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Abstract— This article proposes a confidence-based approach
for combining two visual tracking techniques to minimize
the influence of unforeseen visual tracking failures to achieve
uninterrupted vision-based control. Despite research efforts
in vision-guided micromanipulation, existing systems are not
designed to overcome visual tracking failures, such as inconsistent
illumination condition, regional occlusion, unknown structures,
and nonhomogenous background scene. There remains a
gap in expanding current procedures beyond the laboratory
environment for practical deployment of vision-guided microma-
nipulation system. A hybrid tracking method, which combines
motion-cue feature detection and score-based template matching,
is incorporated in an uncalibrated vision-guided workflow
capable of self-initializing and recovery during the micromanip-
ulation. Weighted average, based on the respective confidence
indices of the motion-cue feature localization and template-based
trackers, is inferred from the statistical accuracy of feature
locations and the similarity score-based template matches.
Results suggest improvement of the tracking performance using
hybrid tracking under the conditions. The mean errors of
hybrid tracking are maintained at subpixel level under adverse
experimental conditions while the original template matching
approach has mean errors of 1.53, 1.73, and 2.08 pixels. The
method is also demonstrated to be robust in the nonhomogeneous
scene with an array of plant cells. By proposing a self-contained
fusion method that overcomes unforeseen visual tracking failures
using pure vision approach, we demonstrated the robustness in
our developed low-cost micromanipulation platform.
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Note to Practitioners—Cell manipulation is traditionally done
in highly specialized facilities and controlled environment.
Existing vision-based methods do not readily fulfill the need for
the unique requirements in cell manipulation including prospec-
tive plant cell-related applications. There is a need for robust
visual tracking to overcome visual tracking failure during the
automated vision-guided micromanipulation. To address the gap
in maintaining continuous tracking for vision-guided microma-
nipulation under unforeseen visual tracking failures, we proposed
a purely visual data-driven hybrid tracking approach. Our
proposed confidence-based approach combines two tracking
techniques to minimize the influence of scene uncertainties,
hence, achieving uninterrupted vision-based control. Because of
its readily deployable design, the method can be generalized for a
wide range of vision-guided micromanipulation applications. This
method has the potential to significantly expand the capability
of cell manipulation technology to even include prospective
applications associated with plant cells, which are yet to be
explored.

Index Terms— Cell manipulation, robot vision systems.

I. INTRODUCTION

THE importance of robotic micromanipulation system is
well evidenced in its contribution toward the advance-

ment of micromanipulation technology. Apart from more
common industrial applications in microassembly and fabrica-
tion [1]–[3], the field of cell manipulation also benefits from
the development of robotic micromanipulation system [4], [5].
Robotic micromanipulation benefited cell manipulation appli-
cations with speed, repeatability, and ease of the operation.

The vision-based control is an effective approach for robotic
cell manipulation leveraging visual sensing from the micro-
scope to control the manipulator. This vision-guided manipu-
lation approach combines pure visual sensing and servoing to
automate cell manipulation tasks. The advantage is that it is
a self-contained framework without the need for an external
active source of sensing other than the visual information from
the microscope imaging system, which is a typical component
in cell study. Such an approach may also catalyze a promising
breakthrough in contactless visual servo control for force
regulation in microinjection [6].

Apart from the importance of robotic vision-guided micro-
manipulation, this work is also motived by the existing gap in
addressing visual tracking failure. The development of vision-
based control in cell manipulation for general deployment
is mainly restricted by the need for specialized equipment
and system calibration beyond the user level. In addition,
susceptibility to unforeseen visual tracking failures restricts
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general deployment outside the laboratory environment. All
these factors result in a gap in the development of robotic
vision-guided micromanipulation including unprecedented
applications such as plant cell manipulation [7]–[11].

With the advancements of plant micropropagation, there is
increased popularity for plant cell manipulation. Plant genetic
transfer has been widely adopted in the areas of plant improve-
ment, disease elimination, and production of secondary
metabolites [12]. Microinjection is considered to be one of
the most efficient techniques for genetic transformation. It has
also shown potential in the applications, such as isolation of
high-yielding plant genotypes with stress tolerance and disease
resistance capability [7]. The production of novel recombinant
proteins influenced by the genetic plant transform has opened
up new horizons in the pharmaceutical industry. Plant-derived
medicinal substances are becoming increasingly popular due
to lower production costs, absence of human pathogens, and
the ability to assemble complex proteins precisely [13].

Despite research efforts [14]–[16], including our own
work [17], in developing a robust vision-guided system for cell
manipulation, many of the methods are designed to work under
a controlled environment. Unlike processes in microassembly,
typical cell manipulation procedures rely highly on manual
operation. Although automated procedures and microma-
nipulators exist, they usually require a tediously calibrated
setting and controlled imaging environment. It is challenging
to model the general tasks for autonomous execution in cell
manipulation due to the procedure-specific complexity, which
includes unstable lighting conditions, regional occlusion
of the tracking region-of-interest (ROI), artifacts, unknown
specimen geometries, and unpredictable tool-specimen
interaction.

To overcome the problem of the unforeseen visual tracking
failures, this work proposes a hybrid tracking method based on
confidence measures derived from the selected visual trackers.
In this work, we leverage previously developed motion-cue
and template-based tracking workflow to maintain an uncali-
brated [18], self-initializing [19], and self-recovery [20] track-
servo approach while complementing the development with
the ability to combat unforeseen visual tracking failures, which
is not yet addressed in our previous work.

