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Improving Transferability Between Different
Engineering Stages in the Development of

Automated Material Flow Modules
Daniel Regulin, Thomas Aicher, and Birgit Vogel-Heuser

Abstract— To improve the flexibility and robustness of the
engineering of automated production systems (aPS) in the case
of extending, reducing, or modifying parts, several approaches
propose an encapsulation and clustering of related functions,
e.g., from electrical, mechanical, or software engineering, based
on a modular architecture. Considering the development of these
modules, there are different stages, e.g., module planning or func-
tional engineering, that have to be completed. A reference model
that addresses the different stages for the engineering of aPS is
proposed by the automation markup language (AML). Due to
these different stages and the integration of several engineering
disciplines, e.g., mechanical, electrical/electronic, or software
engineering, information not limited to one discipline are stored
redundantly, increasing the effort to transfer information and
the risk of inconsistency. Although data formats for the storage
and exchange of plant engineering information exist, e.g., AML,
fixed domain specific structures and relations of the information,
e.g., for automated material flow systems (aMFSs), are missing.
This paper presents the integration of a metamodel into the
development of modules for aMFS to improve the transferability
and consistency of information between the different engineering
stages and the increasing level of detail from coarse-grained plant
planning to fine-grained functional engineering.

Note to Practitioners—The engineering of automated produc-
tion systems (aPSs) is a highly interdisciplinary procedure that
requires the interaction of all participating people. However,
communication during the engineering process is based on the
exchange of information, orally or by documents. In addition,
many influences during the different design stages, i.e., time peri-
ods, cause the change of parts or parameters. Hence, the neigh-
boring engineering disciplines that employ these data need to
be updated regarding the changes. Consequently, one challenge
during the engineering of aPS is the data exchange as well as the
guarantee for a consistent and complete description of the system.
This contribution presents a methodology for a data exchange
between the different tools applied during the engineering cycle
in the design process of aPS. Therefore, the reference process
proposed by the automation markup language and the associated
data model for data exchange are applied. In contrast to the
current state of the art, our approach additionally proposes
the integration of a metamodel of the aPS in order to identify
all engineering data required for a complete description of

Manuscript received April 5, 2016; accepted May 26, 2016. Date of
publication June 24, 2016; date of current version October 4, 2016. This
paper was recommended for publication by Associate Editor W. Ukovich and
Editor Reha Uzsoy upon evaluation of the reviewers’ comments.

The authors are with the Technical University of Munich,
Garching 85748, Germany (e-mail: regulin@ais.mw.tum.de; aicher@ais.
mw.tum.de; vogel-heuser@ais.mw.tum.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2016.2576022

an aPS. Furthermore, the consistency is guaranteed by references
between the metamodel elements, which organize and provide the
required information for the engineer at a certain stage through
links to the needed parameters or documents of neighboring
disciplines. In this context, subelements of the metamodel provide
interfaces to the specific engineering tools. As a result, the effort
for information exchange decreases and a higher level of data
consistency could be reached. In future research, we will examine
measurements to quantify the increased efficiency compared with
further current engineering approaches.

Index Terms— Computer-aided manufacturing, flexible manu-
facturing systems, material flow system, model-driven engineer-
ing, production control.

I. INTRODUCTION

DEVELOPING complex automated production sys-
tems (aPS) and distribution centers by integrating dif-

ferent engineering disciplines, e.g., mechanical, electrical/
electronic, or software engineering, is a rising challenge
for plant manufacturing. In addition to the requirements of
high dependability and throughput, aPSs—living up to three
decades of operation—have to consist of a flexible adaptable
structure based on the various incremental versions as a
consequence of sequential evolution over time [1].

Dealing with the requirement to extend, reduce, or modify
parts of the aPS dynamically, an established approach of
planning and constructing whole aPS or automated material
flow systems (aMFSs) describes their decomposition in small
subsystems, i.e., modules [2]. In this approach, to reduce the
effort for the software engineering, predefined software com-
ponents for these modules exist and can be interconnected to
each other. Therefore, the complexity of the development can
be broken down to the development of subsystems (modules)
by encapsulating their description and their related informa-
tion, and, subsequently, the composition of multiple modules
for the design of an aPS, e.g., aMFS. Therefore, generic
interfaces, which enable the control engineering of the
module, but also the application of higher level functions,
e.g., the material flow of a whole logistic center, are
involved.

