modes in which sufficient
data for automatic model generation is available after a few
process cycles. As this is the case for the batch processes under
consideration, a model-based approach is used in this work.

The following sections outline the related work in model-
based fault detection and model learning.

A. Model-Based Fault Detection

Model-based fault detection methods can be divided into
approaches for discrete events systems and approaches for
continuous systems. Fault detection methods for continuous
systems can further be divided into deterministic and stochas-
tic methods. The batch processes investigated in this paper are
hybrid processes, which are characterized by the interaction of
discrete event systems and continuous processes.

1) Faults in discrete event systems such as incorrect tran-
sitions between system modes and timing errors are straight-
forwardly detected by comparing the observed discrete events
with events that are predicted using a model of the discrete
event system (see e.g. [20], [21]). In the large part of the

existing application cases, this approach is based on Petri nets
or automata.

2) Deterministic fault detection methods for continuous
systems are based on observers that use deterministic models
of the monitored processes to simulate the system behavior and
to predict the system output. The observers compute residuals,
i.e. the differences between the actual and the expected outputs
of the monitored processes, which are analyzed for fault
detection (see e.g. [22]). However, many processes behave
non-deterministically due to process and measurement noise,
so that stochastic methods are often required in in industrial
applications.

3) Stochastic fault detection methods for continuous sys-
tems employ stochastic models to generate the residuals [23].
In many of these approaches, a stochastic state space model
is used to model the temporal transitions of continuous
state variables, which are related to the observations via a
measurement model. Common approaches are Kalman filters
(e.g. [24]–[26]) and particle filters [27], in which the proba-
bility distributions of the state variables are approximated by
second order statistics or particles, respectively. Considering
the measurement and state space models, the filters determine
estimates of the state variables at each time instance, which
are used to compute the residuals. An alternative approach
to state space models, which allows to model more complex
nonlinear dependencies in signals, is the use of recurrent
neural networks like Long Short Term Memories (LSTMs)
for process modeling [28]. However, neural networks usually
require a larger amount of training data compared to state
space models. Potential faults are determined in the stochas-
tic fault detection methods using statistical analysis of the
residuals. For this, likelihoods of the residuals are computed
or statistical tests e.g. X 2 or multiple hypothesis tests are
carried out on the residuals [29]. The tests can be applied
either instantaneously or cumulatively, whereby calculating
cumulative sums generally allows to find smaller errors while
accepting delayed detection.

4) Fault detection in hybrid systems has been investigated
e.g. in [3], [6], [7], [21], [30]. The approaches are based on the
aforementioned methods for continuous systems and discrete
event systems and can be divided accordingly into deter-
ministic and stochastic approaches. Most of the deterministic
approaches for hybrid systems use automata to describe the
underlying discrete event system. Different formalisms have
been investigated to represent the continuous dynamics within
discrete system modes, e.g. differential equations [3], [21]
or regression models [30]. In all of these approaches, the
parameters of the continuous models depend on automaton
states related to the system modes. However, the differential
equations proposed in [3], [21] are more general compared
to the regression models proposed in [30], as they consider
continuous state variables in addition to the automaton states.

Stochastic hybrid process models such as Hidden Markov
Models (HMMs) and switching Kalman filters have been
proposed to deal with hidden system modes and process and
modeling uncertainties that are not covered by deterministic
hybrid automata. The authors in [31] and [32] employ HMMs
to capture the behavior of the underlying discrete event system,
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while Kalman Filters represent the continuous dynamics in
the individual system modes. In [6] and [7], the process
behavior in the individual system modes is modeled using
stationary Gaussian distributions. Compared to the switching
Kalman filters introduced in [32], HMMs with stationary
Gaussian distributions are more suitable to model long-term
dependencies in the data, leading to higher accuracy in
many application cases [6]. However, HMMs with stationary
Gaussian distributions capture non-stationary process behavior
in a system mode only in the form of an increased variance,
which reflects the increased modeling error. As endorsed in the
introduction, the proposed methods aim to close this gap using
a hybrid process model, which is based on a segmental HMM.

B. Model Learning

A large part of the existing model-based fault detec-
tion approaches employ manually created process models.
However, manual creation of process models is error-prone
and time-consuming due to the high complexity and flex-
ibility of industrial production systems [33]. Hence, model
learning approaches have been developed, which allow to
create process models automatically from historical process
data. Model learning methods for continuous process models
have been the subject of extensive research. A large number
of learning algorithms has been developed for neural net-
works, which are often based on gradient descent methods
(see e.g. [28]). The identification of stochastic process models
has also been extensively studied and is usually based on
maximizing the log-likelihood of the measured output signals
(e.g. [24]). In the case of hidden state variables, which are
used for example in Kalman filters or HMMs, maximization
of the log-likelihood leads to Expectation Maximization (EM)
approaches, where the hidden state variable estimation and
parameter maximization are performed iteratively. Learning
discrete event system models and in particular automata from
historical process data is not as well studied. Learning algo-
rithms for automata can be divided into offline algorithms
(e.g. ALERGIA [34], MDI [35] and BUTLA [36]) and online
algorithms (e.g. OTALA [37]). In the main part of the offline
algorithms, prefix trees are computed by combining common
beginnings of discrete event sequences that are used as train-
ing data. Subsequently, similar states in the prefix trees are
iteratively merged until the final automata are obtained. The
online learning algorithm OTALA creates a specific state in
the automaton for each signal vector of the inputs/outputs [37].
OTALA needs least computing time of the aforementioned
model learning algorithms and achieves the same model learn-
ing accuracy as BUTLA [37], which in turn was shown to be
superior to ALERGIA and MDI [38].

An initial approach to learn a deterministic hybrid process
model from data is the HyBUTLA algorithm introduced
in [20]. In this approach, an automaton is generated using the
BUTLA algorithm and a regression model is learned for each
state of the automaton to model the continuous process behav-
ior. In the present work, a model learning approach for the
proposed hybrid process model is developed, which is based
on learning procedures for SHMMs introduced in section V,
which have been originally developed for acoustic models

Fig. 1. Segmentation Sq = (q0, . . . , q15) of two example process cycles,
in which the 16 segments are represented by the 8 models �i , i = 0, . . . , 7.

in the field of automatic speech recognition [8]. In contrast
to the HyBUTLA algorithm, this approach particularly takes
account of hidden system modes, temporal correlations in the
continuous signals, and process and modeling uncertainties.

III. OVERALL FAULT DETECTION APPROACH

Fault detection is carried out using a process model which
allows to detect deviations between the observed and predicted
signal courses. In this section, this model is briefly described
before model learning and model-based fault detection are
outlined.

The proposed stochastic hybrid process model (SHPM)
is based on the assumption that the monitored processes
consist of several process modes i ∈ S with qualitatively
different process behavior. The observed signals are segmented
according to the process modes, and segment models �i are
used to model the process behavior in the individual segments
qγ , γ = 0, . . . , m − 1 (see Fig. 1).

To model the dynamics of the continuous observations x(k),
time-dependent linear models with modeling errors captured
in the standard deviations of the segment models are used. It is
worth noting that HMMs with stationary Gaussian-distributed
emission distributions, which are e.g. applied in [6], require
in general a larger number of states within each segment to
achieve the same modeling accuracy as the proposed SHPM
due to the assumption of constant expected values E[x] for
each state. Furthermore, in contrast to HMM-based approaches
an explicit probabilistic model for the length of the individual
segments is considered in the SHPM.

Fault detection is conducted in two phases, which are shown
in Fig. 2:

1) Training phase: In this phase, the SHPM is learned from
historic training data.

