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A Virtual Mechanism Approach for Exploiting
Functional Redundancy in Finishing Operations

Bojan Nemec , Member, IEEE, Kenichi Yasuda, and Aleš Ude , Member, IEEE

Abstract— We propose a new approach to programming by
the demonstration of finishing operations. Such operations can
be carried out by industrial robots in multiple ways because an
industrial robot is typically functionally redundant with respect
to a finishing task. In the proposed system, a human expert
demonstrates a finishing operation, and the demonstrated motion
is recorded in the Cartesian space. The robot’s kinematic model is
augmented with a virtual mechanism, which is defined according
to the applied finishing tool. This way, the kinematic model
is expanded with additional degrees of freedom that can be
exploited to compute the optimal joint space motion of the
robot without altering the essential aspects of the Cartesian
space task execution as demonstrated by the human expert.
Finishing operations, such as polishing and grinding, occur in
contact with the treated workpiece. Since information about the
contact point position is needed to control the robot during the
operation, we have developed a novel approach for accurate
estimation of contact points using the measured forces and
torques. Finally, we applied iterative learning control to refine
the demonstrated operations and compensate for inaccurate
calibration and different dynamics of the robot and human
demonstrator. The proposed method was verified on real robots
and real polishing and grinding tasks.

Note to Practitioners—This work was motivated by the need
for automation of finishing operations, such as polishing and
grinding, on contemporary industrial robots. Existing approaches
are both too complex and too time-consuming to be applied
in flexible and small-scale production, which often requires the
frequent deployment of new applications. Our approach is based
on programming by demonstration and enables the programming
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of finishing operations also for users who are not specialists in
robot programming. Programming by demonstration is especially
useful for teaching finishing operations because it enables the
transfer of expert knowledge about finishing skills to robots
without providing lengthy task descriptions or manual coding.
Besides the human demonstration of the desired operation,
the proposed approach also requires the availability of the
kinematic model for the machine tool applied to carry out the
finishing operation. We provide several practical examples of
grinding and polishing tools and how to integrate them into
our approach. Another feature of the proposed system is that
user demonstrations of finishing operations can be transferred
between different combinations of robots and machine tools.

Index Terms— Functional redundancy resolution, indus-
trial robots, programming by demonstration (PbD), virtual
mechanism.

I. INTRODUCTION

NOWADAYS, we can no longer imagine large-scale indus-
trial production without the use of robots. While robots

are predominantly used in the automotive, home appliance,
chemical, and manufacturing industries, their use is still lag-
ging behind in small-scale and artisan manufacturing [1], [2].
One of the main reasons for this is the often excessive
programming effort required to program new robot tasks. Pro-
gramming by demonstration (PbD) is a promising technology
that enables end-users to teach new robot tasks without manual
programming. Instead of requiring users to decompose and
program the desired task analytically, an appropriate policy is
derived from observations of human task performance. This
way, the efficiency and ease of preparation of new robot tasks
can be improved [3].

Finishing operations such as polishing and grinding are
considered hard to automate, especially using classical robot
programming approaches. The reason for this is that they entail
a sophisticated trajectory and force control. Moreover, batch
sizes requiring finishing operations are usually not very large,
thus making it necessary to reprogram the production cell
many times [4]. For these reasons, the finishing operations are
still predominately performed by skilled operators, who aim to
modify the treated object’s surface in multiple passes involving
complex movements. Even skilled operators have difficulties
to explain how they perform the desired tasks. Hence, PbD is
a suitable approach to program such tasks.

When workpieces are treated with tools, it is usually not
important, where, in 3-D space, the operation takes place.
What matters is the relative orientation between the tool and
the workpiece and the applied forces. Thus, even though the
exact replication of the demonstrated motion might require
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all the degrees of freedom (DOF) of a robot, replicating the
relevant part of the task, i.e., the relative orientation between
the robot and the workpiece, usually requires fewer DOFs,
thus making the robot functionally redundant [5]. In the case
of functional redundancy, the Jacobian is often a full rank
matrix, i.e., its null space does not exist, which prevents the
application of standard redundancy resolution schemes [6].

Direct copying of finishing operations from human demon-
strators to industrial robots is—in most cases—not successful
due to the different kinematic and dynamic capabilities of
humans and industrial robots. This is called the correspon-
dence problem [7]. In this article, we propose a novel approach
to address this problem by applying a virtual mechanism
methodology. We model machine tools as virtual robotic
mechanisms and treat the robot and the machine tool as a
bimanual robot. Even though the degrees of freedom of the
virtual mechanism are not controlled, they are making the
bimanual system redundant with respect to the task, thus
providing additional DOFs that can be used to optimize the
real robot motion.

Another significant but not yet solved problem is how
to reuse previously learned policies and apply them to an
arbitrary combination of industrial robots and machine tools.
Our approach supports performing the same demonstrated
task with different combinations of robots and machine tools
without changing the Cartesian space task execution.

Finally, the developed framework supports iterative task
refinement during the task execution to account for possible
calibration errors and compensate for the different dynami-
cal properties of a robot and human demonstrator. We deal
with these differences by applying the iterative learning con-
trol (ILC) paradigm [8] to the bimanual system involving the
robot and the tool.

A. State of the Art in Automation of Finishing Operations

Much effort was made to automate tasks, such as polishing
and grinding with industrial robots [9], [10]. Early attempts
involved simple point-to-point programming and optimization
using trial and error approaches [11], [12]. Besides being
time-consuming, these approaches cannot transfer the learned
policies to different robots and tools. More efficient program-
ming relies on transferring the policy from a skilled operator,
which comprises both kinematic motion and the applied forces
and torques. Various motion capture systems can be used to
acquire such policies in manufacturing tasks, e.g., 3-D optical
trackers [13]–[15] or kinesthetic guidance [3].

Forces and torques exerted on the workpiece during the
finishing operation are important parameters of the finishing
policy. Typically, they are captured during the policy demon-
stration using universal force–torque sensors, which can be
incorporated either in the polishing/grinding machine [13] or
in special sensorized tools [16]. Yet, another approach is to
perform task demonstrations in a virtual environment with
haptic devices, where the virtual environment is built either
using CAD models or online using additional sensors, such
as laser scanners [17]–[19]. However, finishing processes are
generally very complex and require precise tuning of many
process parameters in order to achieve the desired final quality.