Considering the development of these modules or aPS
itself, different engineering processes are required to complete
an aPS. Consequently, the whole development process of the
aPS is divided into stages, i.e., time periods. Based on the
requirements of the engineering process, e.g., the domain
or complexity of the system, as well as the working meth-
ods of the involved developers, e.g., interdisciplinary versus
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separated engineering approaches, the particularly most suit-
able engineering process is chosen. A reference model for
the engineering process of aPS is proposed by the automa-
tion markup language (AML) [3], [4]. However, considering
engineering processes for mechatronic systems, e.g., aMFS,
a generic separation into the concept design, e.g., fac-
tory or module planning consisting of electrical, process,
logistic or quality assurances, and detail planning, e.g., func-
tional engineering consisting of mechanical, electrical, and
software parts, is required [5]. Hence, a system and its modules
are developed separately in different engineering domains,
resulting in an increased effort regarding redundant work,
complexity, and error proneness, resulting from the missing
transferability of the information and description documents.
To handle the complexity and, thereby, reduce the effort
regarding development in functional engineering, in this paper,
a metamodel to support the development procedure for the
functional engineering and especially software engineering for
automated material flow modules (aMFMs) is proposed. Thus,
based on the results of the plant planning and the dependences
of the different engineering disciplines, the relations of infor-
mation are organized according to the AML reference model
for the engineering process, on the one hand, and in reference
to the knowledge of the system architecture provided by a
metamodel, on the other hand. Consequently, a fixed structure
of the information and the references between them stored in
a consistent data format, e.g., AML, can be derived from the
metamodel.

This paper is organized as follows. In Section II, the require-
ments addressed by our introduced procedure model of func-
tional engineering are specified. Subsequently, in Section III,
the state-of-the-art technologies and approaches are evaluated
against these requirements. Our approach is introduced in
Section IV. Based on that, we show our solution for a
procedure model of the functional engineering in Section V.
This paper concludes with a summary and a discussion of the
results and future work in Section VI.

II. REQUIREMENTS

To reduce error proneness and effort in the interdisciplinary
functional engineering process of aMFS, several requirements
regarding the support exist and have to be fulfilled by a model-
driven approach.

A. Aggregation of Module-Specific Documents of the
Different Planning Stages (R1)

During the engineering process, documents related to a
module are created. According to the AML-process model,
these documents can be divided into planning stages,
i.e., plant planning, functional engineering, and commission-
ing/production. In addition, different domains, e.g., mechani-
cal, electrical, and control engineering, are involved and have
specific viewpoints on the system [6]. Considering these dif-
ferent stages and domains, a multitude of information related
to these disciplines exists. Examples are sensors or actua-
tors, which are first planned roughly in the plant planning
stage. However, the generated information is used for further
design in mechanical, electrical, and software engineering.

Consequently, multiple engineering disciplines and stages are
dependent on the information of these components. Hence,
the communication and the exchange of information about the
module are prerequisites for an efficient engineering process.
Thus, an aggregation of the created documents of the different
disciplines is required.

B. References Among the Module-Specific Engineering
Information and Assignment to the Related
Discipline (R2)

Along with the creation of documents, engineers rely on
information from different disciplines. For example, the con-
trol engineer develops the aMFS’s software based on infor-
mation about sensors, actuators, as well as the position and
electrical connection to the programmable logic con-
troller (PLC), which were planned by the mechanical and elec-
trical engineers [7]. Hence, inside the aggregated information
on a module (see R1), assignments between the parameters and
properties inside the different disciplines have to be integrated.
Therefore, the information of the single documents have to be
referenced by each other, e.g., position, signal, connector, and
software function of a sensor, between different stages and
disciplines.

C. Metamodel for the Assignment of the Document’s
Information to the Correct Module Part (R3)

Based on the aggregation and references among the docu-
ments, engineers are able to acquire the information required
for the specific development task, e.g., a part or piece of
software. To minimize the search time for specific information,
the documents as well as the references among them have to
be structured. Since the architecture of the aPS depends on the
specific domain, e.g., aMFS, the structure and the references
of the documents have to follow the particular architecture of
these domain’s modules. Metamodels of such aMFS provide
the knowledge of the architecture and the existing refer-
ences among the module’s parts and software. Consequently,
a structured organization of engineering data can be achieved
through assignment to a given metamodel and inheritance of its
references. Hence, the information of the different documents
is assigned to the related classes in the metamodel and to the
module’s elements, e.g., parts or software.