The contribution of this work is a confidence-based hybrid
tracking method combining motion-cue feature detection and
similarity score-based template matching. Unlike the existing
work, there is conceptually no need for excessive specification
of imaging conditions, tracking requirements, or prior mod-
els of the physical setup through calibration. This approach
overcomes problems in conventional visual tracking asso-
ciated with the mentioned unforeseen visual uncertainties.
Uninterrupted visual tracking can, therefore, achieve visual
servo without prior scene assumptions. This concept can
also be generalized for other vision-guided systems with
little or no assumption about the imaging scene. While our
long-term research goal works toward the holistic development
of a self-contained automatic vision-guided system, this work
focuses on the aspect of overcoming visual tracking failures.
Fig. 1 shows the embodiment of our low-cost calibration-less
vision-guided micromanipulation systems.

Fig. 1. Low-cost portable vision-guided micromanipulation system.

In Section II, we review the related work in vision-
guided micromanipulation systems to identify the limitations
in existing methods. A detailed discussion of the proposed
confidence-based hybrid tracking is presented in Section III
followed by the experimental setup and evaluation procedures
in Section IV. Section V covers the results and discussion of
the experiment. Finally, the article concludes by reiterating
the contribution and some remarks on the future work in
Section VI.

II. RELATED WORK

This section reviews related work in vision-guided micro-
manipulation systems discussing the limitations of existing
methods in the context of cell manipulation. The discussion
justifies the motivation of this work by expounding on the
gap in existing state-of-the-art development for vision-guided
micromanipulation.

While there has been extensive research and development
in vision-guided micromanipulation [14]–[16] over the past
decade including highly sophisticated automatic end-effector
tip locating method [21], current practices for cell manip-
ulation continue to rely highly on manual operations [22].
This could be due to the challenges involved in integrat-
ing the microscopic vision and micromanipulator control.
A typical integration procedure between the microscope vision
sensing and manipulator motion actuation involves calibra-
tion [23]–[29]. This is a procedure that establishes the map-
ping function between the coordinates of the imaging sensor
domain and the actuation task space [30], [31].

To facilitate versatile deployment and portable setup of
vision-guided micromanipulation, we have been developing
a self-contained framework [17] that exploits the uncal-
ibrated [18] vision-guided manipulation to achieve self-
initialization [19] and ease of deployment. It is self-contained
in a sense that there is no need for an external active source of
sensing other than the visual information from the microscope,
which is already in place for most cell manipulation proce-
dures. However, existing visual tracking techniques are still
susceptible to tracking disruption during visual servo, hence,
motivating the exploration of a robust visual tracking method.

Our earliest vision-guided manipulation system uses tem-
plate matching as a unified approach to achieving 2-D tracking
and 3-D servoing of the tool tip [18]. The deviation from
the focal plane is inferred from the similarity score change
in the matching process. The similarity score-based depth
compensation controls the depth of the tip from the camera.
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Fig. 2. Incorporating tracker fusion in the workflow of our autonomous
vision-guided micromanipulation.

Without prior calibration, this mechanism maintains the tip in
the focal plane as it moves toward a target.

Our second work further improves on the automation
workflow by integrating the detect-focus-track-servo (DFTS)
algorithm [19]. This is a self-initializing workflow that
detects and focuses the tool tip automatically. This framework
relieves users from the tedious process of manually locating
and focusing the tool tip. The previously mentioned
unified track-servo framework then performs vision-guided
manipulation. This workflow is graphically summarized by
the first two layers of the flowchart shown in Fig. 2. Without
the self-initializing function, the operation requires manual
localization and focusing before a base template can be
obtained. The second layer essentially represents the unified
track-servo method that tracks the tip in 2-D images and
performs 3-D manipulation under the microscope.

To complete the automated workflow, we combine visual
tracking and servoing of the tool with automatic image-
based detection of specimens. The third layer of the flowchart
shown in Fig. 2 depicts this component. The detection and
recognition of specimen is an interesting topic for automated
cell micromanipulation. We have previously demonstrated
image-based detection and tracking of the micropipette and
blastomere for preimplantation genetic diagnosis (PGD) [32].
The image-based recognition of the embryo structure for
automatic microinjection on immobilized zebrafish embryo is
also demonstrated by Wang et al. [16].

Despite the development in vision-guided robotic micro-
manipulation systems, including [18] and [19], a bottleneck
remains in the issue of visual uncertainties during cell imaging.
Existing visual tracking methods [33], [34], which use low-
level features, do not directly solve the problem of unforeseen
visual disturbance for micromanipulation. Recently, advances
in supervised learning approaches demonstrate an effective
solution to combat visual tracking failure [35]–[37]. However,
visual servo applications require low computational cost
less computationally intensive tracking of low-level features.
Hence, we designed a self-reinitialization and self-recovery
method for uninterrupted visual tracking under tool-specimen
interaction [20]. This method uses specially designed
heuristics to identify the appropriate tracking mode to use
based on the detected geometry and location of the specimen
using our cell detection method [32]. However, using known
conditions to switch tracking mode has limited contribution

toward the robust vision-guided manipulation. This approach
limits the method from extending to more general scenarios,
including deformable scene uncertainties and scene cluttering
especially in applications that are associated with multiple
cells or array of plant cells [8]–[11]. Our recent work on
homography-based self-calibration for micromanipulation in
plant cells attempts to address the latter problem [38], [39].
While the method is effective against visual disturbance,
it assumes a homography transformation relationship between
the image and manipulation plane. The performance may
be subjected to adverse effects of mechanical uncertainty,
especially when cell imaging is done at high magnification.
A more generalized observation-based approach from a fusion
of visual trackers is needed.