2) Operating phase: Fault detection is conducted during the
operation of the industrial process.

In the training phase, an Expectation-Maximization (EM)
algorithm is used to learn the SHPM λ from historical training
data

O = {o(0), . . . , o(n − 1)}. (1)

The EM algorithm consists of two steps, which are repeated
in the iterations t = 0 . . . T (see section V-B for details):
• Maximization step: Computation of the model parameters

λ(t)) for a given segmentation S(t)
q

• Expectation step (extended Viterbi algorithm): Estimation
of the optimal segmentation S(t+1)

q for a given model λ(t).
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Fig. 2. Model-based fault detection with the stochastic process model λ.

An initial segmentation S(0)
q of the training data is required

to initialize the EM algorithm, which is determined using a
heuristic introduced in section V-A.

The model λ = λ(T ) that results from T iterations of the
EM algorithm is used for fault detection during the operating
phase of the industrial process. Fault detection at time k is
based on predictions ô(κ) of the measurements o(κ), which
are determined with the SHPM for time κ = 0 . . . k. Based
on the residuals r(κ) = o(κ) − ô(κ), κ = 0 . . . k, a cumu-
lative fault measure is computed in the CUSUM (cumulative
sum) algorithm introduced in section VI. A fault is reported
as soon as the cumulative fault measure exceeds a given
threshold.

IV. STOCHASTIC HYBRID PROCESS MODEL

The fault detection approach employs a stochastic hybrid
process model (SHPM), which allows to capture both discrete
and non-stationary continuous behavior of industrial produc-
tion processes. The proposed SHPM is based on a Segmental
Hidden Markov Model (SHMM), which has been originally
introduced for acoustic modeling in automatic speech recog-
nition ([8], [39]), i.e. for the modeling of continuous speech
features x(k).

In this work, standardization of the continuous measure-
ments x(k) is conducted to compensate for different scales in
the components xc(k):

xc(k) �→
xc(k)− min

κ=0...n−1
xc(κ)

max
κ=0...n−1

xc(κ)− min
κ=0...n−1

xc(κ)
(2)

Discrete observations d(k) are integrated into this approach to
exploit measurable events, such as the switching of valves.

The proposed process model, which is depicted in Fig. 3,
divides the sequence of observations into a sequence of
segments with segment indices γ ∈ �, starting times k0,γ and
segment lengths lγ . The length of the sequence is denoted by
m = |�| in the following.

Formally, the proposed model is a 3-tuple λ = (S,T ,�)
with:

Fig. 3. Stochastic hybrid process model.

• A finite set of system modes S: At each time instance k
the system is assumed to be in the system mode

s(k) = i, i ∈ S (3)

with the probability P(s(k) = i). The system modes are
assumed to be constant within a segment γ , i.e.

s(k0,γ ) = . . . = s(k0,γ + lγ − 1) = sγ . (4)

To combine the variables sγ , k0,γ and lγ , the segment
state

qγ =
�
k0,γ , lγ , sγ

�
. (5)

is introduced.

• Transition matrix T = {α1,1, α1,2, . . . , α|S|,|S|}: T com-
prises the transition probabilities between two segments
i ∈ S and j ∈ S.

• Segment models � = {�1,�2, . . . ,�|S|}: A segment
model provides a joint model for a random-length
sequence of the discrete observations

dk0+l−1
k0

= [d(k0), . . . , d(k0 + l − 1)] (6)

and the continuous observations

xk0+l−1
k0

= [x(k0), . . . , x(k0 + l − 1)], (7)

which is assumed to be generated for each segment i ∈ S
with segment start time k0 and segment length l according
to the density

p(dk0+l−1
k0

, xk0+l−1
k0

, l|i)
= p(xk0+l−1

k0
|l, i)P(dk0+l−1

k0
|i)p(l|i). (8)

Each segment model �i consists of the following components:
• A prior probability distribution for the segment model at

time instance k = 0: πi = p(l = 1, i).
• A duration distribution p(l|i) that gives the probability

density of segment length l and, thereby, the likelihood
of a particular segmentation of a process cycle. In this
work, a Gaussian duration distribution

p(l|i) = N (l;μl,i , σl,i ) (9)

with mean μl,i and standard deviation σl,i is assumed.
Additionally, boundaries lmin and lmax , lmin ≤ l ≤ lmax ,
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for the segment length l are defined to restrict the length
of the individual segments.

• A family of output densities {bi,l; lmin < l ≤ lmax } that
describes observation sequences of different lengths l.
In this work, the output densities are composed of con-
ditional probabilities b(d)

i,l (dk0+l−1
k0

) = P(dk0+l−1
k0

|i) for
the discrete events and linear trajectory segment models
b(x)

i,l (xk0+l−1
k0

) for the continuous process behavior:
bi,l

�
dk0+l−1

k0
, xk0+l−1

k0

�
= b(d)

i,l (dk0+l−1
k0

)b(x)
i,l

�
xk0+l−1

k0

�
(10)

In the following, the discrete observations in a segment
are assumed to be conditionally independent, i.e. the
approximation

b(d)
i,l (dk0+l−1

k0
) = P(dk0+l−1

k0
|i) ≈

k0+l−1�
k=k0

P(d(k)|i) (11)

is made. The probability that d(k) adopts the value
v ∈ V in system mode i is denoted as

βi,v = P(d(k) = v|i). (12)

The continuous output densities are modeled using the
Gaussian probability density

b(x)
i,l

�
xk0+l−1

k0

�
=

k0+l−1�
k=k0

N (x(k); ci +mi(k − k0)),�i)

(13)

where mi and ci denote the slope and the offset of the
trajectory

fi(k − k0) = ci +mi (k − k0) (14)

in segment i . The co-variance matrix of the trajectory
fi(k) is referred to as �i .

Altogether, the individual segment models can be written as
7-tuples

�i =
�
πi , μl,i , σl,i , βi,γ, ci , mi ,�i

�
. (15)

V. MODEL LEARNING

This section describes the learning of the SHPM λ from his-
torical process data O. The basic concept behind the proposed
model learning method consists in (see Fig. 2 in section III)
(A) creating an initial segmentation of the historical process
data, and (B) iteratively improving the model parameters
and the initial segmentation using maximum likelihood (ML)
parameter estimation.

A. Initial Segmentation

To obtain an initial segmentation in which both the discrete
events and the continuous dynamics are considered, the fol-
lowing steps are performed:
• Step 1 Segmentation of the process data with respect to

the observed discrete signals
• Step 2 Top-down segmentation: Segments with disconti-

nuities in the continuous signals are split.

• Step 3 Bottom-up merging: Similar segments are assigned
to a single system mode for which a common segment
model is learned further on.