D. Procedure for a Structural Complementation
of the Information Required for the
Functional Engineering (R4)

Beside the architecture, the metamodel provides the set of
parameters and properties, which are required for the complete
description of a plant module. This information is the main
result of the different engineering disciplines and is a subset of
the content of the created documents. Since the semantics and
syntactics of the parameters can be different in the documents
related to the disciplines, the metamodel suggests rules for
semantics, syntactics, and the required data. Consequently,
the standardized definition should enable the data acquisition
of various disciplines as well as different stages of engineer-
ing. Consequently, all information required for the functional
engineering should be covered by the metamodel.
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TABLE I

REVIEW AND CLASSIFICATION OF EXISTING RESEARCH APPROACHES FOR MODEL-BASED ENGINEERING APPROACHES IN THE FIELD OF aPS

III. STATE OF THE ART

In this section, model-driven engineering approaches and
procedures, which are common methodologies for developing
automated systems, e.g., aMFS, are analyzed regarding the
introduced requirements (Table I).

Fan et al. [8] show how geometry-related data can be
exchanged between models, especially the automatic gener-
ation of computer-aided design (CAD) models. In addition,
based on model comparison even applied to various platforms,
conflicts can be avoided. However, the methodology is focused
on the structural data of the system, and the author emphasizes
the need for the integration of other engineering disciplines,
e.g., functional behavior (see R4).

Moscato et al. [9] present a solution process definition
language, which can be applied to automatically generate
executable processes for heterogeneous systems. The author
provides an evaluation based on a hospital infrastruc-
ture, which also includes the perspective of exchanged
information. However, the solution model does not con-
sider engineering processes or a reference architecture for
aMFM (see R4).

Fan et al. [10] present a design implementation of fixture
designs (FDs) and analysis systems based on a service-oriented
architecture to enable the collaboration of designers across
the globe. The associated information models are based on
the extensible markup language (XML) standard and support
the information exchange between the disciplines FD and
analysis. Since the approach only focuses on parts of the

engineering process, i.e., the mechanical engineering,
the scope has to be extended about the neighboring
disciplines (see R1).

The relation between the demand for final products and the
operations is represented by a model from [11]. Based on a
mathematical model, the lowest cost consumption of the differ-
ent operations in a supply chain is determined. Consequently,
the information of the different stages are exchanged. Nev-
ertheless, the model does not support the references between
engineering stages and the associated documents (see R2).

Boschian et al. [12] present an integrated system (IS),
which can be applied to manage intermodal transportation
networks at operational and tactical levels. The knowledge
base of the IS is defined by a reference model that foresees
the system behavior and provides the data for management
strategies. A metamodel defines the structure of the systems
and processes based on the architectural knowledge. The
evaluation has shown the advantages of the metamodeling
approach regarding application, updating, and changing. Our
approach considers the results of Boschian et al. [12] and
transfers and extends the methodology into the field of systems
engineering for aPS (see R1).

How complex mechatronic systems can be modeled in
an object-oriented way using the unified modeling lan-
guage (UML) is presented in [13]–[15]. The model con-
siders the system components as well as the associated
control software and interaction by exchange of information.
Hence, the approach enables the system description regarding
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structure and architecture, but does not enable the exchange
of information within the different engineering stages based
on a process reference model (see R3 and R4).

A consistent engineering information model for mechatronic
components in aPS is presented in [24]. Therein, the AML is
used to improve the transferability and consistency of infor-
mation from the manufacturer of components to the software
engineering of aPS (see R1 and R2). However, an integration
of a metamodel for the assignment of the information to
different domains or stages and the integration of a procedure
model are not proposed (see R3 and R4).

Wilfried et al. [25] emphasized the demand of reconfig-
uration in logistic chains, due to the adaption to changing
market demands and, therefore, presented a configuration
model for a logistic chain. However, since aMFMs are a
subset of the chain, the model-based design has to enable the
adaptation of modules concerning the related changes by an
appropriate metamodel not published by Wilfried et al. [25]
(see R1 and R4).

A model-based design approach for mechatronic systems
is presented in [16]. The design process uses partial mod-
els organized in a reconfiguration structure matrix and an
aggregation-Design Structure Matrix. However, a structure for
a specific system and the functional aspects are not proposed
(see R3).