In a recent research effort, Ng et al. [13], [18], [20] proposed
an advanced programming by demonstration approach for
finishing operations. It is based on recognizing the operator’s
skills using key process variables and generating the appro-
priate robot motion from a predefined skills library, optimized
for the robot, rather than transferring the operator’s motion
patterns directly.

The analysis of previous research on automation of finish-
ing operations shows that, unlike our work, none of them
utilizes the virtual mechanism approach. Consequently, these
approaches cannot deal with the correspondence problem as
effectively as the methodology proposed in this article.

An early version of our work was presented in a conference
paper [21]. Here, we introduce several significant theoretical
and practical improvements to this initial approach. We opti-
mized the performance of the bimanual robot by appropriately
weighting the joints of the virtual mechanism in the redun-
dancy resolution scheme and present an improved algorithm
for computing the joint motion of the virtual mechanism and
the robot. A convergence proof for the algorithm used to
determine the contact point between the tool and the workpiece
has also been provided. Finally, we address the correspondence
problem of PbD and explain how to accomplish policy transfer
between different tools and robots.

II. POLICY DEMONSTRATION MEASUREMENT SYSTEM

The first step in our approach is the demonstration of
the task policy, where the required movements, forces, and
torques are demonstrated by a skilled operator. To be able
to capture both the movements and the arising forces and
torques, we built a custom learning device using a passive
six-axis mechanical digitizer (MicroScribe G2LX6). The end
link of the digitizer is attached to a specially designed handle,
which incorporates a universal force–torque sensor (Dyn Pick
WDF-6M200-3). The handle allows the operator to move the
attached workpiece along with the machine tool, which is
placed at the fixed position in space. This setup is shown
in Fig. 1, where the operator demonstrates the polishing of
a faucet handle.

The demonstrated motion is captured as a set of points in
the Cartesian space calculated from the digitizer joint angles

G = {p1,k, q1,k, tk}T
k=1. (1)

Here, p1,k ∈ R
3 are the tool positions and q1,k ∈ S3

are the unit quaternions describing the tool orientation, with
S3 denoting the unit sphere in R

4. T is the number of samples,
and tk is the time at sample k. The force–torque sensor built
into the handle is used to capture the applied forces along the
demonstrated trajectory

F = {Fk, Mk , tk}T
k=1 (2)

where Fk, Mk ∈ R
3 are the measured forces and torques at

times tk . They are measured in the tool coordinate frame,
which must be aligned with the force–torque sensor coordinate
system, but we transform the measurements to the robot base
coordinate frame as most of the calculations are performed in
this frame.
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Fig. 1. Learning by demonstration setup for polishing/grinding. In some
cases, it is necessary to wear protective gloves and mask during the demon-
stration process.

III. DESCRIBING THE TASK WITH A BIMANUAL

ROBOT AND VIRTUAL MECHANISM

The success of a finishing operation does not depend on
where precisely the contact between the machine tool and the
workpiece occurs; it only matters that the workpiece touches
the tool with the demonstrated orientation. Although the robot
needs 6 DOFs to exactly replicate the demonstrated motion,
fewer DOFs are needed to keep the contact of the workpiece
with the tool at the desired orientation. Thus, the robot is
functionally redundant. This redundancy arises from the shape
of the tool because the workpiece can touch the tool at any
position on the tool’s surface.

To exploit this situation, we propose to model the machine
tool as a serial kinematic chain, here called a virtual mech-
anism. The joints of the virtual mechanism define the point
where the treated object held by a robot touches the machine
tool. In order to represent the robot and the virtual mechanism
in a unified system, we describe the resulting kinematic system
as a bimanual robot [22] consisting of the real robot and
the virtual mechanism. Only the relative coordinates of the
bimanual setup are important for the accomplishment of the
desired task. Fig. 2 shows an example where the robot and the
polishing machine are modeled as a bimanual system.

With this setup, the overall system becomes kinematically
redundant in a standard definition of redundancy even though
the robot itself is not. Thus, standard redundancy resolution
schemes [23] can be applied to the resulting bimanual system,
where the redundant DOFs can be used to optimize the robot
joint space motion, e.g., by minimizing the joint velocities or
by avoiding the joint limits, singularities, and collisions.

The relative position and orientation of end-effectors of a
general bimanual robot are defined as follows [22]:

pr = q̄1 ∗ (p2 − p1) (3)

qr = q̄1 ∗ q2 (4)

where p1, p2 ∈ R
3, q1, q2 ∈ S3 are the position vectors

and quaternions that, respectively, describe the position and

Fig. 2. Polishing machine and the robot are modeled as a bimanual system.
The common coordinate frame is placed at the robot’s base. p1 and p2 are
the vectors, respectively, describing the position of the robot and the virtual
mechanism. pr denotes the relative coordinates that define the task.

orientation of the end-effectors of the two robot arms. Here,
q̄ denotes the quaternion conjugate, and * denotes the quater-
nion product. In our setup, the bimanual system consists of
the industrial robot arm and the virtual mechanism describing
the tool.

To compute the desired relative Cartesian motion pr , qr ,
we need to know both the Cartesian space robot motion
p1, q1 and the virtual mechanism configurations p2, q2. The
Cartesian space robot motion, as defined in (1), is obtained
by human demonstration. In Section IV, we explain how to
compute the corresponding virtual mechanism configurations.

To control the robot in relative coordinates, we must be
able to compute the relative Jacobian Jr = [ J�

r,p J�
r,ω ]� ∈

R
6×n1+n2 , where n1 and n2 denote the number of degrees of

freedom of the robot and the virtual mechanism, respectively,
and Jr,p and Jr,ω denote the position- and orientation-related
parts of the relative Jacobian. The relative Jacobian maps the
joint velocities θ̇θθ of the bimanual setup onto the associated
relative velocities in Cartesian space.