By formalizing a combined hybrid tracking approach based
on the consistency of estimated potential locations, tracking
is more robust against unforeseen uncertainties including
artifacts and cluttered nonhomogenous background scene.
The formalized method addresses the gap identified in the
above discussion while maintaining the relevance to existing
vision-based control methods. This is especially relevant to
biomedical applications, such as embryo biopsy, blastomere
isolation or PGD [40]–[42], and prospective plant cell manip-
ulation applications [8]–[11], where the imaged scene could
be challenging for visual tracking due to the nonhomogenous
scene with an array of irregular cell dimensions. To build the
provision for autonomous vision-guided robotic cell micro-
manipulation, there is a need to overcome unforeseen visual
tracking failures.

III. CONFIDENCE-BASED HYBRID TRACKING

A. Conceptual Overview

The heart of our proposed solution toward overcoming
unforeseen tracking failures is a confidence-based hybrid
tracking method. This method encompasses the concept of
confidence measures and the weighted averaging of the track-
ers. The selected tracking methods include motion-cue feature
detect and similarity score-based template match, as intro-
duced in Section II. As the two trackers are complementary
in their sensitivity toward the spatial and temporal variability,
fusing estimations from the two trackers provides robustness
against unforeseen visual tracking failures, such as regional
occlusion of tracking target and nonstatic background due to
the unstable illumination. In essence, a normalized weight vec-
tor (ŵv ŵu), comprising the confidence measures associated
with the respective trackers, is used to obtain the weighted
average of the estimates (xv xu) where x is a vector (xy)T

in image coordinates. Subscript v and u are used to associate
motion-cue feature detect and template match, respectively.
The selected confidence measures are expressed as a function
of the statistical precision of the potential locations estimated
by the two trackers. The weight vector is finally normalized
such that the elements sum up to unity.

1) Leveraging Existing Development: The trackers are cho-
sen to leverage our previous development of a self-initializing
track-servo workflow in an automatic vision-guided microma-
nipulation system. The motion-cue feature detection estimates
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Fig. 3. Role of the hybrid tracking for fusing motion-cue and template-based
trackers in autonomous vision-guided manipulation.

the position of a moving tool tip during the initialization
by extracting low-level features from a difference image of
two temporally adjacent image frames without the need for
manual indication of a template. Subsequent tracking is done
by score-based template matching that provides concurrent
depth compensation for visual servoing in the 3-D workspace.
While this article is self-contained in discussing the proposed
hybrid tracking method, interested readers may refer to our
previous work for more details on how the motion-cue feature
detection achieves self-initialization and the novel design of
the template-based unified track-servo algorithm in the DFTS
workflow [19].

2) Enhancing Vision-Guided Micromanipulation: The pro-
posed hybrid tracking technique integrates seamlessly into
our automated vision-guided micromanipulation system [17]
including recent work on self-reinitialization and recov-
ery [20]. The role of the hybrid tracking is illustrated in the
flowchart, as shown in Fig. 3.

The hybrid tracking technique utilizes motion-cue track-
ing in initialization and recovery phase while combining
the template-based tracking for the track-servo task via a
confidence-based fusion. This is achieved through the vector-
ization of the tracking certainty that can be mathematically
incorporated into the automated workflow. The mathematical
representations of the confidence measures and the fusion
procedure using weighted averaging are further explained in
Sections III-B and III-C).

B. Confidence Measure From Statistical Precision

The confidence measures are represented by the reciprocal
variance of potential tool tip locations based on: 1) the
motion-cue feature detection and 2) the score-based template
matching. The statistical precision indicates how certain the
trackers are about their estimates. The reciprocal of variance
in potential positions of the tool tip is an attribute that is
associated with the spatial consistency by comparing images
at adjacent temporal intervals via two tracking approaches.

1) Reciprocal Variance of Low-Level Feature Locations:
The prenormalized confidence measure wv of the motion-cue
feature detection is represented by the reciprocal variance,

i.e., statistical precision

wv = 1

σ 2
v

= N

/[
N∑
i

(xi − x̄)2 +
N∑
i

(yi − ȳ)2

]
(1)

of N feature locations (x, y) with variance σ 2
v in a given

difference image

I�(x, y) = Ik(x, y) − Ik−1(x, y) (2)

between temporally adjacent image frames, Ik and Ik−1. Sub-
sequent operation of motion-related features will be processed
in the difference image I�.

Potential locations of the tracked tool tip can be represented
by a feature in the form of an interest point that exhibits strong
intensity gradient in more than one direction. These interest
points can be detected using the Harris corner detector [43]
with the corner response function written as follows:

C = det(S) − α · trace2(S) (3)

where α is a tunable parameter while S is the structure tensor
of the sum-of-square-difference (SSD)

D(x, y) =
P∑
p

Q∑
q

[I�(p, q) − I�(p + x, q + y)]2 (4)

of the patch I centered on (p, q) and itself when shifted (x, y).
Although only the furthest feature from the origin is taken as
the tip position, the N points associated with the top values of
C are considered potential locations. The closer these points
cluster, the more likely they are associated with the moving
tip in the difference image I�. Hence, the confidence measure
of the motion-cue tracker can be obtained using these points
with (1).