The three steps are realized in the following way (Alg. 1):

Algorithm 1 Segmentation Heuristic
Step 1: Segmentation with respect to the discrete signals
Given: Discrete observations D = {d(0), . . . , d(n − 1)}
Result: segment states qγ , γ ∈ ��
(01) ∀d(k) ∈ D :
(02) sd(k) = fd(d(k))
(03) �� = ∅, k0,0 = 0, γ = 0
(04) for k = 1 . . . n − 1:
(05) if sd(k) 
= sd(k − 1):
(06) k0,γ+1 = k, lγ = k − k0,γ , sd,γ = sd(k − 1)
(07) qγ = (k0,γ , lγ , sd,γ ), �� = �� ∪ {γ }
(08) γ = γ + 1
(09) qγ = (k0,γ , n − k0,γ − 1, sd(n − 1)), �� = �� ∪ {γ }
Step 2: Top-down segmentation
Given: Observations O = {o(0), . . . , o(n − 1)},

segment states qγ , γ ∈ ��
Result: refined segment states qγ , γ ∈ �
(01) while |��| > 0:
(02) Select γ ∈ �� with segment state qγ =

�
k0,γ , lγ , sγ

�
(03) for c = 1 . . . nc:
(04) e(γ )

c =
�k0,γ+lγ −1

k=k0,γ

�
xc(k)− fsγ ,c(k − k0,γ )

�2

(05) f (opt)
s = 1.0

(06) for k = k0,γ + lmin
2 − 1 . . . k0,γ + lγ − lmin

2 :
(07) qγ (l) = (k0,γ , k − k0,γ + 1, sγ (l) )
(08) qγ (r) = (k + 1, k0,γ + lγ − 1− k, sγ (r) )
(09) Update ms

γ (l) and ms
γ (r) according to (17)

(10) Update cs
γ (l) and cs

γ (r) according to (18)
(11) for c = 1 . . . nc:
(12) if e(opt)

c /lγ > emin :

(13) ẽ(l)
c =

�k
κ=k0,γ

�
xc(κ)− fs

γ (l) ,c(κ − k0,γ )
�2

(14) ẽ(r)
c =

�k0,γ+lγ −1
κ=k+1

�
xc(κ)− fs

γ (r) ,c(κ − k0,γ )
�2

(15) ẽc = ẽ(l)
c + ẽ(r)

c
(16) if ẽc/e(γ )

c < f (opt)
s :

(17) γ (l,opt) = γ (l), γ (r,opt) = γ (r), f (opt)
s = ẽc/e(γ )

c
(18) if f (opt)

s < f (max)
s :

(19) �� = �� ∪ {γ (l,opt), γ (r,opt)} \ {γ }
(20) else: �� = �� \ {γ }, � = � ∪ {γ }
Step 3: Bottom-up merging
Given: segment states qγ = (k0,γ , lγ , sγ ), γ ∈ �
Result: updated segment labels sγ for the segments γ ∈ �
(01) emin = ∞
(02) do
(03) ∀(γ1, γ2)((γ1, γ2) ∈ � × � ∧ γ1 
= γ2):
(04) if sd,γ1 = sd,γ2 :
(05) Compute merge error e according to (19)
(06) if e < emin : emin = e, γ

(opt)
1 = γ1, γ

(opt)
2 = γ2

(07) if emin < 1: s
γ

(opt)
1
= s

γ
(opt)
2

(08) while emin < 1: ∀γ ∈ �: sγ = rank(sγ )

• Step 1: Segmentation With Respect to the Discrete Signals
In the first step, a segmentation with respect to the
discrete events d(k) is computed, which is refined in
step 2 based on the continuous observations x(k). For
this, initial approximations sd(k) of the system modes
s(k) are computed from the discrete input signals d(k)
using an automata learning approach. In this work,
the OTALA algorithm [37] is used for this purpose
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(lines (1) and (2) of step 1). In this approach, a bijective
mapping sd(k) = fd(d(k)) from the set of discrete events
to unique state IDs is applied to determine the initial
system modes sd(k). The segment states qγ , γ ∈ �� are
straightforwardly obtained from the initial system modes
sd(k) (lines (03) - (09)) by starting a new segment at
splitting points k, where the condition sd(k) 
= sd(k − 1)
holds. In this process, the segment states q �γ are updated
using the splitting times k and the segment labels at time
instances k − 1. It is worth noting that a single segment
will result after step 1, if the discrete inputs are not
available. In this case, segmentation is performed only
in step 2 based on the continuous signals.

• Step 2: Top-Down Segmentation of the Observed Process
Data
In the second step, a top-down segmentation is accom-
plished to refine the initial segmentation ��. The fun-
damental principle of the proposed method consists in
reducing the overall model error

ec =
�
γ∈��

k0,γ+lγ−1�
k=k0,γ

�
xc(k)− fsγ ,c(k − k0,γ )

�2
(16)

between the components xc(k), c ∈ {1 . . . nc}, of the
training data and the components fsγ ,c(k − k0,γ ) of the
modeled trajectory within the segments γ ∈ �� with
segment states qγ =

�
k0,γ , lγ , sγ

�
. For this issue, each

segment is iteratively divided into smaller segments until
the desired accuracy is achieved or no further reduction of
the overall model error is possible (see step 2 in Alg. 1).
In line (02) of step 2 in Alg. 1, an arbitrary segment
γ ∈ �� with start time k0,γ , length lγ and segment model
sγ is selected as a candidate for splitting. In line (04),
the model error e(γ )

c within this segment is computed
for each component xc(k) of the training data. Splitting
is accomplished in lines (06)-(10) for all potential time
instances k = k0,γ + lmin

2 − 1 . . . k0,γ + lγ − lmin
2 within

the respective segment γ . In doing so, segment γ is
divided into two smaller segments γ �, γ � ∈ {γ (l), γ (r)},
with parameters k0,γ � , lγ � and sγ � (lines (07) and (08)).
For both segments, slope

msγ � =

k0,γ �+lγ � −1�
k=k0,γ �

�
k − lγ �

2 − k0,γ �
��

x(k)− x̄sγ �
�

k0,γ � +lγ � −1�
k=k0,γ �

�
k − lγ �

2 − k0,γ �
�2

(17)

and offset

csγ � = x̄sγ � −msγ �
lγ �

2
with x̄sγ � =

1

lγ �

k0,γ � +l�γ−1�
k=k0,γ �

x(k)

(18)

are updated (lines (09) and (10)). The splitting factor,
i.e. the quotient ec/e(γ )

c of the model errors ẽc in the
divided segments and the model error e(γ )

c in the overall
segment γ , is used to select the optimal splitting point for
segment γ . In doing so, the model errors ẽc are computed

in lines (11)-(15), while the splitting factor f (opt)
s is

updated in lines (05), (16) and (17). Condition (12) is
used to restrict the number of segments by introducing
a threshold emin on the desired accuracy. In line (19),
segment γ is divided, if the splitting factor f (opt)

s is lower
than a given threshold f (max)

s . Otherwise, γ is included
in the set � of refined segments (line (20)).

• Step 3: Bottom-Up Merging of Similar Segments
To reduce the number of segments, pair-wise bottom-up
merging of similar segments is accomplished. Pairs of
segments γ1 and γ2 are merged, where the discrete state
labels sd,γ1 and sd,γ2 are identical and where the merge
error

e = max
c=1...nx

1

ec,max

ec,γ1 + ec,γ2

lγ1 + lγ2

(19)

with

ec,γ =
k0,γ+lγ+lγ−1�

k0,γ

�
xc(k)− fi,c(k − k0,γ )

�2

ec,max = max
γ∈�

1

lγ

k0,γ+lγ+lγ1−1�
k0,γ

�
xc(k)− fi,c(k − k0,γ )

�2

is below a given threshold (lines (01)-(07) in step 3 of
Alg. 1). In this process, the two segments with the lowest
merge error e are successively merged by assigning
identical segment labels sγ to the respective segments.
In line (08), each ID is replaced by the respective rank
to avoid gaps in the set of IDs. It should be noted that
in the initial segmentation heuristic, only segments with
identical discrete state labels are merged. Segments with
different discrete state labels are potentially merged in the
course of the EM algorithm introduced in section V-B.

The initial segmentation S(0)
q = (q0, . . . , qm−1), m = |�|,

is obtained by arranging the segment states qγ , γ ∈ �,
determined in steps 2 and 3 of Alg. 1 in ascending order by
the start times k0,γ .