Let us denote the position and orientation parts of the
robot’s geometric Jacobian as J1 = [ J�

1,p J�
1,ω ]� ∈ R

6×n1

and the geometric Jacobian of the virtual mechanism as
J2 = [ J�

2,p J�
2,ω ]� ∈ R

6×n2 , where both kinematic chains are
expressed in a common coordinate system. We selected the
real robot base coordinate system as the common coordinate
system. The relative Jacobian can then be derived from (3)
and (4) as follows [22]:

Jr =
[

R�
1 (−J1,p + S(p2 − p1)J1,ω) R�

1 J2,p

−R�
1 J1,ω R�

1 J2,ω

]
(5)

where R1, R2 ∈ R
3×3 are the rotation matrices corresponding

to quaternions q1 and q2, and S(p2−p1) is the skew-symmetric
matrix

S

⎛
⎝

⎡
⎣ x

y
z

⎤
⎦

⎞
⎠ =

⎡
⎣ 0 −z y

z 0 −x
−y x 0

⎤
⎦ . (6)
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Fig. 3. Polishing disk is modeled as two rotational degrees of freedom
mechanism, where l1 and l2 are link lengths, θ1 and θ2 are the joint
coordinates, and c∗ and s∗ are the abbreviations for cos(θ∗) and sin(θ∗),
respectively. ζζζ is the directional vector of the last link.

Fig. 4. Grinding disk is modeled as a two degrees of freedom mechanism,
where r is the disk radius and θ and dy are the joint coordinates, respectively.

In the above derivation, we focused on the case when a robot
manipulates a workpiece. In this case, the robot represents
one arm of the bimanual mechanism and the machine tool
the second arm. Another possibility is that the machine tool
is mounted on the robot, and the workpiece is positioned
at a fixed location. In this case, we can augment the robot
links with the virtual links of the machine tool, and the
overall system can be treated as one robot arm. In this
article, we concentrate on the first setup, which results in the
above-described bimanual system.

A few examples of how to form the virtual mechanisms and
the corresponding Jacobians are given in Section III-A.

A. Example Virtual Mechanisms

Some examples of the kinematic structure and the corre-
sponding Jacobians for the most common machine tools are
shown in Figs. 3–5. For the sake of simplicity and clarity,
the tool kinematics is presented in the machine tool coordinate
system. However, our approach requires that all entities are
expressed in the robot base coordinate system. The mapping
from the tool to the robot base coordinate system is given by
the following formulas: p2 = Rt p̃2 + pt , R2 = Rt R̃2, J2,p =
Rt J̃2,p, J2,ω = Rt J̃2,ω, and ζζζ = Rt ζ̃ζζ , where tilde denotes the
tool coordinates and pt and Rt are the position and orientation
of the machine tool base in the robot base coordinate system,
respectively. The position pt and orientation Rt must be
carefully determined by a calibration procedure to ensure the
operation of the complete system.

Fig. 5. Flat belt grinder is modeled as a two translational degrees of freedom
mechanism with coordinates dy and dz .

Fig. 6. Curved belt grinder is modeled as two degrees of freedom mechanism
with coordinates dy and l. Coordinate l denotes the distance on the belt from
the origin. The kinematic description of a compound mechanism is divided
into zones Zi . For sake of simplicity, only two zones are presented here.

More complex virtual mechanisms can be derived by com-
bining these three basic shapes. One such case is shown
in Fig. 6. Note that none of these virtual mechanisms has
a kinematic singularity.

IV. ONLINE ESTIMATION OF THE CONTACT POINT

USING FORCE–TORQUE MEASUREMENTS

The position of the tool center point of the virtual mecha-
nism, which is needed to compute the relative coordinates of
the bimanual system (3), is equal to the position of the contact
between the treated workpiece and the machine tool. If precise
mathematical models were available, the contact points could
be determined using geometrical relations between the robot,
workpiece, and machine tool [20]. While the robot’s kinematic
model and the model of the machine tool are usually available,
this is often not the case for the workpiece models, especially
in low batch size production. In such cases, the contact
point cannot be calculated geometrically. Here, we propose
an optimization-based approach to estimate the contact point
from the measured forces and torques.

The idea to exploit force–torque measurements for the
determination of contact points is not new. Bicchi et al. [24]
investigated the contact point identification in the context
of object recognition. Kitagaki et al. [25], [26] proposed
to determine a pseudocontact point to detect contact state
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Fig. 7. Finding the contact point by computing the intersection/closest
point of the line r(α) with the machine tool (in this case grinding disk).
All quantities are given in the robot base coordinate system.

transitions. The problem of online contact point estimation was
also considered in [27] and [28], where an adaptive controller
was proposed to solve the problem. Liu et al. [29] studied
contact status perception between two objects involved in
the simultaneous precision assembly of multiple objects. The
evaluation of contact forces has also recently been used to
identify successful snap-fit assemblies [30].

External forces and torques acting on the end-effector are
related by the cross product with position vector r

M = r × F = −S(F)r = −
⎡
⎣ 0 −Fz Fy

Fz 0 −Fx

−Fy Fx 0

⎤
⎦ r (7)

where r denotes the vector from the end-effector to the contact
point. Keep in mind that all these quantities are given in
the robot base coordinate system, matrix S(F) ∈ R

3×3 is
skew-symmetric; hence, its rank is equal to 2 ∀S(F) �= 0.
Consequently, there exist multiple solutions for r satisfy-
ing (7). The space of all possible solutions forms a line defined
by the following equation (see Fig. 7):

r(α) = −S(F)+M + αv (8)

where S(F)+ denotes the pseudoinverse of S(F), α ∈ R is an
arbitrary scalar value, and v = F/‖F‖ ∈ R

3 belongs to the
null-space of −S(F) (since −S(F)v = (F/‖F‖) × F = 0).

To avoid the computation of the pseudoinverse of S(F),
we can use an alternative formulation

r(α) = (F × M)/‖F‖2 + αv. (9)

The proof of equivalence of both formulations is given in
Appendix A.