2) Reciprocal Variance of Template Matches: In a similar
fashion, the prenormalized confidence measure wu of the
template match tracking can be inferred from the variance in
locations of the potential template matches. These potential
locations are determined by the top N similarity scores N
of patches compared to a reference base template. For an
image Ik in Frame k, the similarity between a base template
g(p, q) and the regional image f (p, q) is represented by the
normalized cross-correlation coefficient

U =
P∑
p

Q∑
q

〈G〉〈F〉
/⎡

⎣
⎛
⎝ P∑

p

Q∑
q

〈G〉2

⎞
⎠

⎛
⎝ P∑

p

Q∑
q

〈F〉2

⎞
⎠
⎤
⎦

0.5

(5)

where 〈G〉 = (g(p, q) − ḡ) and 〈F〉 = f (p + x, q + y) −
f̄ (x, y). Notation ḡ and f̄ are the mean intensity in the P × Q
template and the overlapping patch, respectively.

The similarity score is an important measurement in our
existing vision-guided workflow. It provides the feedback
signal for depth compensation in the 3-D workspace and a
means to determine the image coordinates of the tool tip that
is associated with neighborhood intensity of high U values.
It plays an important role in the vision-based control of our
robotic micromanipulation platform [17]. The image coordi-
nates with neighboring pixels associated with the highest U is
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TABLE I

PSEUDOCODE FOR ADAPTIVE COMPENSATION

the estimated location obtained by template matching, which
is subsequently used to update the visual servo loop for x- and
y-axes. The z-axis of the manipulator is adjusted concurrently
in a gradient ascending fashion during the manipulation to
maximize U during visual servoing.

Table I is a pseudocode showing the tip motion compensated
in the z-direction by �z resulting in a change in score �U
to converge to a preset tolerance tol. This depth compensation
method has then been demonstrated effectively in previously
proposed workflow [19] and portable micromanipulation plat-
form [17]. The difference here is an end-loop condition,
“Suspend_Z==True” when the tool and cell interact [20].

This work further utilizes the similarity score U to
obtain potential template matches. The reciprocal variance of
N potential matches is used to infer the confidence measure
of the estimates in this tracking process. As U reflects the
similarity between a given patch in the image compared with
the template to be tracked, we express the prenormalized
confidence measure

wu = U∑
Uk

1

σ 2
u

= Û
1

σ 2
u

(6)

that is, the product of a normalized score Û and the reciprocal
variance. where �Uk is the summation of scores of the N
potential template locations. Together with wv, this confidence
measure forms the prenormalized weight vector for the fusion
process to be discussed in Section III-C.

C. Fusion via Normalized Weighted Averaging

Our hybrid tracking method is essentially a weighted aver-
aging of the two spatial localization estimates derived from
the motion-cue feature detection and score-based template
matching in each temporal image frame. For a pair of estimates
(xv, xu), the normalized weighted average of the estimates is
expressed as follows:

x̂tip = (
ŵv ŵu

) (
xv xu

)T
. (7)

The normalized weight vector in terms of the variance is

(
ŵv ŵu

) =
(

σ 2
u /Û

σ 2
v + σ 2

u /Û

σ 2
v

σ 2
v + σ 2

u /Û

)
. (8)

Fig. 4. Image processing techniques and fusion process of hybrid tracking
for autonomous vision-guided manipulation.

Hence, the weighted average is expressed as follows:

x̂tip =
(

1 − σ 2
v

σ 2
v + σ 2

u /Û

)
xv + σ 2

v

σ 2
v + σ 2

u /Û
xu. (9)

For the above equation to be valid, the variances of both
the trackers cannot be zero at the same time. To deal with
such ambiguity of choice in the trackers, we incorporate a
logic check to only perform fusion when the main tracker
produces variance greater than a predetermined value, σmin.
Hybrid tracking will not be present in instances where both
trackers have variances that are close to zero as can be
observed in some parts of the attached media file. As our
vision-guided manipulation uses template matching for 3-D
vision-based control, motion-cue tracking is regarded as the
auxiliary tracker that refine the estimation when σu ≥ σmin.
The value σmin can be determined by the user depending on
the imaging condition. Since the minimum division of the
measurement is a pixel, setting σmin = 1 would generally give
the two trackers almost equal priority.

The weighted average used as a feedback to execute motion
command defined by the planned trajectory. Unlike existing
fusion techniques [44], [45], our proposed fusion process
requires no referencing of past frames or assumptions of
motion. This makes the localization estimate in each frame
independent of previous error and less susceptible to unfore-
seen visual tracking failures. Fig. 4 shows the fusion process
and image processing techniques for the hybrid tracking.

D. Overcoming Visual Tracking Failures

The proposed hybrid tracking method provides a formal
framework for the fusion of trackers to overcome scene-
or event-related tracking failures. The former could be due
to the unstable illumination, partial occlusion of artifacts,
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nonhomogenous scene, and irregularity in target geometries.
A solution for the latter problem has been demonstrated
previously [20] using an event-based approach to logically
toggles between trackers for self-reinitialization and recovery.
However, this previous method assumes known information
about the workflow and target geometry. The current proposed
hybrid tracking method is a generalized approach for overcom-
ing visual tracking failure due to the following two factors.

1) Failure in Event-Related Visual Disturbance: For event-
related disturbance such as tool-cell interaction and deforma-
tion of the cell, the hybrid tracking method, based on statistical
precision, naturally rectify the erroneous motion tracker in
favor of template-based tracking. This complementary fusion
approach is in contrast to our previous self-reinitialization
and recovery method, which uses competitive fusion based
on known events and prior knowledge of the cell geometry.
By integrating the current proposed method, which is purely
observation-driven, tracking failures could be avoided even
when geometrical and foreseeable event-based prior knowl-
edge are absent.

In [20], the location and dimension of a cell specimen can be
automatically computed to predict occlusion and deformation
to switch between the tracking modes. This approach addresses
the problem of tool-cell interaction, which gives rise to a
specific visual disturbance during cell manipulation but not
for general unforeseen uncertainties.