Black and Vyatkin [17] and Doukas and Thramboulidis [18]
present an approach for model-driven engineering based on
the IEC 61499 function block paradigm. However, a general
metamodel or procedure model for aMFM is not provided
(see R3).

Berardinelli et al. [19] present an approach for the
information exchange of different engineering tools in
order to improve the cooperation between the differ-
ent disciplines based on the AML data model. In addi-
tion, Schleipen et al. [20] realized an approach for
plug&produce based on Open Platform Communications Uni-
fied Architecture and AML. However, a metamodel for
the description of a module and organization of parame-
ters and references, especially for aMFM, is not proposed
(see R4).

Estévez et al. [21] present an engineering approach applying
AML as an exchange format during the engineering cycle.
Subsequently, the transformation into PLCopen-XML enables
the code generation and even the creation of reconfigurable
automation systems [29], [30]. Nevertheless, a metamodel for
a complete plant description and the references to related
documents are not presented (see R2 and R3).

Wehrmeister et al. [22] present an approach for the
UML-based design of real-time and embedded systems for
automation applications. The proposed design flow covers
activities from earlier phases up to system implementation
using a predefined target platform. However, the approach does
not provide the aggregation of documents or an appropriate
metamodel for aMFM (R1 and R3).

Schröck et al. [23] present a metamodel that considers rela-
tions between parts of a plant. Based on these links and several
separation rules, a general engineering model for automation
system is introduced. In addition, the authors emphasize

the demand for considering the discipline-specific models,
which is a main point of our approach. Nevertheless,
a specific structure for a plant or a module is not
presented.

The demand for syntactical and semantic correctness of
variant-rich aPS is presented in [26]. They provide an inter-
disciplinary survey on the challenges and state of the art
in the evolution of aPS and identify that the challenge
of the evolution of aPS is the coverage of all possible
solution set variants by a description or tool. Furthermore,
Magar et al. [27] recognize that engineering tools in the
aPS has its own significant benefits, but are insufficient for
domain engineering, in general, and for reuse, in particular.
Hence, currently available engineering tools cannot consis-
tently cover the dependences between software and hardware
components. In addition, Feldmann et. al. [28] provide results
that, nowadays, module structures in different disciplines of
aPS, i.e., software engineering and electrical engineering,
significantly differ. A consistent metamodel to aggregate the
documents of different planning stages and disciplines is
lacking (see R3).

Subsequently, there are several approaches for the descrip-
tion of mechatronic systems during the engineering stages
and even for saving the information according to a common
data model, e.g., AML. Nevertheless, a model-based method-
ology for exchanging information according to a reference
engineering process for aMFS, which considers the module
architecture to organize the complete module description,
is not available yet.

IV. CONCEPT

This section describes how the model-based description can
be used to exchange information provided by engineering
documents between the engineering disciplines and stages
for the development of the functional description. Therefore,
the reference model for the engineering process of aMFM
proposed by AML is used. Before the concept is illustrated,
a brief overview of the metamodel AutoMFM [31], which
is based on the material flow description by Wilke [32],
is given.

To improve the applicability of the AutoMFM and describe
the different modeling aspects of aMFM explicitly, a separa-
tion of the module information into the (sub)classes—general
description, status description, function description, module
interface description, and control description—is provided.
Since the level of detail of the aMFM can be separately
modeled in every (sub)class, different engineering steps, which
exist during the development process describing the system
in different granularity, are supported. The metamodel mainly
consists of technical elements, which are assigned to a model’s
structural and functional description. Each class is divided
into further (sub)classes that represent a detailed view on the
module, e.g., sensors, actuators, or dimensions (see Fig. 1).
Subsequently, the engineer can add module-specific parame-
ters, if a new module document is instanced. Since the required
model data are included in different engineering documents,
the engineer additionally adds the reference to the related
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Fig. 1. References between different information derived from the introduced
metamodel AutoMFM [31].

document. Consequently, different information are aggregated
by the metamodel for aMFM (R1) [31].

In order to describe the basic information of the aMFM,
e.g., the dimensions or type of module, the (sub)class—general
description—is contained in AutoMFM. Variable informa-
tion, e.g., the current occupancy rate, is not contained in
this (sub)class. Instead, a general overview based on the static
information of the module, which is particularly essential
during engineering and planning, is given, e.g., name and
identifier.