B. Maximum Likelihood Estimation

The initial parameters λ = λ(0) of the hybrid process
model are computed from the initial segmentation S(0)

q as
described in section V-B1. Subsequently, the parameters λ
are improved using maximum likelihood (ML) parameter
estimation, i.e. pλ(q

m−1
0 , on−1

0 ) is optimized with respect to λ.
Since pλ(q

m−1
0 , on−1

0 ) comprises the hidden segment states qγ ,
some form of iteration is required. Similar as in [40], the
expected value

Q(λ|λ(t)) = Eqm−1
0 |on−1

0 ,λ(t) [log pλ(q
m−1
0 , on−1

0 )]
=

�
qm−1

0

P(qm−1
0 |on−1

0 , λ(t))log pλ(q
m−1
0 , on−1

0 )

(20)

of log pλ(q
m−1
0 , on−1

0 ) is maximized by iteratively applying
an expectation-maximization algorithm with the following
steps:
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1) Estimation step: Compute the expected value
Q(λ|λ(t−1)) for the current estimates of the parameters
λ(t−1) according to (20). This step is implicitly achieved
by calculating the probabilities P(qm−1

0 |on−1
0 , λ(t−1))

in (20), since λ(t−1) and on−1
0 are given.

2) Maximization step: Find the parameters λ(t+1) that max-
imize Q(λ|λ(t)):

λ(t) = argmax
λ

Q(λ|λ(t−1)) (21)

with t = 1 . . . T denoting the iteration index. Two com-
mon realizations of the expectation-maximization algorithm
are the generalized forward-backward algorithm [41] and
methods, which find the most likely hidden state sequence
at each iteration [42]. Due to the shorter computation
time, the second approach is chosen in this paper. In this
approach, the Viterbi approximation [40] is applied, i.e. the
sum over all possible state sequences in the computation
of Q(λ|λ(t)) is approximated by the summand Q̃(λ|λ(t))
corresponding to the most probable sequence of states
in (20):

Q(λ|λ(t)) ≈ Q̃(λ|λ(t)) = log pλ(q̂
m̂−1
0 , on−1

0 ) (22)

with

(m̂, q̂ m̂−1
0 ) = argmax

qm−1
0

pλ(q
m−1
0 , on−1

0 ) (23)

As described in detail in section V-B1, the maximization
step (21) is conducted by computing the model parameters
λ(t) for the most probable sequence of states S(t)

q = q̂ m̂−1
0 .

The estimation step, where the sequence S(t)
q = q̂ m̂−1

0 is
computed as approximation of P(qm−1

0 |on−1
0 , γ (t)), is detailed

in section V-B2.
1) Maximization Step (Model Identification): The transition

probabilities αi, j between the system modes and the parame-
ters of the linear trajectory segment models

�i = (πi , μl,i , σl,i , βi,γ , mi , ci ,�i) (24)

for the individual system modes i are estimated as follows for
a given sequence of states Sq = qm−1

0 (see appendix I for the
derivations):

πi = 1

m

m−1�
γ=0

δ(sγ − i) (25)

αi, j = 1

m − 1

m−2�
γ=0

δ(sγ − i, sγ+1 − j) (26)

μl,i =

m−1�
γ=0

δ(sγ − i)lγ

m−1�
γ=0

δ(sγ − i)

, σ 2
l,i =

m−1�
γ=0

δ(sγ − i)
�
lγ − μl,i

�2

	
m−1�
γ=0

δ(sγ − i)



− 1

(27)

βi,γ =

m−1�
γ=0

k0,γ+lγ−1�
k=k0,γ

δ(sγ − i, d(k)− γ)

�m−1
γ=0 δ(sγ − i)lγ

(28)

mi =

m−1�
γ=0

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

�
k − k̄i

�
(x(k)− x̄i)

m−1�
γ=0

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

�
k − k̄i

�2

(29)

ci = x̄i −mi k̄i (30)

�i =

m−1�
γ=0

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

�x,i (k0,γ , k)�x,i (k0,γ , k)T

m−1�
γ=0

δ(sγ − i)lγ

(31)

with

x̄i =
m−1�
γ=0

δ(sγ − i)

k0,γ+lγ−1�
k=k0,γ

x(k)

lγ
,

k̄i =
m−1�
γ=0

δ(sγ − i)
lγ
2

�x,i (k0,γ , k) = x(k)− fi (k − k0,γ ) (32)

In (25)-(31), the Dirac function is denoted as δ(. . .).
2) Expectation Step (Extended Viterbi Algorithm): To find

both the most likely number of segments m̂ and the most likely
sequence of segments q̂ m̂−1

0 , the optimization problem (22) is
solved for given model paramters λ(t). Using the definition
qγ = (k0,γ , lγ , sγ ), eq. (23) can be written as

(m̂, k̂m̂−1
0,0 , l̂ m̂−1

0 , ŝm̂−1
0 )

= argmax
m,km−1

0,0 ,lm−1
0 ,sm−1

0

pλ(k
m−1
0,0 , lm−1

0 , sm−1
0 , on−1

0 ) (33)

For efficient solution, the variable δi(k) is defined to be
the probability of the most likely segmentation sequence
ending with segment label i for observations on−1

0 =
{o0, . . . , on−1} [40]:

δi(k) = max
m,qm−1

0

p(km−1
0,0 , lm−1

0 , sm−2
0 , sm−1 = i, on−1

0 ). (34)

It is worth noting that the relationship

Q̃(λ|λ(t)) = max
i∈S

log δi(n − 1) (35)

holds, so that the final segment sm of the most likely segmen-
tation sequence can be calculated directly from δi(n − 1):

ŝm = argmax
i∈S

log δi(n − 1) = argmax
i∈S

δi(n − 1) (36)

The recursion

δi(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πi b
(d)
i,0 (d(0))b(x)

i,0 (x(0)), if k = 0

max
l=1...k

j∈S

⎧⎪⎨
⎪⎩

δ j(k − l + 1)αi j p(l|i)
· P(d(k − l + 1) . . . d(k)|i)
· b(x)

i,l (x(k − l + 1) . . . x(k))

⎫⎪⎬
⎪⎭, else

(37)

which results directly from (34), allows for an efficient com-
putation of the forward variable δi(k). In this process, the
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traceback information

(l̂i , ĵi) = argmax
l=0,...,k−1

j∈S

⎧⎪⎨
⎪⎩

δ j(k − l + 1)αi j p(l|i)
· P(d(k − l + 1) . . . d(k)|i)
· b(x)

i,l (x(k − l + 1) . . . x(k))

⎫⎪⎬
⎪⎭ (38)

and k̂0,i = k − l̂i + 1 is stored in 
i(k) = (k̂0,i , l̂i , ĵi), which
contains the optimal starting time k̂0,i and length l̂i of the
current segment i as well as the label ĵi of the best previous
segment that led to δi (k).

The extended Viterbi algorithm, which is used to compute
the most probable sequence of states q̂ m̂−1

0 from periodically
obtained observations o(k) = (d(k), x(k)), is shown in Alg. 2.