Thus, the point of contact cannot be uniquely determined
unless additional restrictions are imposed. Assuming that the
geometry of the machine tool is known, e.g., disk, torus,
or belt, we can restrict the solution to lie at the intersection of
the line with the tool. The contact point can then be determined
by solving the following optimization problem (see Fig. 7):

arg min
θθθ2,α

1

2
‖d(θθθ2, α)‖2 (10)

where

d(θθθ2, α) = p2(θθθ2) − r(α) (11)

is the difference function between an arbitrary point on the
line r(α) and an arbitrary point p2(θθθ2) on the surface of the
machine tool, which is modeled as a virtual mechanism with
joints θθθ2.

To solve the optimization problem (10), we need to calculate
the Jacobian of the difference function d(θθθ2, α)

Jd(θθθ2, α) = [ J2,p(θθθ2) −v ] (12)

where J2,p is the positional part of the Jacobian of the virtual
mechanism. We can then apply Gauss–Newton iteration to
compute the optimal α∗ and joints θθθ∗

2 of the virtual mechanism[
θθθ2, j+1
α j+1

]
=

[
θθθ2, j

α j

]
− J+

d (θθθ2, j , α j )d(θθθ2, j , α j ). (13)

We prove, in Appendix B, that the Gauss–Newton iteration is
guaranteed to find the solution of optimization problem (10)
provided that the procedure is given a good enough initial
estimate. This is always the case because the contact point
changes continuously and the solution at the previous time
step is known.

To objectively evaluate the performance of the proposed
method, ATI Delta universal force–torque sensor was mounted
under the grinding machine, as shown in Fig. 8. The contact
point was precisely measured with the mechanical digitizer
MicroScribe G2LX6. We performed a few typical grinding
movements and compared the contact points measured by
Microscribe with the contact points estimated by the proposed
algorithm. The experiment was carried out both with the
grinding machine turned on and off. When the grinding
machine was running, the measured forces were filtered with
the zero-lag Rauch–Tung–Striebel filter. Fig. 8 shows that the
estimated contact point is more accurate when the machine
is switched off and when the error is in the range of a few
millimeters. However, the contact point estimated with the
grinding machine switched on is not far off. We conclude
that it is better to demonstrate the task when the grinding
machine is switched off, but the contact points estimated when
the grinding machine is ON are also useable.

V. TRACKING OF THE DESIRED RELATIVE MOTION

Using the approach described in Section IV, we can aug-
ment the demonstrated motion (1) with the corresponding
virtual mechanism coordinates

{p2,k, q2,k, tk}T
k=1. (14)

The demonstrated motion (1) can then be transformed into
the relative motion of the demonstrator with respect to the
machine tool using (3) and (4) and the recorded data (14)

{pr,k, qr,k , ṗr,k ,ωωωr,k , p̈r,k , ω̇ωωr,k , tk}T
k=1. (15)

The relative position and orientation velocities ṗk, ωωωk and
relative accelerations p̈k, ω̇ωωk are computed from the relative
positions pr and orientations qr using numerical differentia-
tion. These data are needed to compute an effective task policy
representation for robot control.

Thus, instead of directly following the human demonstrator
motion (1), we propose to track the relative motion as specified
by the data set (15). In the following, we first describe how
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Fig. 8. Top: experimental setup for evaluation of the contact point estimation.
The contact point is estimated: 1) by mechanical digitizer and 2) from the
measured force–torque data. Force sensor was mounted under the base of the
brush machine. Bottom: contact point calculated from force–torque data using
the Gauss–Newton iteration (blue and red line) is close to the one measured
by the digitizer (black line). The blue line refers to the online estimation with
the grinding machine switched off and the red line to the filtered estimation
with the grinding machine switched on.

to compute a suitable representation for the Cartesian space
relative motion and then how the actual robot motion can be
generated.

A. Policy Representation Using Dynamic Movement
Primitives Framework

For efficient application and to enable online policy adap-
tation, it is important that trajectories are represented in a
compact form. We have chosen dynamic movement prim-
itives (DMPs) [31] for this purpose, modified to facilitate
nonuniform speed scaling [32]. Furthermore, we make use of
Cartesian space DMP representation proposed in [33]. Thus,
the Cartesian space trajectory is encoded by the following
system of nonlinear differential equations for positions p and
orientations q:

ν(s)τ ż = αz(βz(gp − p) − z) + fp(s) (16)

ν(s)τ ṗ = z (17)

ν(s)τη̇ηη = αz(βz2 log(go ∗ q) − ηηη) + fo(s) (18)

ν(s)τ q̇ = 1

2
ηηη ∗ q (19)

ν(s)τ ṡ = −αss. (20)

In the above set of equations, s denotes the phase, τ is the
duration of the policy, and z and ηηη are auxiliary variables.
With the proper selection of parameters, e.g., αz = 4βz > 0
and αs > 0, the system (16)–(20) becomes critically damped
and converges to the unique equilibrium point at p = gp,
z = 0, q = go, ηηη = 0, and s = 0. Asterisk ∗ denotes
quaternion multiplication and q̄ the quaternion conjugation.
The quaternion logarithm log : S �→ R

3 is defined as

log(q) = log(v, u) =
⎧⎨
⎩arccos(v)

u
‖u‖ , u �= 0

[0, 0, 0]T, otherwise.
(21)

It maps the quaternion difference calculated as q1 ∗ q2 to the
corresponding angular velocity needed to rotate quaternion q2
to quaternion q1 in unit time.

The nonlinear forcing terms fp(s) and fo(s) are formed in
such a way that the response of the second-order differen-
tial equation system (16)–(20) can approximate any smooth
point-to-point trajectory from the initial position ppp0 and
orientation qqq0 to the final position gp and orientation go. The
nonlinear forcing terms are defined as linear combinations of
M radial basis functions (RBFs)

fp(s) =
∑M

i=1 wi,p
i (s)∑M
i=1 
i (s)

s (22)

fo(s) =
∑M

i=1 wi,o
i (s)∑M
i=1 
i (s)

s (23)


i (s) = exp(−hi (s − ci )
2) (24)

where free parameters wi,p, wi,o determine the shape of
position and orientation trajectories, M is the number of basis
functions, and ci are the centers of RBFs, evenly distributed
along the trajectory, with hi being their widths. In this formu-
lation, we introduced the temporal scaling function ν(s), which
is used to specify nonlinear variations from the demonstrated
speed profile. It is defined as follows:

ν(s) = 1 +
∑Mv

i=1 vi
i (s)∑Mv
i=1 
i (s)

(25)

where vi are the free parameters (weights) and Mv is the
number of basis functions.