In addition to static information from the general
description, runtime values of variable attributes, which is
essential information for different disciplines, e.g., software
engineering, are contained in the (sub)class—status descrip-
tion. Thus, a current time- and system-dependent repre-
sentation of the aMFM, e.g., containing information of
the operating mode or energy consumption, can be given.
To describe the coherence of the different parameters, math-
ematical equations or logical descriptions can be modeled
in further classes, e.g., control description or function
description.

To describe the software, but also the hardware, for con-
trolling the aMFM, the (sub)class control is contained in
AutoMFM. Therein, the logical functions of the module
specified for the programming languages of the IEC61131-3,
but also the corresponding variables to store local function-
dependent information, can be modeled. Furthermore, a map-
ping list of inputs and outputs to the corresponding variables
to read sensor values and to control actuators is allocated.
Considering the deployment of the software on different field
devices, e.g., PLC, additional information from the device
described in the platform information, e.g., type of bus coupler,
can be modeled in this (sub)class.

To represent logistic functionalities, e.g., convey-
ing or buffering, the (sub)class function is contained in
AutoMFM. Hence, the material flow of the transport
unit (TU), e.g., the route of the TU or the priority at
crosses, can be designed. Furthermore, the interactions
between neighboring aMFM or the selection of specific tasks,

Fig. 2. Information flow of the AML-engineering states into the
metamodel [5], [33].

segmented into the three categories of material flow, handling,
and waiting, can be described.

To interact with neighboring aMFM, e.g., to hand over
TU, interfaces for transferring information between different,
e.g., neighboring, modules are necessary to model aMFS.
Hence, a further (sub)class named the module interface
description is contained in AutoMFM. To improve the con-
sistency of the different kinds of interfaces, a standard-
ization of the interfaces is realized through the structure
of this (sub)class. Furthermore, a common working space,
called an interaction space, is modeled in this (sub)class in
order to aid in the interaction of different modules with one
another.

After introducing AutoMFM, as a prerequisite for our con-
cept, different information regarding an aMFM, e.g., dimen-
sions, logic, or structure, have to be stored in a data format
consistently. Therefore, AML, which is a neutral data format
based on XML, is chosen. However, developers using AML
are exempted from conditions involving the structure or ref-
erences of the module-based information. Thus, several
approaches for storing information about one module in AML
are feasible, but a consistency specification based on a meta-
model is lacking (see Fig. 1).

Considering the AML process model, only the sequence
of the different engineering stages is provided; but the infor-
mation flow between the plant planning and the functional
engineering is missing. Hence, the introduced metamodel
autoMFM [31] for aMFM is added in functional engineering
to store all necessary information from the plant planning stage
consistently [Fig. 2 (dashed lines)].

A. Material Flow Specification

The basic specification of the module’s behavior is defined
by the planning documents of the material flow process
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through the plant planning states—process planning, logistics
planning, and electrical planning (Fig. 2). Since a modular
logistic plant consists of several single modules, the process
and logistic planning results contain coarse grained infor-
mation, which is related to routing and the functionality
of single modules (AutoMFM class—general description).
In addition, the relation for the control of actuators dependent
on sensor values and higher level information are specified
(AutoMFM class control). Hence, this information is related
to the description for the logistic functions as well as the
interface, which are both subelements of the material flow
element (AutoMFM classes function and interface descrip-
tion). Based on the references between the elements of the
metamodel, the information about the dependences among
sensors and actuators as well as the process is also available
in the control elements.

B. Mechanical Engineering and Layout/Process Refining

Based on the material flow specification for logistics,
process, component, and coarse-grained electrical planning,
the mechanical description of the logistic plant can be designed
using an appropriate CAD tool. Since we assume a modular
plant architecture, the plant engineer composes the plant by
assembling the correct module instances. Along with the
material flow functionality, the module engineer, on the other
hand, specifies the detailed mechanical properties of each
single module, e.g., the position of sensors, actuators, and
mechanical module interfaces. Since mechanical engineering
is the prerequisite for the manufacturing and assembling of the
module’s components, the results of this engineering stage are
CAD and computer-aided manufacturing files for generating
numerical control programs for machines, production draw-
ings, and fine-grained layouts (AutoMFM classes—general,
functional, and interface).

