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Regularized Deconvolution-Based Approaches for
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Abstract—We address the problem of estimating the number of
people in a room using information available in standard HVAC
systems.We propose an estimation scheme based on two phases. In
the first phase, we assume the availability of pilot data and iden-
tify a model for the dynamic relations occurring between occu-
pancy levels, concentration and room temperature. In the
second phase, we make use of the identified model to formulate
the occupancy estimation task as a deconvolution problem. In par-
ticular, we aim at obtaining an estimated occupancy pattern by
trading off between adherence to the current measurements and
regularity of the pattern. To achieve this goal, we employ a spe-
cial instance of the so-called fused lasso estimator, which promotes
piecewise constant estimates by including an norm-dependent
term in the associated cost function. We extend the proposed esti-
mator to include different sources of information, such as actuation
of the ventilation system and door opening/closing events. We also
provide conditions under which the occupancy estimator provides
correct estimates within a guaranteed probability. We test the esti-
mator running experiments on a real testbed, in order to compare
it with other occupancy estimation techniques and assess the value
of having additional information sources.

Note to Practitioners—Home automation systems benefit from
automatic recognition of human presence in the built environment.
Since dedicated hardware is costly, it may be preferable to de-
tect occupancy with software-based systems which do not require
the installation of additional devices. The object of this study is
the reconstruction of occupancy patterns in a room using mea-
surements of concentration, temperature, fresh air inflow,
and door opening/closing events. All these signals are information
sources often available in HVAC systems of modern buildings and
homes. We assess the value of such information sources in terms of
their relevance in detecting occupancy in small and medium-sized
rooms. The proposed estimation scheme is composed of two dis-
tinct phases. The first is a training phase where the goal is to de-
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rive a mathematical model relating the number of occupants with
the concentration. It is required to record the actual occu-
pants in the room for a time period spanning few days, a task that
can be performed either with manual logging or with temporary
dedicated hardware counting systems. In a second phase, we use
the derived model to design an online software which collects mea-
surements of the environmental signals and provides the number of
people currently in the room. The estimated occupancy levels can
then be employed to enhance the efficiency of the HVAC system of
the building. We notice that, in modern residential buildings com-
posed by structurally equal flats, the training phase can be run in
one flat only, since the obtained model will be reasonably valid for
the other flats.
Index Terms—Deconvolution, occupancy estimation, regulariza-

tion, system identification.

I. INTRODUCTION

A. Motivations and Objective

M ONITORING the number of occupants of rooms is
important for home automation applications, e.g.,

to automate the control of lighting, thermostats, security
locks, and home entertainment systems [1]–[3]. It is also a
key enabling factor for improving energy efficiency in smart
buildings: it has been shown in [4] the exact knowledge of
the building occupancy may decrease the annual energy con-
sumptions of about 10%–42% by optimizing the performance
of Air Conditioning (HVAC) systems (see also [5] and [6]).
Direct experience indicates that some standard off-the-shelf
dedicated hardware for occupancy estimation (such as cameras
and radio-frequency identification (RFID) tags) suffer from
several problems. First, they may be insufficiently accurate for
the employment in HVAC control systems. Second, they may
induce large additional deployment and maintenance costs.
Last, they may have installation feasibility problems in old
buildings. Moreover, hardware-based occupancy detectors may
trigger privacy concerns [7]. Consequently, it is interesting to
study how and to what extent hardware-based people counters
can be replaced by software-based occupancy estimators that
only employ available information in standard HVAC systems
(such as concentration and temperature), which informa-
tion sources have to be considered, and what type of statistical
processing leads to efficient estimators.
The main objective of this paper is to address the above ques-

tions by proposing occupancy estimators that give information
on the number of occupants using commonly available signals,
namely, measurements of concentration and temperature,
HVAC actuation levels (i.e., the amount of fresh air injected in
a room), and information on door opening/closing events.
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B. Related Work
The currently available techniques for monitoring the occu-

pancy in rooms and buildings can be categorized into hard-
ware-based and model-based approaches.
The first category includes methods working with dedicated

hardware. For instance, [5] and [8] deploy networks of cam-
eras detecting people crossing a determined area under surveil-
lance, whereas [9]–[11], utlilize RFIDs; see also [12] for a re-
cent survey. As mentioned before, dedicated hardware may be
expensive and applicable only to certain situations, due to poten-
tial drawbacks (privacy or others). For example, [13] uses inex-
pensive magnetic reed switches and passive infra red (PIR) sen-
sors, but the method cannot provide the exact number of people,
detecting only whether a room is occupied or not.
The second category exploits the fact that occupants affect