In order to parameterize the demonstrated control policy
with a DMP, the weights wi,p and wi,o need to be calculated
and also the parameters gp, go, and τ need to be determined.
The shape weights wi,p and wi,o are calculated by applying
standard regression techniques [33], using the demonstrated
relative trajectory (15) as the target for weight fitting. The
other parameters are simply set as follows: gp = pr,T , go =
qr,T , and τ = tT − t1. We initially set vi = 0, i.e., ν = 1,
meaning that the demonstrated speed profile is left unchanged.

Unlike motion trajectories, the forces do not need to gener-
alize the goal value. Therefore, we simply encode the recorded
forces as a linear combination of radial basis functions

F(s) =
∑MF

i=1 wi,F 
i (s)∑MF
i=1 
i (s)

(26)

where 
i are defined as in (24) and wi,F ∈ R
3 are computed

from data (2) using regression techniques.
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B. Tracking of the Relative DMPs

Given the relative Cartesian motion of the robot and the vir-
tual mechanism as specified by the DMP, the joint values θθθ of
both can be obtained using resolved rate motion control, which
is a standard Jacobian-based control scheme for tracking the
desired end-effector motion at the specified velocity without
having to compute inverse kinematics. In this control scheme,
the joint velocities of the bimanual system are calculated by
the following formula:

θ̇θθ = J+
W,r

([
ṗr,DMP
ωωωr,DMP

]
+ Kker

)
+ (

I − J+
r Jr

)
θ̇θθ0. (27)

Here, er ∈ R
6 is the error between the desired relative

coordinates and the actual relative coordinates

er =
[

pr,DMP − pr

2 log(qr,DMP ∗ q̄r )

]
(28)

and the subscripts ()r and ()r,DMP denote the actual relative
coordinates and the desired relative coordinates computed
by the DMP, respectively. θ̇θθ0 denotes the null space joint
velocities that are used to optimize the self-motion of the
bimanual mechanism. Kk ∈ R

(n1+n2)×(n1+n2) is the positive
definite diagonal matrix with kinematic controller gains. J+

W,r
is the weighted pseudoinverse of the relative Jacobian Jr

calculated as

J+
W,r = W−1JT

r

(
Jr W−1JT

r

)−1
. (29)

The weighting matrix W ∈ R
(n1+n2)×(n1+n2) is a diagonal

positive-definite matrix. Its function is to individually scale
the robot and the virtual mechanism velocities. By setting
the coefficients belonging to the virtual mechanism to higher
values, one can diminish the velocity of changing the contact
point between the machine tool and the treated object.

The algorithm returns both joint values of the real robot θθθ1
and joint values of the virtual robot θθθ2, θθθ = [θθθ�

1 ,θθθ�
2 ]�. Only

the robot joints θθθ1 are, of course, used to control the robot.
Virtual joints θθθ2 can be used to detect and limit excessive
rotation of the virtual mechanism, which could sometimes
cause collisions with the environment. Note that the weighted
pseudoinverse (29) minimizes the joint velocities and, thus,
inherently avoids singularities. If the system, nevertheless,
approached a singular configuration, this could be resolved
by optimizing the null-space velocities in (27).

VI. ADAPTATION USING ITERATIVE LEARNING CONTROL

In finishing tasks, forces exerted against the machine tool
are the key process parameters [18] and should be pre-
cisely tracked in order to achieve the desired quality of the
demonstrated finishing operation. Unlike in assembly opera-
tions, torques are usually not relevant in finishing operations.
By tracking the demonstrated forces, we can also eliminate
small calibration errors that accumulate during the transfer of
the captured trajectories to the robot mechanism.

Tracking of the demonstrated forces is especially demanding
with faster movements, which often arises during the finishing
operations. Typically, a skilled operator moves at much higher
speeds than what an average industrial robot is capable of

tracking [20], [34]. To overcome this problem, Ng et al. [13],
[20] proposed to scale the desired velocities and forces, as well
as all other relevant process parameters, e.g., grinding belt
speed or disk speed. Unfortunately, it is not straightforward to
relate force and speed scaling.

Note that the mechanical digitizer used to capture expert
demonstrations in our system already compels the operator
to use slower movements during the task demonstration. The
demonstrated velocities are, thus, generally below maximal
robot velocities. Nevertheless, the problem of accurate force
tracking remains. In the following, we propose to apply
learning to address this issue. We ensure accurate tracking
of the demonstrated forces by applying the ILC framework.
In the past, ILC was, for example, successfully applied for
edge chamfering operations [35].

A. Adaptation Framework

ILC is often used in robotics due to its simplicity, effec-
tiveness, and robustness when dealing with repetitive tasks,
such as finishing operations. It is particularly effective when
the robot follows a similar trajectory repeatedly and updates
the underlying parameters in order to perfect the skill. The
general aim of ILC is to improve the behavior of the control
system by learning the feedforward compensation signal [8]
from control errors in previous execution cycles. In this work,
the feedforward compensation signal was chosen as an offset
to the demonstrated position trajectory. It is learned in such a
way that it minimizes the errors between the demonstrated and
the actually applied forces. To achieve this aim, ILC updates
the desired relative robot positions as follows:

pr,DMP,l(tk) = pr,DMP(tk) + �pk,l + Kpζζζ k‖ek,l‖ (30)

�pk,l = Q(�pk,l−1 + Lp,lζζζ k‖ek+1,l‖) (31)

where k is the sampling step on the trajectory, k = 1, . . . , T ,
l is the iteration index of ILC, and ek,l = Fk −Fk,l is the force
tracking error, where Fk are the desired forces as recorded
during user demonstration (2) and Fk,l are the actually applied
forces at ILC iteration step l. pr,DMP(tk) are the demonstrated
relative positions encoded with a DMP. Orientations, however,
remain unchanged, i.e., as demonstrated. In the above equa-
tions, Kp, Lp,l ∈ R

3×3 are positive definite diagonal matrices
with control gains on the diagonal. Q denotes discrete-time
low pass filter and provides the learning stability [36]. ζζζ k ∈ R

3

is the unity vector, which determines the direction of force
adaptation. This vector coincides with the normal to the tool
at the point of contact with the treated part [35], [37]. It is
obvious that, in all our virtual mechanism formulations, this is
the direction of the end link of the virtual mechanism. It can be
easily calculated from the virtual joints θθθ2, which are anyway
computed in (27) at each time step (look for the examples
of vector ζζζ calculated for the most common grinding tools
in Figs. 3–5). The updated term �pl provides the learned
feedforward compensation signal.