The presented approach, in this paper, extends the possi-
bilities for the usage of the created documents for the func-
tional engineering stage of a module. Therefore, the created
documents are assigned to the subelements of the aMFM
metamodel, e.g., fine-grained layouts or bill of materials (R3).
The metamodel specifies the required parameters for each
subelement, e.g., a sensor, which have to be defined in
order to describe the component, e.g., position and type of
sensors and actuators as well as dimensions (R4). In addition,
references to the subelements of control engineering,
e.g., inputs and outputs, as well as to the subelements of
the electrical engineering, e.g., number and types of sensors,
are used to publish the information in the required model
elements (R2).

C. Electrical Engineering

Based on the coarse-grained planning documents of a
plant’s planning stage, the detailed electrical models are
designed within the functional planning stage. Analogous to
the mechanical design, the fine-grained electrical specifica-
tion is supported by the CAD tools for electrical planning.
Within this stage of engineering, the inputs and outputs
of the PLC and their connection to sensors and actuators

are specified (AutoMFM classes—general and control).
In addition, communication and safety facilities are planned
(AutoMFM class—control). Hence, the mechanical parame-
ters, e.g., lists of sensors, actuators, and their descriptions,
are required to determine the connections to each other. This
information is available through the linked parameters in
the subelements of the metamodel (R4). Further information,
e.g., layout or technical drawings, are provided through refer-
ences to the assigned documents (R3).

Along with the usage of the provided data of the metamodel,
the electrical planning generates documents and informa-
tion related to the required parameters in the metamodel,
which is a prerequisite for later engineering states, e.g., input
and output addresses of sensors and actuators for control
planning (AutoMFM class—control).

D. Control and Human–Machine Interface Engineering

The control and human–machine interface (HMI) engi-
neering specify the behavior of a module in a formalized
way to subsequently generate executable control code for
PLC or robot controllers, e.g., by state machines. Since the
material flow planning is part of the plant planning stage,
constraints for the detailed design of module functions are
given. Hence, for the development of the software functions,
information of other engineering disciplines is required (R1),
e.g., the distances between sensors and actuators as well
as their position, to define the correct sequences for the
system’s states and failure recognition based on the time-
dependent behavior (AutoMFM classes—control and status).
Since the control sequence of actuators is also defined within
the system’s states, the functional description has to con-
sider constraints, e.g., the movement of an actuator. Thus,
the application engineer needs information about the system’s
layout as well as specific parts assigned to the (sub) classes
of the module model (AutoMFM classes—general, interface,
and function) (R3). Analogous to the mechanical information,
electrical parameters are required to trigger actuator outputs
and read sensor values within the software functions (R4).
The description has to consider the mapping between electrical
ports and logical addresses as well as the data types of signal
values (AutoMFM class—control). The HMI is closely related
to the control software engineering and requires graphical
layout information and a representation of the dynamic status
information of sensors and actuators. This information and
these mapping tables can be generated automatically based
on the references of the module model elements (AutoMFM
classes—status and control) (R2).

E. Rules for Semantics, Syntactics, and the Required Data

To deal with the procedure for a structural comple-
mentation of the information, rules for semantics, syntac-
tics, and the required data are necessary (R4). In addition,
to improve the clarity and applicability of the rules by
the engineers, not proprietary rules but standardized rules
have been considered instead. Hence, our approach uses
AML as a data format and applies the AML standard role-
class AutomationMLBaseRoleClassLib and standard inter-
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Fig. 3. Excerpt for semantic referencing of documents between different
disciplines.

face class AutomationMLInterfaceClassLib to describe the
abstract functionality without defining the underlying technical
implementation and the relations between the differ-
ent (sub)classes in AutoMFM, respectively (see Fig. 3). For a
more detailed description of the functionalities and interfaces,
AML provides further standard role classes, e.g., Automation-
MLCSRoleClassLib, or interface classes, e.g., Communica-
tionInterfaceClassLib, which are derived from the standard
role and interface classes and can be used for storing the
data of the modeled aMFM. Based on the mapping of the
AutomationML SystemUnitClassLib, which are (pre-)defined
in AutoMFM, objects instantiated in different domains can
be mapped to each other. In addition, using the corre-
sponded roles enable the direct mapping of the objects
(see Fig. 3).

The following formulas show an excerpt from the formal
rule-definition for the semantic and syntactic description
of the information modeled in AutoMFM. The introduced
functions I1, R1, I2, R2, I3, and R3 map the information

allocated in the metamodel to its feasible AML
role or interface description.

Subsequently, based on the AML standard and the appro-
priate assignment of the AutoMFM elements, a formal
description for the exchanged engineering information can be
achieved.