In a tracking application for embryo biopsy [32], we detect
and localize circular embryonic specimen using circle Hough
transformation [46]. The Cartesian coordinates of potential
feature points extracted using Canny edge detection [47] are
mapped to their respective loci in the Hough space. The radius
and location of the circle are determined based on overlapping
counts of the loci. The square of the nominal radius of a circle
is expressed as follows:

R2
cell = (i − xcell)

2 + ( j − ycell)
2 (10)

where (i, j) and (xcell, ycell) are the image coordinates of
the potential feature points and the image coordinates of the
specimen center, respectively. A conical surface locus can be
formed by plotting all the possible values of (xcell, ycell, Rcell)
associated with a particular feature point (i , j). By further
discretizing the Hough space with voxels, the number of
counts they coincide with a locus indicates the vote from
the potential feature points on a particular Hough space coor-
dinates, i.e., circle’s parameters. For a specimen of nominal
radius Rcell and centered at (xcell, ycell), the extent of occlusion
on a ROI centered at (xroi, yroi) by the specimen can be
expressed as follows:

Ox = (Rcell + Rroi) − ∥∥(
xcell, ycell

)′ − (
xroi, yroi

)′∥∥ (11)

where Rroi is the radius of the circle that circumscribes the
ROI. Cell deformation is indicated by the condition

(Rcell + �) − ∥∥(
xcell, ycell

)′ − (
xroi, yroi

)′∥∥ > 0 (12)

where � is a contact margin that is introduced to control
the sensitivity in deformation detection. The observation of
the geometrical parameters (Rcell, Rroi) is shown in Fig. 5.

Fig. 5. Parameters associated with the assumed geometrical models.

The error in localization when using a fixed template and
tracked using motion cues detection without recovery is
47 (=0.59 mm) and 12 pixels (=0.15 mm), respectively.
When self-reinitialization and recovery are used, the error
is 9 pixels (=0.11 mm), is reduced by more than fivefold.
This is a reduction from more than 50% to less than 10%
of the specimen size. For a more detailed discussion, readers
may refer to the self-reinitialization and recovery approach
proposed previously [20] under known target and an assumed
event sequence.

The unification of the statistical hybrid tracking method and
the previous event-based conditional approach of known cell
geometry does not affect the operation during the microma-
nipulation procedure. They can be implemented in a common
vision-based control system for robust visual tracking. In the
event when assumed geometrical models in the scene like
the dimension of the cell are detected, imminent tool-cell
interaction and its extent could be predicted for a competitive
fusion of the trackers based on logical conditions.

In the absence of known geometries detected, as in the case
of cluttered arrays of plant cells, complementary fusion based
on the statistical precision sets in for the tracking operation.
The case of unknown geometry and nonhomogenous scene is
further expounded in Section III-D2.

2) Failure in Nonhomogeneous Scene: Visual tracking is
problematic in tracking objects in cluttered or nonhomoge-
neous background. It is very common for plant cells to be in
arrays of multiple layers where boundaries are not distinctively
defined. These unknown irregular geometries make it very
difficult to predict tool-cell interaction, as shown in Fig. 6.
Because the cells come in varying sizes, these irregular geome-
tries are challenging for visual tracking.

The hybrid tracking method can automatically weight each
tracker even when the scene involves the presence of an
array of a plant cell as demonstrated in Section V. Our
previous method [20], which is based on known geometries
and imaging condition, cannot handle such an application.
Nevertheless, the hybrid tracking method can be combined
with prior information about the manipulation task seamlessly.

By formalizing a fusion technique with our proposed con-
cept of confidence measures based on the observation data,
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Fig. 6. Visual uncertainties in images of Elodea plant cells.

we improve the decision-making process in the weighted
averaging of the trackers, uninterrupted by unforeseen dis-
turbance. This approach facilitates the extension of a more
generalized context including plant cell application as will be
demonstrated in experiments in Section V. Interested readers
may also refer to a previous work related to the plant cell
application using homography-based approach for online self-
calibration [38], [39].

IV. EXPERIMENTAL STUDY

A. Conditions

The experiments were conducted to evaluate the tracking
performance of motion-cue feature detect, score-based tem-
plate match, and hybrid tracking under different conditions.
These working conditions include unstable illumination and
the presence of regional artifacts. A control study is also
carried out to observe the tracking performance of a trajectory
free of the two mentioned sources of influence. The validation
on the nonhomogenous scene with plant cell application is also
demonstrated with the complete visual track-servo workflow.
The goal of the experiments is to evaluate and demonstrate
the ability of the hybrid tracking to overcome unforeseen
visual tracking failures using our developed vision-guided
micromanipulation platform.

B. Setup

The experiments are performed using a portable micro-
manipulation platform developed in [17]. Fig. 7 shows the
physical setup of the portable micromanipulation platform for
two different orders of magnification. For experiments on plant
cells at 900× magnification, a second micromanipulator arm
for the slide holder is installed to automatically focus the
specimen. The setup is an implementation of the embodiment
of our research vision toward a self-contained portable low-
cost micromanipulation system. Because of the self-contained
portable nature of the design, experiment on a wide range of
dimensions can be readily set up.