the indoor environment by emitting , heat and humidity.
Thus, occupancy is inferred indirectly using dynamical models
that relate environmental signals with occupancy. These models
may be obtained by employing data-driven techniques (i.e.,
identification-based methods) or by exploiting knowledge of
the underlying physical laws (i.e., physics-basedmethods). The
latter techniques comprise strategies based on mass balance
equations or first principle considerations to derive dynamical
models relating the number of occupants, concentration,
temperature and humidity [14]–[17]. Identification-based ap-
proaches aim at constructing input–output models from datasets
of past measured data. Using the obtained model, the number
of occupants is estimated by inverting the dynamics
[18]–[20]. The same idea is at the base of black-box machine
learning techniques such as support vector machines (SVMs),
neural networks (NNs), and hidden Markov models (HMMs).
For instance, in [21], information regarding concentration
and data acquired by acoustic and passive infrared sensors are
employed to estimate the number of occupants in an office
using SVMs, NNs, and HMMs. Other proposed approaches es-
timate the occupancy using other features (e.g., averages
of the signals in time, first-/second-order temporal differences),
see [22] and [23]. In [24], an autoregressive hidden Markov
model (ARHMM) is developed to estimate occupancy levels
based on environmental signal measurements also taking into
account their correlation. The strategy is further developed in
[25], where the technique is integrated with a wireless sensor
network and tested in a research laboratory. A different solution
is studied in [26], where occupancy is inferred from electricity
consumption.

C. Statement of Contributions
This paper, extension of [27], describes and analyzes from

theoretical perspectives a two-tier software-based occupancy
estimation scheme. The first tier assumes the availability of both
environmental signals and true occupancy levels (as pilot data)
for a short and well defined period of time. The data regarding
occupancy may come from manual logging, or from dedicated
temporary people counting hardware. Black-box modeling is
then used to model the room under consideration, i.e., no other
a priori knowledge on the room properties is assumed. The
second tier formulates the occupancy estimation problem as an
inverse problem, i.e., it searches for the occupancy pattern that
best explains the measured data given the identified model. In

this tier, we exploit the fact that the occupancy signal is piece-
wise constant and integer, in order to formulate the estimation
problem within a fused-lasso framework [28].
A contribution of the manuscript is to derive different estima-

tors based on the availability of the various information sources.
More specifically, we consider the case of adding knowledge of
HVAC actuation signals (how much air is injected in the room).
We also study the case of adding a boolean signal accounting
for door opening/closing events and derive theoretical statis-
tical properties of the strategy, which have not been considered
in [27]. More precisely, we compute bounds on the probability
of obtaining incorrect estimates, given the levels of measure-
ment noise, the identified model and the design parameters of
the estimators.
The proposed method is then employed to estimate the

number of people in a medium-sized room instrumented as
a university laboratory. Even if our tests are performed in a
laboratory, we notice that there is no limitation in using the
method in other rooms: the strategy is suitable for any kind of
home or office environment as long as standard HVAC mea-
surements are available. Moreover, in buildings with same-size
flats one can perform the training phase in only one flat since
the obtained model can be employed to design the occupancy
estimator for the other flats. Therefore, the method is suitable
for estimation of occupancy patterns in such buildings.

D. Structure of the Manuscript
Section II formulates the mathematical problem and the

solution methodology. Sections III and IV describe, respec-
tively, how to identify the model of the room from a training
set, and how to exploit this model for estimation purposes.
Section V characterizes the performance of the estimator from
a statistical perspective. Section VI describes how to modify
the original estimation strategy when considering also HVAC
actuation levels and information on door opening and closing.
Section VII introduces the considered estimation performance
indexes, the experimental setup, the results of the estimation
processes, and some comparisons with standard tools of Ma-
chine Learning. Section VIII then wraps some conclusions,
remarks, and ideas for future directions. Proofs are collected in
the Appendix.

II. PROBLEM DEFINITION AND METHODOLOGY

We consider a schematic representation of the dynamics of
the concentration of the and temperature in a room under
well-mixed air assumptions (i.e., these quantities are assumed to
be spatially constant). In Fig. 1, represents the concentra-
tion of , the temperature, the amount of injected
fresh air, the occupancy, all at time . represents an ini-
tially unknown dynamic system relating disturbances, events,
ventilation and building occupancy levels with temperature and

concentration signals. In addition, we consider a variable
which is a Boolean measurement of door opening and

closing events, defined as follows:

if the door is open,
if the door is closed (1)

The problem we consider in this paper is to find an effective
algorithm that transforms measurements of
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Fig. 1. Schematic representation of the signals andmodels under consideration.

and into estimates of . Our proposal is
the following two-tier estimator:
• Tier 1, training phase: identify a linear time invariant
(LTI) system that captures the dynamics of from pilot
data of , , and , (Section III).