V. APPLICATION EXAMPLE AND EVALUATION

Section VI presents the application of the model-driven
development process based on the proposed metamodel
architecture for a simple exemplary logistic module, i.e.,
a T-junction.

The logistic T-junction module is employed to convey TUs
and to perform dedicated TU-specific changes of the route.
Therefore, the module consists of a main conveyor belt, which
can convey TU in one direction. In addition, one light barrier
detects TU at the input of the conveyor belt and one, which
detects TU at the output output_1. The second conveyor belt
also consists of an input as well as an output output_2 and
can also feed TU in one direction. To detect TU at the
output, there is also an additional light barrier installed at
the second conveyor. To route TU from the main conveyor belt
to output_2 of the second conveyor belt, a pneumatic actuated
switch is used. The position of the switch is monitored by two
sensors. The material flow description specifies the behavior
of the module dependent on the transport requests and sensor
values on a coarse-grained abstraction level (Fig. 4).

If a TU enters the conveyor (1.0) and an ordering request for
output_1 exists (1.1), the conveyor 1 has to be activated (1.2)
until the TU has reached output_1 (1.3). In case there is an
order request for output_2 (2.1), both the conveyors and the
switch have to be activated (2.2). When the TU has reached the
output of conveyor 2, both conveyors and the switch have to be
deactivated (2.3). Subsequently, a reference of the document is
stored in the class logistic function of the module model (R3).
The logistic functionality and behavior description of the
T-junction was described in a Pert chart diagram. Afterward,
to connect the information to AML, the Pert chart diagram was
converted into an intermediate modeling language description
and, subsequently, into a PLCopen XML format (see Fig. 5).
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Fig. 4. Application example of the introduced functional engineering
workflow.

In addition to the behavior description, the detailed layout
data is provided by the CAD model, e.g., by Collada. Since the
Collada-CAD tool supports XML-based conversion accord-
ing to the specification in the .xslt-file of the geometric
files (.dwg) into the AML format, the information can be
stored in the AML data structure (see Fig. 5). The meta-
model in our approach defines the references between the
elements, which require the information of another discipline,
e.g., the main dimensions in the layouting, mechanical, or con-
trol engineering, in order to describe the module completely
(see Fig. 5) (R4).

One way to complete the information required for a module
description that cannot yet be collected automatically through
interfaces to special tools from the engineering disciplines is
the request of missing parameters of the associated engineer
by tables. Therefore, the model data can be converted by
XML operations (.xslt-file) into a common tool for tabular
calculations, i.e., Microsoft Excel. In addition to the parameter
values, the related documents can be referenced by their
name and path on a server used for data exchange. There-
fore, the information is stored by the data-type string in the
AML data model.

The data of the other disciplines are converted and stored
through the interfaces of the other model classes in an
analogous way, e.g., the excerpt of the subelement conveyor
represented by the information: name: Conv1; type: P100;
main dimensions: (50, 150, 800) mm; latency: 0.1 s; position:
(0, 10, 0) (see the table in Fig. 5).

Finally, the aggregated data of the previous engineering
stages are required for the control engineering. To complete

Fig. 5. Combining planning and geometry information based on the
introduced metamodel AutoMFM.

the description, variables, input and output mapping, and the
list of functions are registered in the subelements of the model,
e.g., subelements I/O mapping and variables of the main ele-
ment Module_interface, and stored in the AML data structure.
Consequently, the completed model information can be used
for code generation, e.g., PLCopen XML, and commissioning
as well as for documentation.

The benefit of the presented approach is mainly related
to the redundant work load in the current kind of engi-
neering process and the information exchanged among the
engineering disciplines. Hence, these two impact factors have
been measured. Therefore, the percentage of redundant work
in current engineering processes has been determined by a
survey of experts in the field of material flow systems at
the Materialflusskongress 2016. The results are based on the
answers of 23 participants responsible for projects in the field
of material flow systems engineering. As a result, the redun-
dancy could be quantified to a range of 10%–60%. Hence,
the consistent description of an aMFM, where each engineer
can access the required information and contribute to the
discipline-specific information, can significantly increase the
engineering efficiency. Along with the redundant information,
the dependences and proportions of the engineering process
have been evaluated. Therefore, the information, which can
be generated by the appropriate tools as well as the required
information for performing an engineering step, have been
considered (see Fig. 6). The data are based on the intro-
duced T-junction example that was designed considering the
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Fig. 6. Evaluation regarding information dependences during the engineering
cycle.

related tools (see Fig. 6). Hence, the strongest dependences
exist between electrical engineering and software engineering
(22% of exchanged information) as well as between material
flow planning and software engineering (20% of exchanged
information). Along with the interfaces, the work proportion of
the related disciplines has been measured. A relatively evenly
distribution between material flow planning and electrical
engineering (about 36% of the process) could be quantified.
However, the highest proportion has to be performed by the
software engineers (about 37% of the process). These values
could be confirmed by the results of the survey regarding the
workload distribution.