Micromanipulation is executed using an actuated Cartesian
micromanipulator (8MT173; Standa Ltd., Vilnius, Lithuania)

Fig. 7. Experimental setup and system with a portable digital microscope.
Mode A (left) with a magnification 20×–50× for the animal cell.
Mode B (right) with a magnification of 900× for the plant cell.

with a resolution of 1.25 μm/step and a working range
of 20 mm in each axis. The motion control is performed using
a dedicated controller (8SMC4; Standa Ltd) that interfaces
with a host computer through USB. The manipulation speeds
for the experiments are 62.5 μm/s unless specified otherwise.
A USB digital microscope (AM7013MZT Dino-Lite, AnMo
Corporation, New Taipei City, Taiwan) is used to acquire
microscope images at a rate of 30 frames/s. This portable
USB microscope camera has a 5-Megapixel CMOS image
sensor. Its magnification options consist of a continuous range
of 20×–50× and a separate option for 200×. The portable
microscope also comes with built-in illumination with an
adjustable polarizer.

To demonstrate the plant cell application, a microscope
with a continuous magnification range of 700×–900×
(AM4515T8 Dino-Lite Edge Series, AnMo Corporation) is
used. For the experiment on plant cells, a fixed magnification
factor of 900× is used to acquire clear images of both plant
cells and microneedle. The same motion control system is used
with a speed of 12.5 μm/s for vision-guided micromanipula-
tion because of the higher order of magnification.

V. RESULTS AND DISCUSSION

The performance of hybrid tracking, in comparison with
the two original trackers, is presented and discussed in this
section. The extent of adverse influence on the performance
of visual tracking is observed by intentionally varying the
illumination conditions and including regional artifacts. The
former results in the unpredictable intensity distribution in
the scene while the latter leads to an unforeseen regional
occlusion. Both conditions are common in the deployment
of the portable microscope in an uncontrolled environment,
which is in alignment with our research vision toward ubiq-
uitous micromanipulation beyond the laboratory setting. Our
analysis covers qualitative observations as well as quantitative
evaluations of the tracking data. A demonstration of the hybrid
tracking method for automated vision-guided micromanipula-
tion on nonhomogenous plant cell array is also presented to
demonstrate this potentially useful application, which has yet
to be investigated.

A. Qualitative Observation

Based on visual observation, we can identify discrepancies
in the localization results of the respective tracking methods.
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Fig. 8. Robust against unstable lighting with hybrid tracking. (a) Under
illuminated. (b) Over illuminated.

Fig. 9. Hybrid tracking robust against artifact. (a) Tool approaching artifacts.
(b) Surrounded by artifacts.

Qualitative discussion based on the visual inspection is pre-
sented in this section to justify the observations.

1) Unstable Scene Illumination: Fig. 8 shows the annotated
screen captures of microscope images with the tool tip tracked
during micromanipulation. The built-in illumination source of
the microscope is continuously varied to artificially replicate
the unstable lighting condition. It can be observed that the
template match and motion-cue feature detect fail to localize
the tip accurately shown in Fig. 8(a) and (b), respectively.

Hybrid tracking reduces the error as can be seen in both
screen captures. As the two basic trackers are susceptible to a
different type of visual tracking failure, hybrid tracking weighs
the nonfailing tracker selectively to produce an effective accu-
rate estimate.

2) Regional Occlusion of ROI: The regional occlusion
occurs when tracking ROI got partially disturbed by artifacts.
In this study, fabric and inkblot artifacts are intentionally
introduced to the scene, as shown in Fig. 9. These artifacts
act as regional occlusions that undermine the tracking perfor-
mance of template matching. All three tracking approaches can
tolerate slight partial occlusion of ROI, as shown in Fig. 9(a).
However, the template match is susceptible to occlusion in
the vicinity of the tracked tip, as shown in Fig. 9(b). The per-
formance of motion-cue feature detection (red ROI), as shown
in Fig. 9, is not at all affected by the regional occlusion as these
artifacts are stationary in the scene. Unless the artifact occludes
the tracked tip completely, tracking remains reliable using
motion-cue feature detect. Under this occlusion condition,
hybrid tracking again demonstrated the ability to rely highly
on the right tracking method as observed.

3) Unstable Illumination and Regional Occlusion: Fig. 10
shows a situation when both motion-cue feature detect and
template match were subjected to adverse influence concur-
rently. The moving specular lighting on the specimen in the
scene negatively influenced the motion-cue feature detection
and at the same time, partially occludes the ROI for the

Fig. 10. Unstable illumination with the presence of regional occlusion.
(a) Difference image for feature detect. (b) Microscope image with tool tip
tracked.

Fig. 11. Tracking linear paths on the order of ABCD; all three tracking
methods produce the same measurement.

template match. Hybrid tracking was, however, able to reduce
the error to a better estimate.

Based on a conservative evaluation, even at times when both
trackers perform poorly, hybrid tracking will not be worse
than the poorer performing tracker. However, determining the
weaker tracker in unforeseen disturbance is nontrivial. There
is, therefore, a need for a statistical method like the pro-
posed hybrid tracking to autonomously weight each tracker’s
influence based on their confidence measures. This operation
does not require camera calibration or robot-camera hand-eye
calibration.

B. Quantitative Evaluation

In this section, we quantitatively evaluate the tracking per-
formances based on a specified trajectory that consists of four
linear path segments under three different imaging conditions,
namely: 1) controlled condition; 2) unstable illumination by
varying lighting; and 3) regional occlusion with artifacts.
To analyze the tracking performance isolated from the servo
task, visual tracking is performed offline.

1) Controlled Condition: In the controlled condition,
the built-in lighting of the portable microscope is kept constant
with ambient lighting unpredictability isolated using our test
rig shown in Fig. 7. All three tracking methods are tested in
this controlled scene condition. The tracked paths produced
by the three approaches are similar, as observed in Fig. 11.