• Tier 2, test phase: estimate from measurements
of and and the estimated model of the room (
Section IV).

The first phase addresses a system identification problem, while
the second phase addresses a deconvolution problem.
A contribution of this paper is the characterization of the pro-

posed estimator in terms of detection error, i.e., probability of
obtaining wrong estimates as a function of the parameters of
the estimator. We also study extensions of the estimator to in-
clude information on venting levels , and
door opening/closing events . We shall see
that, while including venting levels does not change the struc-
ture and main properties of the estimator, accounting for door
opening and closing requires somemodifications of the problem
by adding suitable constraints.

III. IDENTIFICATION OF THE ROOM MODEL

In this section, we describe how to obtain a model for
starting from pilot data of , , and .
As in [29]–[33], we assume the environmental signals to be

stochastic processes, the dynamics of the room to be discrete
LTI, measurement devices to be synchronized and operating at
the same sample time. We further assume that samples of
the aforementioned signals have been collected during an ex-
perimental phase.
The dynamics of the room can be expressed as

(2)

where without loss of generality

are matrix polynomials with all the entries having the same
order. The processes and are white Gaussian
noises, independent of each other, representing the innovation
process, i.e., part of and that cannot be predicted from
past measurements.
To estimate the polynomials and we con-

sider a prediction error method (PEM) paradigm. We define the
best linear one-step-ahead predictor of the outputs, namely

(3)

Fig. 2. Empirical cross-correlations between occupancy and either temper-
ature or , computed using the dataset considered
throughout the manuscript (sampling time minutes). To highlight the
features of the correlation signals, we use a time scale finer than the ones used
in the subsequent figures.

obtained by simply neglecting the noise processes. Then, using
PEM-based techniques we can obtain and ,
such that the variance of the prediction errors
and on the data collected during the training
phase, is minimized. From (3), it follows that the predictors

and exploit the same information of the
past.
Fig. 2 plots the correlation functions defined in (4), and com-

puted using the dataset considered throughout the manuscript.
In (4), , and represent signals stripped of the mean,

is a time lag, and denotes the size of the dataset

(4)

The functions and indicate the dependency of
the occupancy signal on the concentration and tempera-
ture, respectively, as a function of the time lag . It can be
promptly seen that the signal mostly correlated with the occu-
pancy is the level. For this reason, in the rest of this paper,
we shall consider only the predictor and thus focus
on the identification of .

A. Nonparametric Identification of the Dynamics

In this paper, we adopt a nonparametric approach to the
problem of identifying the room dynamics. Instead of
directly searching for the coefficients of the polynomials

, and , we aim at estimating the
system impulse responses, which are defined in the time domain
and which are related to the frequency domain description of
the system through the relations

(5)
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where , , are the impulse responses having the
occupancy, temperature and as inputs, respectively. We
can simplify the problem by truncating the impulse response to
a fixed large index and estimate the first coefficients of each
impulse response. The estimated coefficients can then be used to
form polynomials1 that well-approximate the transfer functions.
To make the estimation problem well-posed, we define a suit-
able hypothesis space for the unknown impulse responses. Such
a space is a reproducing kernel Hilbert space (RKHS) [34], and
its associated kernel is the so-called stable spline kernel [35],
[36], defined as

(6)

where is a hyperparameter tuning the decay rate. The choice
of this kernel is motivated by the fact that the associated RKHS
contains smooth and exponentially decaying functions. These
are desirable properties in impulse responses modeling of phys-
ical systems such as those considered in this problem. We refer
to [37] for a thorough description of kernel-based methods in
system identification.
Let the training set be indexed by the time instances

and , , and be column vectors containing
the impulse responses related to , , and , respec-
tively, and

(7)

with . Defining

...
...

...

we can formulate the system identification problem as

(8)
i.e., as regularized least-squares (LS), where
• with a positive definite weighting ma-
trix penalizing candidate impulse responses which do not
decay to zero for large values of the time index. In this way,
favors outcomes that well represent impulse responses

of stable systems. Here, we set the matrix as ;
the choice of the hyperparameter is discussed below.

• is a positive real number representing a tradeoff between
variance and bias of the estimator, leading to the LS esti-
mate of for .

The optimal values of and can be computed using either
cross validation [38] or empirical Bayes techniques [39], [35].

1In this paper, we set .