Subsequently, the connection of the different stages and
disciplines during the engineering cycle, based on the knowl-
edge of the module architecture and a formalized meta-
model specification, represents the main advantage of our
approach. Hence, the required information for the engineer
at a certain stage can be provided through the model. Conse-
quently, the effort for an information exchange can be reduced
and data consistency increases. However, the tool interfaces
have to be adapted to a certain engineering tool chain that
entails a considerable effort for implementation. In addition,
a server infrastructure and the prerequisites for accessing
the linked documents, e.g., software tools, are required for
applying the model-based description. These disadvantages
are mainly related to the implementation and, hence, cause
only additional effort at one time. However, the advantages
regarding decreased redundancy as well as the increased
consistency significantly increase the efficiency and quality of
an engineering process to at least 10% and up to 60%, which
outweighs the effort for implementation.

In addition, the metamodel can only use the existing role
classes of the AML. Since the role-class-libraries of the

AML are still under development and not completely specified
yet, the current scope of application is limited to automatic
static material flow modules for piece goods. Other types
of material flow systems can be added according to the
further definition of the AML standard. However, the upcom-
ing implementation of the AML interface into an increasing
number of engineering tools facilitates the integration of our
approach, based on the metamodel, for the engineering cycle.

Considering the mentioned pros and cons, an initial effort
for the implementation of the metamodel-based approach
exists, and the data model relies on the ongoing development
of AML. However, the evaluation of the dependences among
the disciplines of the engineering cycle, which were proved by
a survey, shows the potential of our approach for increasing
the quality and efficiency of the aMFS engineering process.

VI. CONCLUSION AND OUTLOOK

Considering the software engineering in aPS, the automation
software has to consist of a flexible adaptable structure in
the case of extending, reducing, or modifying parts of the
aMFS. Consequently, the information and the documents of an
aMFS are often reused during (re)engineering and need to be
completed and structured according to the system architecture
in order to reduce the effort and improve error proneness,
e.g., data inconsistency, in the software (re)engineering.
To deal with these requirements and improve the reuse
of automation software, modular software architectures are
applied. Therefore, the engineering of aMFS integrating
different engineering disciplines, e.g., mechanical, electri-
cal/electronic, or software engineering, can be broken down
into the engineering of small subsystems—modules. Along
with the different engineering disciplines, different engineering
stages, e.g., plant planning, functional engineering, or com-
missioning/production, are also addressed by the reference
model for the engineering process of aMFS proposed by
the AML. Considering the AML reference model, there is
a high dependence of information and descriptions between
these different stages, but an approach to transfer and organize
them is lacking. Hence, for instance, information from plant
planning to functional engineering is transferred both domain-
specific and redundantly, which increases error proneness and
the inconsistency of information.

This paper presented a model-driven design approach for
aMFS based on an introduced metamodel AutoMFM [31]
to improve the transferability of information and description
between the engineering stages, plant planning and function
engineering. Hence, information from plant planning, which
is necessary for the development of functions for aMFM, can
be stored consistently in the introduced metamodel. Based
on this metamodel, domains in the plant planning stage can
store information necessary for function engineering with
the objective of reducing the effort to collect information
shared over different domains during the plant engineering
process. In addition, the transferability and the consistency
of information between different domains in function engi-
neering, e.g., mechanical engineering or control engineering,
can be improved by the metamodel for aMFM, as shown by
an associated survey. Furthermore, based on this metamodel,
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consistency checks of module-based information, which
improve additionally error proneness, are enabled.

Future work will examine the measurement of effort,
which can be reduced based on the application of a meta-
model compared with further engineering approaches applied
these days. Therefore, special metrics will be applied within
industrial case studies. In addition, further industrial logistic
systems will be modeled by the reference model for the
engineering process of aMFS proposed by the AML to
evaluate and, if necessary, extend the introduced metamodel
AutoMFM.
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