The tracking error is quantified by measuring the geo-
metric error of the estimated positions in image coordinates.
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Fig. 12. Tracking error under controlled scene; the mean errors of each
method are marked by corresponding color lines on the chart.

Fig. 13. Tracking linear paths (ABCD) with unstable illumination; template
match failed mainly at D; feature detect has erratic errors.

This geometric error is the shortest distance of the estimated
position to the known linear path in pixels executed by a
programmed linear trajectory of the manipulator. The straight-
line path can be derived from the path joining the centroid of
the stationary initial points read over multiple frames and that
of its final stationary positions.

Fig. 12 shows the error using the three different tracking
approaches for all four segments of the square trajectory.
The hybrid tracking has the lowest mean error (0.38 pixels).
Both features, detect and template matching, have similar
performances with a mean error of 0.51 pixels and 0.53 pixels,
respectively. This error is insignificant compared to our vision-
based control tolerance of 1 pixel. All tracking methods
produced mean error within subpixel in the controlled scene.

2) Unstable Illumination: The unstable illumination
adversely influences the tracking performance of both motion-
cue feature detect and template matching, as shown in Fig. 13.
However, due to the different nature of the two tracking
methods, they failed in different instances and seldom together,
as shown in the plot. Mistakes in tracking by template match
are mainly continuous and concentrated at path D while most
of the errors from feature detect are erratic and sparse. These
errors can be treated as outliers and removed readily. As this
study focuses on overcoming unforeseen visual tracking fail-
ures, outlier removal methods are not considered. This further
provides a conservative evaluation of the accuracy results.

Fig. 14. Tracking error under unstable illumination; the mean errors of each
method are marked by corresponding color lines on the chart.

Fig. 15. Tracking linear paths (ABCD) with regional occlusion; template
match failed obviously at path B.

Hybrid tracking alleviates the uncertainty by combining the
estimates using the confidence measures and weighted averag-
ing. The failing tracker will naturally have a lower confidence
measure, as explained earlier. Lower confidence measure leads
to the reduced influence on the effective localization of that
particular tracker.

Despite the unstable illumination, hybrid tracking continues
to localize within subpixel accuracy and outperformed the two
individual trackers. Template matching produced a mean error
of 1.53 pixels while motion-cue feature detect results in a mean
error of 0.99 pixels under unstable illumination. However, on
the basis of visual inspection of the error trajectory shown
in Fig. 13, the tracking performance of feature detect is more
inconsistent with erratic deviations from the linear paths. Even
though the cumulative error is smaller relative to that of
template match results, several frames are deviating far out
of the actual path. Fig. 14 suggests that hybrid tracking is
associated with the lowest error (0.89 pixels).

3) Regional Occlusion: The presence of scene artifact
heavily interrupts template matching, as shown in Fig. 15.
The region at path B displayed misalignment in the tracking
results of template matching with the actual linear path. This
is a reasonable observation as regional occlusion disrupts
the template matching process between the base template
and potential match patches directly. It can also be seen that
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Fig. 16. Tracking error under regional occlusion. The mean errors of each
method are marked by corresponding color lines on the chart.

Fig. 17. Tracking linear paths (ABCD) under regional occlusion with digitally
inserted artifacts showing similar tracking error as Fig. 15.

template match was not able to track continuously when the
tool tip is completely blocked by the inkblot at the ending
segment in path A. We can infer that template match is highly
sensitive to regional occlusion.

The hybrid tracking, in this condition, complements the
shortcoming of template match using the confidence-weighted
fusion approach. It can be observed that hybrid tracking spon-
taneously shifted its effective localization toward an estimate
highly-weighted on the motion-cue feature detect method. This
observation demonstrates the ability of the method to recog-
nize weak measurement from a tracker and place favorable
weightage on the other tracker.

Under the influence of regional occlusion, hybrid tracking
continues to maintain a subpixel tracking mean error
of 0.92 pixels while the two basic trackers have mean
errors of 1.02 pixels and 1.73 pixels, respectively, as shown
in Fig. 16. It is obvious that the regional occlusion represented
by background cluttering of ink blob caused a prominent
spike in the error.

To further validate that the observed results for regional
occlusion due to the artifact is repeatable for analysis and
validation, we digitally overlay an artifact on the video data
of a controlled environment to qualitative investigate if the
influence is consistent. Fig. 17 shows the imaging scene with
tracked paths. It can be seen that paths A, B, and C are all
adversely affected by the artifact.

Fig. 18. Image sequence of tracking outcome under unforeseen adverse
visual uncertainties.

C. Demonstrating Robustness in Hybrid Tracking

The hybrid tracking in the automated workflow of vision-
guided micromanipulation for the procedures described in
the experiments is demonstrated in the attached media file.
All three tracking methods, namely: 1) motion-cue feature
detection; 2) score-based template matching; and 3) the hybrid
tracking, are performed in the various conditions, as pre-
sented in the video of the microscopic view during the
micromanipulation. These conditions are investigated in the
scene with: 1) controlled condition; 2) regional occlusion;
3) unstable illumination; and 4) intentional disturbance to
template match. Hybrid tracking always performs better than
the poorest performing tracker and performs the best on
average as demonstrated in by having the lowest mean errors
in all imaging conditions. This shows the robustness of the
method against tracking failures.

Although hybrid tracking may not produce the most accu-
rate localization in certain cases, it is more robust against
tracking failures. This can be shown by the various failure
examples in Fig. 18.