Algorithm 2 Extended Viterbi Algorithm
Inputs:
(1) Hybrid process model λ = (S,T ,�)
(2) Observations o(k) = (d(k), x(k))
Output: State sequence q̂0 . . . q̂m̂−1 with q̂γ = (k̂0,γ , l̂γ , ŝγ )
(01) for i ∈ S : �i(0) = Bi,0(x(0))+�i

(02) for k = 1 . . . n − 1:
(03) for i ∈ S :
(04) �i(k) = max

l=lmin ...l�max,k

j∈S

{� j (k − l + 1)+ Aij + Li,l

+B(d)
i,l (dk

k−l+1)+ B(x)
i,l (xk

k−l+1)}
(05) (l̂i , ĵi) = argmax

l=lmin ...l�max,k

j∈S

{� j (k − l + 1)+ Aij + Li,l

+B(d)
i,l (dk

k−l+1)+ B(x)
i,l (xk

k−l+1)}
(06) 
i (k) = (k − l̂i + 1, l̂i , ĵi)
(07) ŝ�1 = argmax

i∈S
�i(n − 1)

(08) k = n − 1, γ = 1
(09) while k > 0:
(10) (k̂ �0,γ , l̂ �γ , ŝ�γ+1) = 
sγ (k)

(11) k ← k̂ �0,γ , γ ← γ + 1
(12) m̂ = γ , k̂ �0,m̂−1 = 0, l̂ �m̂−1 = k̂ �0,m̂−2 + 1
(13) for γ ∈ 0 . . . m̂ − 1:
(14) (k̂0,γ , l̂γ , ŝγ ) = (k̂ �0,m̂−γ , l̂ �m̂−γ , ŝ�m̂−γ )

For numerical reasons, the following variables are used in
the implementation of the algorithm:

�i (k) = log δi(k), �i = log πi , Ai j = log αi j

Li,l = log p(l|i) = −1

2
log(2πσl,i )− 1

2

�
l − μl,i

σl,i

�2

B(d)
i,l (dk

k−l+1) = log b(d)
i,l (dk

k−l+1) = log P(dk
k−l+1|i)

B(x)
i,l (xk

k−l+1) = log b(x)
i,l (xk

k−l+1)

= −1

2

k�
κ=k−l+1

(log
�
(2π)nx det(�i)

�
+�T

x,i (k − l + 1, κ)�−1
i �x,i (k − l + 1, κ))

(39)

with nx denoting the dimensionality of x(k). �x,i (k) has
been introduced in (32). The forward variable �i (k) is ini-
tialized in line (01) according to eq. (37). In lines (02)-(06),
the forward variable �i(k) and the trace-back information

i(k) are computed for all values of k = 1, . . . , n − 1 and
i = 0, . . . , |S| − 1 using eqs. (37) and (38). It is worth

noting that the values of Bi,l−δ(x
k1
k1−l+δ+1) are a subset of

the values of Bi,l(x
k2
k2−l+1), for two time instances k1 and

k2 = k1 + δ with an arbitrary delay of δ. For this reason,
the computation time can be significantly reduced by storing
the values of Bi,l(xk−l+1) in a lookup-table. Further speedup
is achieved by limiting the segment length to a range of
[lmin, lmax ]. In lines (04) and (05), the upper bound l �max,k =
min(lmax , k + 1) is used to avoid negative indexes.
In lines (07)-(14), eq. (36) and the trace-back information
computed according to (38) are used to determine the most
probable state sequence q̂ m̂−1

0 . In doing so, the auxiliary states
q �0,γ = q0,m−γ with reversed indexes are computed first,
because m̂ is not known before the trace-back is finished.

VI. FAULT DETECTION

The proposed fault detection method is based on evaluating
the conditional probability density function

pλ(o
n−1
0 |qn−1

0 ) = Pλ(d
n−1
0 |qn−1

0 )pλ(x
n−1
0 |qn−1

0 ) (40)

of the measurements on−1
0 regarding the optimal state sequence

qn−1
0 , which is determined using the extended Viterbi algo-

rithm introduced in section V-B. To detect unlikely discrete
events, the conditional probability

Pλ(d(k)|q(k)) = Pλ(d(k)|s(k)) < Td (41)

of the measured discrete events d(k) is compared to a given
threshold Td . Fault detection in the continuous measure-
ments x(k) is more complex. For this issue, the CUSUM
algorithm [43] for stationary Gaussian processes, which is
commonly used in statistical quality control, has been extended
for hybrid process models.

The CUSUM algorithm is based on the distinction between
the hypotheses H of error-free process behavior and the
hypothesis H̃ of faulty process behavior. In hypothesis H̃, the
faulty process behavior is assumed to start at time instance k f .
To identify the correct hypothesis, the ratio

�L(k, k f ) = LH̃(k, k f )− LH(k) (42)

of the log likelihoods

LH(k) = log pλ(xk
0|qk

0) (43)

and

LH̃(k) = log pλ(x
k f−1
0 |qk f−1

0 )+ log pλ̃(x
k
k f
|qk

k f
) (44)

is evaluated.
In the extended CUSUM algorithm, LH(k) is computed for

the hybrid process model λ. The process behavior according
to hypothesis H̃ is described by means of a modified model
λ̃, which simulates the faulty process behavior from time k f .
A fault is detected for

�L(k, k f ) > h (45)

where h is a threshold set by the user. Inserting (43) and (44)
into (42) leads to the log likelihood ratio

�L(k, k f ) = log pλ̃(x
k
k f
|qk

k f
)− log pλ(xk

k f
|qk

k f
)

=
k�

κ=k f

δL(k|q(k)) (46)
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with the instantaneous log likelihood ratio

δL(k|q(k)) = log pλ̃(x(k)|q(k))− log pλ(x(k)|q(k)). (47)

Under assumption of a systematic fault of the form

f̃i(k − k0) = fi(k − k0)+ δx, (48)

which affects the continuous process behavior fi(k − k0) in
each state q(k) = (k0(k), l(k), s(k) = i) in the same way, the
following relationship results (see appendix II):

δL(k|q(k)) = δT
x �−1

�
x(k)− fi (k − k0)− δx

2

�
(49)

It is worth noting that positive and negative values of different
components of δx cancel each other out with respect to the
computation of δL(k|q(k)). For this reason, analogous to
the two-sided version of the standard CUSUM algorithm a
separate detection is performed for each of the fault vectors

δ+x,c = (0 . . . 0, |δx,c|, 0 . . . 0)

δ−x,c = (0 . . . 0,−|δx,c|, 0 . . . 0) (50)

where |δx,c| denotes the absolute value of the fault magnitude
for component xc, c ∈ {1 . . . nc}. Since in (46) both qk

0 and
k f are unknown, they have to be replaced by their maximum
likelihood estimates. Maximizing (46) with respect to k f leads
to the following recursion for �+Lc

(k) and �−Lc
(k):

�±Lc
(k) = max

1≤k f≤k
�±Lc

(k, k f )

= max

�
max

1≤k f≤k−1
�±Lc

(k, k f ), �±Lc
(k, k)

�

= max

⎧⎨
⎩ max

1≤k f ≤k−1

k�
κ=k f

δ±Lc
(κ |q(κ)), δ±Lc

(k|q(k))

⎫⎬
⎭

= max
�
�±Lc

(k − 1)+ δ±Lc
(k|q(k)), δ±Lc

(k|q(k))
�

= max
�
�±Lc

(k − 1), 0
�+ δ±Lc

(k|q(k))

= �
�±Lc

(k − 1)
�+ + δ±Lc

(k|q(k)) (51)

where δ±Lc
is computed for each fault vector δ±x,c defined in (50)

using (49). The maximum likelihood estimate q̂k
0 of the state

sequence qk
0 is computed with the extended Viterbi algorithm

introduced in section V-B. The incremental update of �±Lc
(k)

according to (51) is integrated in the forward iteration of the
Viterbi algorithm. In this process, it has to be considered that
the estimate q̂k

0 is not yet final at time instance k, k < n, of the
forward iteration due to future observations. For this reason,
�L±i,c (k) is updated for each possible system mode i rather
than recomputing the recursion (51) at each time instance k
for a complete state sequence q̂k

0 .
This procedure is detailed in the overall fault detection algo-

rithm for hybrid processes (Alg. 3). The extended CUSUM
algorithm processes continuous observations x(k) and discrete
observations d(k) at time instances k, k = 0 . . . n − 1.
Initialization of the forward variables and the CUSUM vari-
ables is conducted in line (01). In lines (02)-(15), these
variables are updated for the time instances k = 1 . . . n − 1
simultaneously with the actual fault detection. The for-
ward variable �i(k) is updated in line (04) using eq. (37).