The proposed update rule (30) is a variant of
current-iteration force control [8]. Our approach differs
from the more usual formulations, where forces are tracked
along each direction in tool coordinates. Due to sensor noise
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and high-force measurements arising from the contact of the
workpiece with the tool, we obtain far better results when
applying force adaptation only in a single direction, here
described with vector ζζζ . Note that vector ζζζ is not affected by
the force sensor noise and vibrations, as it is calculated from
the task policy.

Another difference is in the current-iteration force con-
troller. In most of the admittance force controllers, force
error is related to the velocity and not to the position,
as shown in (30). The former formulation is more appropriate
in schemes without learning. However, in ILC-based schemes,
the position-based current-iteration force control (30) is more
appropriate, as it has no stability issues and can learn feedfor-
ward compensation signals more effectively [38].

The learned compensation signal and the tracking error from
the previous cycle are encoded as a linear combination of
RBFs in exactly the same way as the demonstrated forces.
This has several benefits: 1) more compact representation of
trajectories reduces computer memory requirements; 2) we can
apply speed scaling of trajectories and control signals provided
by speed scaled DMPs framework; and 3) we can omit
filtering, i.e., we can set Q = 1, since the appropriate filtering
is provided by encoding control signals with DMPs [39].

The proposed learning framework can account for calibra-
tion errors and generally improves the overall performance
of the demonstrated policy. However, it cannot compensate
for random errors resulting, for example, from variations in
the geometry of the workpieces. These types of deviations
can be compensated by the DMP phase-stopping technique,
as proposed in [38]. When there is a large deviation between
the measured and the demonstrated force, we slow down the
execution of the task by means of nonuniform speed scaling
factor ν(s) in (16)–(20). This way we provide enough time
for the impedance force controller to adapt.

VII. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

In this section, we outline the implementation of the
proposed framework for finishing operations, evaluate its per-
formance, and demonstrate the policy transfer between differ-
ent combinations of robots and machine tools. The overall
framework architecture is presented in Fig. 9. Within this
architecture, the skills, robots, and machine tools descriptions
are stored and can be reused to program other workcells. It can
be implemented on any robot that allows the execution of
free-form Cartesian space trajectories. The developed architec-
ture has another benefit. Once the Cartesian space trajectory
has been downloaded to the robot controller, the robot can be
controlled in real time and adapt the learned skill using phase
stopping and ILC.

Experimental evaluation was performed on the system
shown in Fig. 10 consisting of the following components:

1) policy demonstration system described in Section II;
2) six degrees of freedom industrial robot MOTOMAN

MH6 equipped with force sensor Dyn Pick WEF-
6A100-30 and controlled by MOTOMAN DX100
controller;

3) seven degrees of freedom collaborative robot Franka
Emika Panda;

Fig. 9. Block scheme of the implemented framework.

Fig. 10. Two experimental workcells for polishing and grinding.
(a) Experimental workcell with Yaskawa MOTOMAN MH6 robot, polish-
ing/grinding machine, and policy demonstration system. (b) Experimental
workcell with Franka-Emika robot and flat belt polishing machine.

4) workcell control unit consisting of an industrial PC;
5) polishing/grinding machine with a polishing and grind-

ing disk;
6) curved belt grinder;
7) flat belt polishing machine.
The workcell control unit handles the programming by

demonstration process and calculates contact points and
relative coordinates from the demonstrated motion. Next,
it encodes the relative motion as a DMP and the arising forces
as a linear combination of RBFs. Redundancy resolution (27)
is also implemented on the main control unit. It is performed
in simulation and generates a suitable robot joint trajectory
to perform the desired task. The robot joint trajectory is then
mapped to the Cartesian space trajectory, encoded as a DMP,
and downloaded to the robot controller. Transformation to
the Cartesian space is necessary to enable online trajectory
adaptation. The robot then executes the computed DMP pol-
icy, handles phase stopping, and provides for the force and
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Fig. 11. Workpiece to be polished. The dotted line presents the polishing
trajectory.

Fig. 12. Image sequence showing the task execution without processing the
demonstrated motion with the proposed redundancy resolution scheme. The
execution failed due to the violation of joint limits.

Fig. 13. Image sequence showing the task execution with the proposed
redundancy resolution scheme. The robot executed the task successfully.

trajectory tracking using impedance control law. The con-
trollers were implemented for the MOTOMAN MH6 robot
(using Yaskawa MotoPlus C library) and Franka Emika Panda
robot (using the FrankaLib C library in ROS environment).

To evaluate the effectiveness of the proposed framework,
we demonstrated a faucet polishing trajectory and executed
it with and without exploiting the functional redundancy of
the task with the virtual mechanism. The task was to polish
the edge of the faucet handle along the trajectory, as shown
in Fig. 11. The initial task was demonstrated on the rotary
polishing machine, as described in Section V-A.

We first performed the demonstrated task with the
MH6 robot on the polishing machine with round polishing
brushes. Without exploiting functional redundancy, the robot
was not able to perform the demonstrated trajectory since the
execution violated the joint limits, as shown in the image
sequence presented in Fig. 12. On the other hand, when
the demonstrated trajectory was processed by the proposed
redundancy resolution approach, the robot avoided the joint
limits and successfully executed the task, as shown in Fig. 13.