Fig. 18(a) shows the controlled condition where all trackers
are consistent. Regional occlusion shown in Fig. 18(b) result-
ing in the failure of the template-based tracker. This error is,
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however, rectified by hybrid tracking. Fig. 18(c) shows the
image of unstable scene illumination. There is tracking failure
in both template match and motion-cue feature detection. The
tracking is, nevertheless, rectified by hybrid tracking. The
latter only experienced failure in motion-cue detection tracker.
This error is rectified by the hybrid tracking with the tracked
location in compliance with the template match. When an error
is intentionally planted to the template match tracking data,
the method was able to correct it based on autonomously
increasing the weighting for motion-cue detection tracker,
as shown in Fig. 18(c).

The tracking is done at a typical computation speed of
about 20 frames/s. The computational load is dependent on
several conditions including requirements in image resolu-
tion, control precision, error tolerance, etc. These parameters
can be adjusted to lower computational load based on the
user’s specifications accordingly. Combining all the imaging
frames (N = 1360) in the uncontrolled randomized scenes of
visual disturbances, as discussed in Sections V-B2 and V-B3),
we compare the observed errors associated with hybrid track-
ing against that of template matching and feature detection
approach individually. Tracking improvement is observed by
taking the difference between the errors of hybrid tracking and
that of the other two individual trackers. A paired-sample t-test
is performed for each comparison to test if the improvement
of our proposed hybrid tracking is supported by the obser-
vation data statistically. The null hypothesis that there is no
improvement or negative improvement (i.e., improvement ≤ 0)
for template match and feature detection approaches are
rejected at 5% significance interval with p = 0.0059 and
p = 1.41 × 10−27, respectively. Hence, improvements in
hybrid tracking over template matching and feature detection
are supported by the observed data.

D. Validation on Plant Cell Applications

We demonstrate the use of the hybrid tracking on an array
of plant cells to overcome the problem of unforeseen visual
tracking failures in applications where geometries in the scene
are highly irregular and uncertain. Our previous method [20],
which is based on known geometries and imaging condition,
is not able to handle such an application. The haphazard
motion of the micro-organelles including chloroplasts can lead
to the regional occlusion. For validation purpose, the study of
the plant cell application will not involve controlled conditions.
Visual observation and video demonstration (see attached
media) are used for this validation study.

Experiments were conducted to demonstrate the perfor-
mance of the hybrid tracking for onsite plant cell manipulation
studies. A sample of waterweed (Elodea) was used as the plant
cell specimen for the experiments which introduced substantial
regional occlusion with a nonhomogeneous background in the
visual scene. The microscopic images of the scene with the
Elodea cells are shown in Fig. 19. Elodea aquatic plant often
used for aquarium vegetation is rich in chloroplast and has
two layers of cell arrays. Multi-layered cellular structures and
moving micro organelles (i.e., chloroplast) of the Elodea plant
specimen produce a highly complex visual scene.

Fig. 19. (a) and (d) Hybrid tracker consistent with both trackers.
(b) and (c) Hybrid tracker rectifies error in template-based tracking.
(e) and (f) Hybrid tracker rectifies the error in motion-cue tracking.

The irregular geometry and physical uncertainties, as shown
in Fig. 19, limits the use of prior knowledge for modeling.
Unforeseeable interaction makes predicting the dynamics of
plant cells difficult as observed. Hence, micromanipulation
tasks in plant cells deal with more challenging working condi-
tions compared to the manipulation of an isolated single cell,
which is usually the norm for animal/human cell manipulation.
Before being in proximity to the plant cell shown in Fig. 19(a),
the trackers are consistent with one another similar to the
situation of a controlled environment. It can be observed
in Fig. 19(b)–(f) that the hybrid tracking approach represented
by the blue round ROI can rectify tracking errors from
template-based and motion-cue feature detection approach
represented by big green and small red ROI, respectively.

It is worth noting that, like any tracking method, it is
very difficult, if not impossible, to work under all possible
conditions exhaustively. There are specific operating condi-
tions where both trackers might fail. An extreme case, for
example, is the total occlusion. Although beyond the scope
of this work, we investigated the use of motion trajectory
and a homography-based self-calibrating micromanipulation
approach in a separate study [38], [39]. Evaluation of currently
proposed method shows that vision-guided micromanipulation
is viable with our proposed approach, despite using only visual
data. The goal of the proposed method is to contribute toward
existing state-of-the-art. This validation experiments on plant
cells complement our long-term research goal of making cell
manipulation ubiquitous and extending vision-guided micro-
manipulation to be deployed on-the-fly for plant cell studies.

VI. CONCLUSION

In this work, we leverage previously developed motion-cue
feature detect and template-match tracking workflow to main-
tain an uncalibrated, self-initializing, and self-recovery track-
servo approach while addressing the problem of unforeseen
visual disturbance. This work focuses on instantaneous estima-
tion of the trackers, which, unlike existing fusion techniques,
makes no assumption about motion models and noise in the
system.

By proposing a hybrid tracking method to enhance
robustness in our self-contained micromanipulation platform,
we hope to realize a research goal for autonomous vision-
guided cell micromanipulation. While the proposed method
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uses only visual observation for tracking and automated micro-
manipulation, it is a crucial provision to prospective sophis-
ticated micromanipulation applications. Our approach can be
generalized to a much broader application including dealing
with a complicated scene of uncertain physical models and
geometries, such as plant cells, as demonstrated in the exper-
imental studies. Because our method uses low-level features,
the approach may eventually expand to tracking of different
targets for broader application scope. The future work will
investigate the feasibility of other fusion techniques [48]–[50]
that statistically infer better estimates from past observations
and multiple data sources other than pure visual data.
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