Algorithm 3 CUSUM Algorithm for the SHPM
Inputs:
(1) Hybrid process model λ = (S, T, �)

(obtained with Algorithm 2 from training data)
(2) Observations o(k) = (d(k), x(k)), k = 0, . . . , n − 1
Output: Detected faults fd , fx (if existing, else “OK”)
(01) for i ∈ S : �+Li,c

= 0, �−Li,c
= 0, �i (0) = Bi,0(o(0))+�i

(02) for k = 1, . . . n − 1:
(03) for i ∈ S :
(04) �i(k) = max

l=lmin ...l�max,k

j∈S

{� j (k − l + 1)+ Aij + Li,l

+B(d)
i,l (dk

k−l+1)+ B(x)
i,l (xk

k−l+1)}
(05) (l̂i , ĵi) = argmax

l=lmin ...l�max,k

j∈S

{� j (k − l + 1)+ Aij + Li,l

+B(d)
i,l (dk

k−l+1)+ B(x)
i,l (xk

k−l+1)}
(06) k̂0,i = k − l̂i + 1, �̃±Li,c

(k̂0,i) = �±L ĵi ,c
(k̂0,i − 1)

(07) for κ = k̂0,i . . . k:

(08) �̃±Li,c
(κ) =

�
�̃L±i,c (κ − 1)

�+
+δ±x,c

T
�−1

�
x(κ)− f i(κ − k̂0,i)− δ±x,c

2

�
(09) �±Li,c

(k) = �̃±Li,c
(k)

(10) ŝ(k) = argmax
i∈S

�i (k)

(11) if Pλ(d(k)|ŝ(k)) < Td :
(12) Report fault fd .
(13) for c = 1 . . . nx :
(14) if �+Lŝ(k),c

(k) > h or �−Lŝ(k),c
(k) > h:

(15) Report fault fx .

In line (05), the length l̂i and the predecessor ĵi of the current
segment on the optimal path are estimated using eq. (38).
Based on the estimates l̂i and ĵi , the CUSUM variables
�L±i,c (k) are computed from �L±

ĵi ,c
(k − l̂i) by repeated appli-

cation of recursion (51) using the auxiliary variables �̃L±i,c (κ)

(lines (06)-(09)). In line (10), the most likely system mode at
time instance k is determined using eq. (36). In lines (11)-(12),
eq. (41) is evaluated to detect anomalies fd in the discrete
measurements. Finally, the log likelihood ratios �L±s̃(k),c

of the

continuous measurements are assessed in lines (13)-(15).

VII. EVALUATION

The proposed fault detection method has been evaluated
on the test database introduced in [44], which is based on
the Pensim benchmark model of [45]. The Pensim benchmark
model describes the growth of biomass and the production of
penicillin in a fed-batch reactor. This is an industrial batch
process with hidden system modes.

Initially, the fermentation is operated in batch mode at high
substrate concentrations to stimulate biomass growth. Once the
initial substrate is nearly exhausted, the process switches to
fed-batch mode with a nominal feed rate of 0.06 L/h to main-
tain a low but non-zero substrate concentration. Under these
stressful conditions, penicillin is produced by the biomass.
The reactor is stirred and aerated to provide the biomass with
oxygen during the entire operation. Temperature and pH are
controlled via PID loops. Feed rate, feed temperature, aeration
rate, agitator power, and cold and hot water temperatures
are controlled in open loop. A batch is terminated after a
total of 25 L of substrate has been added, for a total batch
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Fig. 4. Process variables for the cases of normal behavior, an abrupt signal
change (fault 1) and a gradual drift (fault 5).

duration of approximately 460 h. Detailed descriptions of the
mathematical model, its parameter values, and the process
installation are presented in [45]. During creation of the
test data base, Gaussian measurement noise has been added
to the measured variables with standard deviations as listed
in [44]. Initial conditions have been randomly determined
to introduce additional batch-to-batch variability. All sensors
have been sampled every 0.2 h. Subsequently, data reduction
has been accomplished by replacing the data within non-
overlapping windows of length 5 by the respective mean
values, leading to an effective sampling interval of 1 h. The
following set of process variables is used for model learning
and fault detection: time, dissolved oxygen concentration,
dissolved CO2 concentration, reactor temperature, pH, feed
rate, feed temperature, agitator power, cooling water flow
rate, cumulative base flow rate, cumulative acid flow rate.
By changing the properties of the initial conditions and/or
model parameters, four subsets have been generated, each
containing 400 batches with normal operation and several
batches with faults. The faulty batches each contain one of
15 fault types with the same frequency. Nine fault types are
abrupt changes of individual process variables due to sensor
failures or changes in the operation, while the other six error
types are gradual drifts. A detailed description of the faults is
given in [44].

Fig. 4 shows the example course of four process variables
for the cases of normal process behavior, an abrupt signal
change (fault 1) and a gradual drift (fault 5). The feed rate and
the feed substrate concentration are not directly measurable
process variables, which cause the deviation from normal
behavior in the two fault cases. As can be seen from the figure,
fault 1 is caused by an abrupt change in the feed substrate
concentration, fault 5 by a gradual deviation of the feed rate
from the normal behavior. The dissolved CO2 concentration
and the oxygen concentration (solid line) are examples of
the measured process signals, which are the basis for model
learning and fault detection.

A hybrid process model is learnt from the initial N batches
of normal operation using the approach described in section V
with T iterations of the extended Viterbi algorithm. 10 addi-
tional error-free and 10 faulty batches of each subset are used
to optimize the fault detection parameters, i.e. the parameters h
and δx,c of the CUSUM algorithm. Fault detection was carried
out on another set of 150 error-free batches and 150 faulty
batches.

TABLE II

EVALUATION RESULTS FOR THE PENICILLIN PRODUCTION

The results of a systematic evaluation and a sensitivity
analysis of the developed fault detection method are presented
in the next two subsections.

A. Systematic Evaluation

A systematic evaluation of the developed fault detection
approach was conducted with parameters h = 300, δx,c =
3.5, N = 20 and T = 3. Fault detection was carried out
on 150 batches of normal operation and 150 batches with
faults. For comparison, the HMM-based fault detection were
evaluated in addition to the developed SHPM.

The averaged fault detection results and runtimes on the test
data sets are shown in table II.

The table shows that the proposed fault detection sys-
tem (SHPM) achieves a significantly higher balanced accuracy
than the baseline method. For a more detailed analysis of the
results, the sensitivity �sens = T P

T P+F N of the SHPM for each
of the 15 fault types has been determined (Fig. 5 d). As can
be seen from the figure, in particular fault types 9, 10, 13 and
14 impair the fault detection results, while the sensitivity for
the other fault types is very high. The small sensitivity for
the critical fault types appears to be due to the fact that the
four fault types did not directly affect the process variables but
the control of the pH value and the reactor temperature. This
evidently led to relatively small deviations of the measured
signals from the normal behavior, which are not obvious even
on visual inspection. To improve the detection of the four
critical fault types, further research could aim at exploiting
additional correlations between the different sensor signals.
Excluding the four critical faults types from the test data
set results in a balanced accuracy of �acc = 0.93 for N =
20 training batches and a balanced accuracy of �acc = 0.96 for
N = 100 training batches.