Fig. 14. Graphs of the executed robot joint trajectories. Top: executed
trajectories generated without using the proposed redundancy resolution
scheme. The robot stopped after 3.2 s as it violated the joint limits. Bottom:
executed trajectories generated by the proposed redundancy resolution scheme.

Fig. 15. Norm of the difference between the applied and the demonstrated
forces in five adaptation cycles. Note that the error is significantly reduced
after five iterations.

The resulting robot joint trajectories for both cases are shown
in Fig. 14. Note that, without VM, the robot stopped after 3.2 s
due to the violation of the joint limits.

Fig. 15 shows policy adaptation on the rotary polisher using
the trajectory generated by the proposed redundancy resolution
scheme. After five adaptation cycles, the robot substantially
reduced the error between the demonstrated and the mea-
sured forces. Note that the implemented redundancy resolution
approach minimizes the joint velocities, which additionally
improves force tracking.

In the next experiment, we moved the grinding machine
to several different locations within the robot’s workspace
and performed the same grinding task at each new location.
We did not change the orientation of the grinding machine
with respect to the robot, nor did we change the height of
the base. The aim of the experiment was to evaluate how
effective the virtual mechanism approach is at enlarging the
area in the robot’s workspace where the desired finishing
operation can be successfully performed. Besides observing
whether or not the robot could perform the given task at each
location, we also measured the maximum joint speeds arising
during the task execution. The results are shown in Fig. 16.
They clearly show that the area in which the robot can
successfully accomplish the task is much larger when the
virtual mechanism approach is used. In addition, the maximum
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Fig. 16. Changing the location of the grinding machine with respect to
the robot. The robot was placed at the center of the workcell. Empty circles
denote the grinding machine locations where the robot failed to execute the
demonstrated finishing operation. The color of the filled circles reflects the
peak joint speed necessary to execute the task.

Fig. 17. Image sequence showing task transfer to a different tool. The robot
executed the task successfully.

joint speeds were much lower in this case. This also means that
with the virtual mechanism approach, we can perform more
complex movements, treat more complex workpieces, and use
machine tools of different geometrical forms.

The next experiment shows the task transfer, where we
utilized the same robot, but a different tool. The virtual
mechanism of the curved belt grinder has rather complex
kinematics, as shown in Fig. 6. Fig. 17 depicts the image
sequences showing the resulting robot motion. Note that the
task was executed successfully without needing a new user
demonstration. The corresponding joint trajectories are plotted

Fig. 18. Graphs of the executed robot joint trajectories. Compared with
Fig. 14, the demonstrated task policy was the same, but the polishing tool
was different.

Fig. 19. Robot joint trajectories for the same task executed on the
belt grinding machine with and without applying the virtual mechanism
approach. The legends refer to the robot joints.

Fig. 20. Robot joint velocities for the same task executed on the belt grinding
machine with and without applying the virtual mechanism approach. The
legends refer to the robot joints.

in Fig. 18. They are different from the trajectories in Fig. 14
due to the differences in the geometry of both machine tools.

The final experiment dealt with policy transfer to another
robot and machine tool. The machine tool, in this case, was
the flat belt grinder. Its kinematics is shown in Fig. 5. Again,
we utilized the same policy demonstration, but, this time,
the task was performed by a seven DOF robot arm Franka
Emika Panda. The redundancy resolution scheme generated
the position at the top of the belt and moved the contact
point along the belt during the policy execution. As the robot
is intrinsically redundant, the benefit of augmentation with
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the virtual mechanism is less evident in this case. Namely,
also with a fixed point on the belt, the robot could suc-
cessfully accomplish the task. However, with the proposed
approach, the task was executed with smaller joint velocities.
The resulting joint trajectories and joint velocities are shown
in Figs. 19 and 20, respectively.

Videos of all experiments are available as a Supplementary
Material to this article.

VIII. CONCLUSION

In this article, we proposed a new approach to learning
finishing operations by demonstration. Several important nov-
elties were introduced in the proposed framework.

1) Using the virtual mechanism concept, the functional
redundancy of the robot can be exploited so that only
the relevant part of the demonstrated motion is repro-
duced. The system becomes redundant even though the
applied robot only has six degrees of freedom. With the
proposed approach, the robot can reproduce the demon-
strated motions that would be outside of the robot’s
workspace if the robot just played back the demonstrated
trajectories.

2) We developed a new optimization approach to estimate
the contact point and the virtual mechanism coordinates
of the tool from the measured forces and torques. A geo-
metrical model of the workpiece is not needed, which is
an important advantage in many industrial applications.

3) The tracking accuracy of the force controller is enhanced
by applying ILC, which is further improved by per-
forming adaptation in the direction determined by the
orientation of the virtual mechanism and by applying
the phase stopping mechanism.

4) The presented methodology enables efficient policy
transfer between different combinations of robots and
machine tools without requiring additional user demon-
strations. This is because: 1) the acquired task policy
is represented as the Cartesian space DMP, which is
independent of the robot; 2) the proposed augmentation
of the robot with the virtual mechanism and the associ-
ated redundancy resolution scheme greatly improves the
chance that the demonstrated task can be reproduced by
the robot; and 3) the iterative learning control allows the
robot to alter the motion and compensate for differences
in the dynamic models of different robots and tools.

An immediate benefit of the proposed approach is that the
actual finishing policy is optimized, taking into account the
kinematic and dynamic capabilities of the robot rather than
the human operator. Another advantage is that the robot can
modify the trajectory online to compensate for the wear and
tear of the tools. Furthermore, the application of the virtual
mechanism approach enables the robot to perform more com-
plex movements and reduces the possibility of encountering
joint limits. Finally, the robot can perform different tasks at
lower joint speeds, which improves the tracking accuracy both
in terms of the trajectory and the applied forces and torques.

In our experiments, we captured the policy performed by
a skilled operator using the mechanical digitizer, as explained
in Section II. It is possible to demonstrate finishing operations

also with other approaches, e.g., by kinesthetic guiding a col-
laborative robot operating in the zero gravity mode. However,
most industrial robots still do not support kinesthetic guidance.
The approach with mechanical digitizer enables learning of
finishing operations by human demonstration also for standard
industrial robots. Comparing the two approaches, the mechani-
cal digitizer has lower inertia and, thus, enables a more natural
demonstration of finishing operations. Kinesthetic guidance,
on the other hand, has the advantage of directly gathering
the joint space robot trajectories, thus avoiding the problems
arising from joint limits and singularities when converting
Cartesian space motion to the robot joint space motion.