Furthermore, cross validation was carried out to analyze the
impact of different data splits on the detection results. In each
split, the 170 data sets, on which the results in table II are
based, were randomly partitioned into 20 training sets and
150 test sets. The evaluation of the SHMP for 20 randomly
chosen splits with the parameters given at the beginning of
section VII-A resulted in the mean balanced accuracy �̄acc =
0.82 with a standard deviation of 0.015. All in all, in the
investigated use case, the impact of the data partitioning on the
balanced accuracy is relatively small compared to the impact
of the parameters analyzed in section VII-B.

The high runtimes ttrain for the training of the SHPM
are acceptable in the investigated application scenario, since
the training only has to be carried out once during the
commissioning of the fault detection system. With respect to
the processing time teval , which is required to evaluate a new
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Fig. 5. Sensitivity �sens of the SHPM for the different fault types.

Fig. 6. Sensitivity analysis for the parameters h, δx,y , N , T and N f .

observation during the operating phase of the fault detection
system, there are no practical disadvantages of the SHPM,
since penicilin production is very slow with a cycle time of
about 460 h, and for many errors a time delay in correc-
tion is therefore tolerable. But even if rapid troubleshooting
is required, the time for this is generally not significantly
increased by the algorithm’s processing time, which is in the
order of teval = 0.026s per observation.

B. Sensitivity Analysis

The sensitivity analysis was conducted using the default val-
ues for h, δx,c, N and T , which are specified in section VII-A.
Furthermore, the influence of outliers in the training data on
the fault detection results was investigated. The analysis results
are shown in Fig. 6. As in section VII-A, fault detection was
carried out on 150 faulty and 150 error-free process cycles.

The balanced accuracy is stable over a wide range of the
parameter h for h > 200 as shown in Fig. 6 a). Fig. 6 b) shows
that the maximum of the balanced accuracy under variation
of the δx,c parameter is achieved at δx,c ≈ 3.5. Furthermore,
as expected, a tendential increase of the balanced accuracy
with the number of training cycles N can be observed (Fig. 6).
For N = 20 the balanced accuracy is already relatively high
(�acc = 0.823), but still below the value �acc = 0.847, which
is reached for N = 100. Furthermore, a minor increase of
the balanced accuracy with the number of training data can
be observed as shown in Fig. 6 d). For T > 3, however,

it decreases rapidly again, which could be due to an over-
adaptation of the model to the training data, a known problem
of expectation-maximization approaches.

The impact of outliers in the training data on the balanced
accuracy is shown in Fig. 6 e) for N = 50 training batches.
In each of the experimental runs, N f faulty training batches
were randomly selected and added to the error-free training
data. This procedure was repeated 10 times for each of the
values N f = 1, 2, 4, 8. Subsequently, the false positives, false
negatives, true positives and true negatives were added up for
each value of N f and the resulting sums were used to calculate
the balanced accuracies shown in Fig. 6 e). The balanced
accuracy decreases with the number of faulty training batches
N f . For N f = 8 faulty training batches, the balanced accuracy
is reduced to a value of 0.783 compared to 0.843 for N f = 0.
However, it can be seen from the figure that the fault detection
results are not significantly affected for an outlier fraction less
than 5% in the training batches.

VIII. CONCLUSION

This study investigated a novel fault detection approach for
industrial batch processes, which consist of several process
phases in which the process variables change over time.
Fault detection is based on a stochastic hybrid process model
(SHPM), which describes the process behavior in the different
process phases with time-dependent linear models. In contrast
to Hidden Markov Models (HMMs) with stationary, Gaussian-
distributed emission distributions, which have been extended
in the SHPM, this approach allows to model time-dependent
changes of process variables within a process phase, leading
to a significant reduction in the number of hidden states.
Furthermore, discrete observations as well as an explicit prob-
abilistic model for the length of process phases are considered
in the SHPM.

An expectation-maximization (EM) algorithm is used to
learn the SHPM from training data. Iteration is carried out
between the segmentation of the input data and the estimation
of the model parameters. To determine an initial segmentation
as a starting point for the EM algorithm, a new heuristic was
developed that takes into account both discrete system modes
and continuous process phases. To analyze the impact of the
EM algorithm on the fault detection results, fault detection was
evaluated for models that resulted from a different number
of iterations of the EM algorithm. With model parameters
calculated directly from the initial segmentation, a balanced
accuracy of 0.77 was achieved for N = 20 training batches.
Three iterations of the EM algorithm resulted in an improved
balanced accuracy of 0.82.

To assess the likelihood of faults during the operating phase
of the fault detection system, a new CUSUM algorithm for
the SHPM was introduced. In this approach, the SHPM is
employed to simultaneously determine the process phases and
a cumulative log-likelihood ratio of the observations, on the
basis of which fault detection is performed. Experimental
results showed significant improvements for the proposed
fault detection method compared to an existing method where
the continuous process behavior is modeled with Gaussian
HMMs. On average, the balanced accuracy in the investigated
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application scenario with 15 fault types was increased from
0.78 to 0.82, whereby four fault types related to manipulations
of the pH and temperature control were only detected in rare
cases. Excluding these fault types from the evaluations led to
a balanced accuracy of 0.93. The evaluations further showed
that the results depend on the number of training data. For
N = 100, fault detection with the SHPM resulted in increased
balanced accuracies of 0.85 and 0.96 with and without the
four critical fault types, respectively.

Furthermore, the influence of the two parameters h and δx,c

as well as of outliers in the training data was investigated. The
evaluations have shown that fault detection results are stable
over a relatively wide range of the parameters h and δ. The
balanced accuracy was observed to decrease with the number
of outliers in the training data. However, the experimental
results show that the method is able to cope with a small
number of faulty training batches.

APPENDIX I
DETAILS ON THE PARAMETER ESTIMATION

To determine the parameters λ(t), Q(λ|λ(t)) has to be maxi-
mized according to (21). Using the Viterbi approximation (22)
in (21) leads to the optimization problem

λ(t+1) = argmax
λ

log pλ(on−1
0 , q̂m−1

0 ) (52)

Thus, the log likelihood

L(λ) = log pλ(o
n−1
0 , qm−1

0 )

= log pλ(on−1
0 , km−1

0,0 , lm−1
0 , sm−1

0 )

= log pλ(on−1
0 |km−1

0,0 , lm−1
0 , sm−1

0 )

+ log pλ(l
m−1
0 |sm−1

0 )+ log pλ(s
m−1
0 )

=
�
γ∈�

k0,γ+lγ−1�
k=k0,γ

log pλ(o(k)|k0,γ , lγ , sγ )

+
�
γ∈�

log pλ(lγ |sγ )+
�
γ∈�

log pλ(sγ |sγ−1) (53)

has to be maximized for the most probable state sequence
q̂m−1

0 . The maximization is achieved by computing the partial
derivations of L(λ) with respect to the components of λ.
It is worth noting that the components πi , αi, j , μl,i and σl,i

dependent only on the log likelihoods log pλ(l
m−1
0 |sm−1

0 ) and
log pλ(s

m−1
0 ) but not on log pλ(o

n−1
0 |km−1

0,0 , lm−1
0 , sm−1

0 ):

∂

∂πi
L(λ) = ∂

∂πi
log pλ(s

m−1
0 ) (54)

∂

∂αi, j
L(λ) = ∂

∂αi, j
log pλ(s

m−1
0 ) (55)

∂

∂μl,i
L(λ) = ∂

∂μl,i
log pλ(l

m−1
0 |sm−1

0 ) (56)

∂

∂σl,i
L(λ) = ∂

∂σl,i
log pλ(l

m−1
0 |sm−1

0 ) (57)

The partial model log pλ(l
m−1
0 |sm−1

0 )+ log pλ(s
m−1
0 ) formally

corresponds to a HMM with a scalar Gaussian output density,
which is e.g. used in [6]. For this reason, the determina-
tion equations (25)-(27) for these parameters can be adopted
from [6].