We performed a few hundreds of different polishing
and grinding experiments. The results of our experiments
show clear advantages of the proposed redundancy resolution
scheme based on the virtual mechanism approach. Without
using the proposed approach, the robot was unsuccessful
in performing about half of the demonstrated tasks, but
they could all be successfully performed with the proposed
approach. We did not encounter any example where the
proposed approach would degrade the performance.

The main objective of our research was to enable effec-
tive imitation of finishing operations demonstrated by human
experts. It is, however, clear that real finishing operations
in industrial environments require the acquisition of several
different finishing policies, which must be automatically com-
bined and sequenced to treat different workpieces successfully.
Another important aspect not considered in this work is the
material removal control, which is tightly connected with the
finishing technology. It is far from straightforward to control
material removal during robotic finishing operations. These
issues are left for future investigations.

APPENDIX A
EQUIVALENCE OF TWO FORMS FOR THE

ESTIMATION OF THE CONTACT POINT

To prove the equivalence of formulations given by (8)
and (9), it is necessary to show

−S(F)+M = F × M
‖F‖2 . (32)

We start with the cross product of forces F and torques M,
substitute M with r × F, and apply the formula of the triple
cross product

F × M = F × (r × F) = (F�F)r − (F�r)F

= ‖F‖2r − (F�r)F. (33)

Inserting r from (8) into (33) yields

F × M = −‖F‖2S(F)+M + ‖F‖2αv

+ (F�S(F)+M)F − (F�αv)F. (34)

The last term in the above equation can be rearranged as
(F�αv)F = α(F�F/‖F‖)F = α‖F‖2v; thus, the second term
cancels the fourth one.

Since S(F)F = −F × F = 0, F belongs to the null
space of S(F). Using SVD decomposition, it is possible to
prove that, for any matrix, the null space of its pseudoinverse
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is equal to the null space of its transpose. Since S(F) is
skew symmetric, it holds S(F)� = −S(F); thus, the null
space of the pseudoinverse of a skew symmetric matrix is
equal to the null space of the original matrix. It is, therefore,
true that S(F)+F = 0, and consequently, (F�S(F)+M)F =
(−(S(F)+F)�M)F = 0, which proves the relation (32).

APPENDIX B
STABILITY AND CONVERGENCE OF GAUSS–NEWTON

ITERATION FOR CONTACT ESTIMATION

The Gauss–Newton iteration is in general not guaranteed
to converge. In this section, we prove its convergence for
contact point estimation using the Lyapunov stability theory.
The proof is based on the observation that solving optimization
problem (10) by the Gauss–Newton iteration (13) is equivalent
to solving the following differential equation system:[

θ̇θθ2
α̇

]
= −J+

d (θθθ2, α)d(θθθ2, α) (35)

where the difference function d(θθθ2, α) and its Jacobian
Jd(θθθ2, α) ∈ R

3×(n2+1) are defined as in (11) and (12),
respectively.

Recall that, according to the Lyapunov stability theorem,
a dynamical system of the form (35) is locally asymptotically
stable at the point (θθθ∗

2, α
∗) if there exists a continuous and

continuously differentiable Lyapunov function V (θθθ2, α) : B ⊂
R

n2+1 �→ R such that

a) V (θθθ2, α) > 0 ∀(θθθ2, α) ∈ B ⊂ R
n2+1, (θθθ2, α) �= (

θθθ∗
2, α

∗)
b) V̇ (θθθ2, α) < 0 ∀(θθθ2, α) ∈ B ⊂ R

n2+1, (θθθ2, α) �= (
θθθ∗

2, α
∗)

c) V
(
θθθ∗

2, α
∗) = 0, V̇

(
θθθ∗

2, α
∗) = 0. (36)

Note that, in all our examples, the number of degrees of
freedom of the virtual mechanism n2 = 2 and the virtual
mechanism has no kinematic singularities.

Let us define the following Lyapunov function candidate:
V = 1

2
d(θθθ2, α)�d(θθθ2, α). (37)

Note that condition a) is fulfilled by the definition of the
candidate function (37), provided B does not contain any other
solution besides (θθθ∗

2, α
∗). Since we assume that the workpiece

is in contact with the tool, there always exist parameters
(θθθ∗

2, α
∗) so that the difference vector d(θθθ∗

2, α
∗) = 0; thus,

V (θθθ∗
2, α

∗) = 0.
To prove conditions b) and c), we next compute the deriv-

ative V̇

V̇ = d(θθθ2, α)�ḋ(θθθ2, α)

= d(θθθ2, α)�(J2,p(θθθ2)θ̇θθ2 − α̇v) (38)

= d(θθθ2, α)�
(

Jd(θθθ2, α)

[
θ̇θθ2
α̇

])
= −d(θθθ2, α)�Jd(θθθ2, α)J+

d (θθθ2, α)d(θθθ 2, α) (39)

where (38) is obtained by computing the derivative of differ-
ence vector (11), while (39) follows if we replace [θ̇θθ�

2 , α̇]�
with the expression given in (35). The matrix JdJ+

d is positive
definite provided that Jd(θθθ2, α) has full rank. In this case,

the derivative of the Lyapunov function V is negative, i.e.,
V̇ < 0. Thus, condition b) also holds since there is no
singularity in the virtual mechanism in the parameters subset
B, in particular at solution (θθθ∗

2, α
∗). It follows from (39) that

V̇ (θθθ2, α
∗) = 0 if d(θθθ∗

2, α
∗) = 0. Thus, condition c) is also

fulfilled.
The above derivation proves that the differential equa-

tion (35) is locally asymptotically stable. This means that if we
start the iteration close enough to the solution, the parameters
obtained by the Gauss–Newton iteration are guaranteed to
converge to the solution (θθθ∗

2, α
∗).
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