To determine βi,γ = P(d(k)|i), the equation

∂

∂βi,γ
L(λ)

= ∂

∂βi,γ
log pλ(on−1

0 , qm−1
0 )

= ∂

∂βi,γ

�
γ∈�

k0,γ+lγ−1�
k=k0,γ

log pλ(d(k)|sγ )

= ∂

∂βi,γ

⎛
⎝�

j∈S

�
γ∈V

�
γ∈�

k0,γ+lγ−1�
k=k0,γ

δ(sγ − j, d(k)− γ)log β j,γ

⎞
⎠

(58)

has to be evaluated with respect to the constraints�
γ̃∈V

βi,γ̃ = 1 and βi,γ ≥ 0 for i ∈ S, γ ∈ V (59)

Lagrange multipliers ζ = {ζi} are used to assert the equality
constraints in (59), while the inequality constraints can be
safely ignored, since the optimal solution implicitly produces
positive values for βi,γ :

∂

∂βi,γ
L(λ, ζ )

= ∂

∂βi,γ

�
j∈S

�
γ∈V

�
γ∈�

k0,γ+lγ−1�
k=k0,γ

δ(sγ − j, d(k)− γ)logβ j,γ

+ ∂

∂βi,γ

�
i∈S

ζi

	
1−

�
γ∈S

βi,γ




= 1

βi,γ

⎛
⎝�

γ∈�

k0,γ+lγ−1�
k=k0,γ

δ(sγ − i, d(k)− γ)

⎞
⎠− ζi ≡ 0

⇒ βi,γ = 1

ζi

�
γ∈�

k0,γ+lγ−1�
k=k0,γ

δ(sγ − i, d(k)− γ) (60)

Substituting back in and setting the partial with respect to ζ

equal to zero:
∂

∂ζi
L(λ, ζ ) = 1−

�
γ∈V

1

ζi

�
γ∈�

k0,γ+lγ−1�
k=k0,γ

δ(sγ − i, d(k)− γ)

⇒ ζi =
�
γ∈�

k0,γ+lγ−1�
k=k0,γ

δ(sγ − i) =
�
γ∈�

δ(sγ − i)lγ (61)

Inserting from (61) to (60) results in (28).
The parameters ci and mi result from the partial derivatives

∂
∂ci

L(λ) and ∂
∂mi

L(λ):

∂

∂ci
L(λ) = ∂

∂ci

�
γ∈�

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

�
log((2π)nx det(�i))

+ �
x(k)− ci −mi

�
k − k0,γ

�
)T

×�−1
i

�
x(k)− ci −mi

�
k − k0,γ

���
=

�
γ∈�

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

�−1
i �i(k0,γ , k) ≡ 0 (62)
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and

∂

∂mi
L(λ) =

�
γ∈�

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

(k − k0,γ )�−1
i �i (k0,γ , k)

≡ 0 (63)

with �i (k0,γ , k) = x(k) − ci − mi
�
k − k0,γ

�
. Solving the

equations (62) and (63) with respect to ci and mi leads to
the equations (29) and (30).

For the estimation of �i , a similar procedure as for a
multivariate Gaussian distribution with a constant expected
value is possible (see e.g. [46]). To simplify the derivation,
L(λ) is not minimized with respect to �i but maximized with
respect to �−1

i :

∂

∂�−1
i

L(λ)

= ∂

∂�−1
i

�
γ∈�

δ(sγ − i)
k0,γ+lγ−1�

k=k0,γ

�
−1

2
log(det(�i))

− 1

2
�x,i (k0,γ , k)T �−1

i �x,i (k0,γ , k)

�

=
�
γ∈�

δ(sγ−i)
k0,γ+lγ−1�

k=k0,γ

�
1

2
�i − 1

2
�x,i (k0,γ , k)�x,i (k0,γ , k)T

�

≡ 0 (64)

In (64), the relationships [46]

∂

∂�−1
i

det (�i) = −�i (65)

∂

∂�−1
i

�T
x,i �

−1
i �x,i = �x,i )�

T
x,i (66)

are exploited. Solving (64) with respect to �i leads to (31).

APPENDIX II
DETAILS ON THE COMPUTATION OF THE INSTANTANEOUS

LOG LIKELIHOOD RATIO

By exploiting the invariance of the trace tr of a matrix under
cyclic permutations, the instantaneous ratio δL(k|q(k)) of the
log likelihoods

log pλ̃(x(k)|i) = −1

2
log

�
(2π)nx det(�i)

�
− 1

2
�̃

T
x,i (k0, k)�−1

i �̃x,i (k0, k) (67)

and log pλ(x(k)|i) = −1

2
log

�
(2π)nx det(�i)

�
− 1

2
�T

x,i (k0, k)�−1
i �x,i (k0, k) (68)

in system mode s(k) = i can be written as

δL(k|q(k))

= δL(k|k0, l, s(k) = i)

= log pλ̃(x(k)|i)− log pλ(x(k)|i)
= −1

2

�
�̃

T
i (k0, k)�−1

i �̃i (k0, k)−�T
i (k0, k)�−1

i �i (k0, k)
�

= −1

2
tr
�
�̃

T
i (k0, k)�−1

i �̃i(k0, k)−�T
i (k0, k)�−1

i �i(k0, k)
�

= −1

2
tr
��

�̃i (k0, k)�̃
T
i (k0, k)−�i(k0, k)�T

i (k0, k)
�
�−1

i

�
(69)

with

�i (k0, k) = x(k)− fi (k − k0), (70)

�̃i (k0, k) = x(k)− f̃i (k − k0). (71)

Under the assumption f̃i(k− k0) = fi(k− k0)+ δx , δL(k|q(k))
can be further transformed as follows:
δL(k|q(k))

=−1

2
tr
���

x(k)− f i (k − k0)−δx
� �

x(k)− f i (k − k0)−δx
�T

− �
x(k)− f i (k − k0)

��
x(k)− f i(k − k0)

�T
�
�−1

i

�
(72)

= 1

2
tr

���
x(k)− fi(k − k0)− δx

2

�
δT

x

+ δx

�
x(k)− fi (k − k0)− δx

2

�T



�−1
i



(73)

= 1

2
tr

��
x(k)− fi(k − k0)− δx

2

�
δT

x �−1
i

+ �−1
i

�
x(k)− fi(k − k0)− δx

2

�
δT

x

�
(74)

= tr

�
δT

x �−1
i

�
x(k)− fi(k − k0)− δx

2

��
(75)

= δT
x �−1

i

�
x(k)− fi(k − k0)− δx

2

�
. (76)

In (74) and (75), the invariance of the trace under transposition
and cyclic permutations are exploited, respectively.
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