Once these values have been established, the solution can be
computed in closed form [40] as

(9)

where is block diagonal with four blocks all equal to .
Remark 1: The impulse response estimator (8) may be

seen also as a maximum a posteriori (MAP) estimator under a
Gaussian prior assumption of the unknown impulse responses.
Then, the choice of such a prior is well motivated by the
underlying theory of the RKHS induced the stable spline kernel
(see [34] for further details).

IV. DECONVOLUTION OF THE OCCUPANCY LEVELS

In this section, we derive an estimator of as a func-
tion of the measurements and and the estimated room
dynamics , , . Let

(10)

and consider the levels prediction error

(11)

Under the stated assumptions is a zero-mean Gaussian
white noise [41]. Substituting (10) into (11) and rearranging
properly, we obtain

(12)

where the unknowns are only and , since

can be computed given the available information. Thus (12) be-
comes

(13)

which shows that the problem of estimating the unknown
occupancy pattern is a deconvolution problem, i.e., the signal

can be estimated as the signal best describing the observed
output , given the knowledge of the transfer function .
Since is assumed white and Gaussian, the natural approach
to this problem would be to employ a LS estimator of ,
because this would minimize the residual error [38, Ch. 7].
More specifically, let ; we
consider two variants of the occupancy estimation problem:
1) online monitoring;
2) offline estimation.

We begin by dealing with the first case. At each time instant,
we consider a window in the past of samples of each signal,
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from to , with . Considering the auxiliary
notation

...
. . . . . .

...

. . . . . . . . .

...
... (14)

a basic occupancy estimator can be formulated as the LS-type
problem

(15)

The performance of this estimator is usually unsatisfactory,
since the estimates are noisy, due to the high variance, and they
do not reflect suitable room occupancy patterns. To overcome
this issue we account for the prior information that is
non-negative, integer, and piecewise constant and we formu-
late the deconvolution problem as the problem of finding the
least-changing positive piecewise constant input signal giving
a prescribed mismatch between the estimated and measured
outputs of the system. Let us define

... (16)

The estimation problem then becomes

(17)

where
• is a -dimensional vector with the estimated
values of occupancy at the time instants

(for online estimation purposes and HVAC control one
might consider to use just its first entry );

• the cost function , the norm, counts the number of
variations of the candidate inputs, thus penalizing signals
with frequent variations;

• the LS-type term accounts for adherence to data and tries to
match the estimated and measured outputs of the system,
up to a precision given by the user-choice parameter .

Problem (17) can be reformulated as follows [42]:

(18)

where is a regularization parameter (strictly related to ) that
trades off the two previous terms; the choice of is discussed in

details in Section IV-A. Unfortunately, Problem (18) is a non-
convex nonlinear integer program; to solve it directly one must
search through all possible combinations of nonzero elements
in . Hence, the search space increases exponentially with
the number of parameters and the problem cannot be solved ef-
ficiently [43]. To circumvent this computational drawback we
adopt two relaxations. First, we substitute the norm with the

norm [44, Ch. 3.4], which represents its best convex relax-
ation. Second, we extend the domain of the plausible inputs to

instead of , so that the estimation problem becomes

(19)

where is the vector-wise rounding operator. Problem (19)
is a particular case of fused-lasso estimator, where the solution
is searched among sparse regressor vectors where less frequent
jumps (i.e., nonzero impulses in the derivatives) are preferred,
and the strength of this preference is dictated by the regulariza-
tion parameter .
Remark 2: The estimator in (19) can also be seen as a MAP

estimator of the occupancy signal (when the rounding operator
is removed). In this case, the prior distribution on the unknown
process is Laplacian with independent components (see, e.g.,
[45]), that is

(20)

where is a user parameter that tunes the sharpness (and so the
sparsity) of the pdf. Since is white and Gaussian, then the
distribution of the vector given is Gaussian, with mean

and variance , where is the variance of the prediction
error appearing in (13) and is the identity matrix. The MAP
estimation of can thus be formulated as

(21)

The above expression reveals that the regularization parameter
is the ratio of the noise variance and the user pa-

rameter regulating the (prior) sparseness of the derivative of
the occupancy.
The parameter plays an important role in (19), since it de-

fines the amount of data employed for estimating (and
in particular ) at each time instant. Clearly, a large value
of yields more accurate estimates, since more information is
used. However, a large value of brings computational issues
which could make the computation of (19) too slow for online
operations. Thus, as will be discussed in Section VII-B, a good
choice of should consider both these aspects.
The derivation of the offline estimator is straightforward.

Let the test set be indexed by the time instants .
Redefining the vectors introduced in (14) and (16), so that they
include all the measurement of the test set, we can re-utilize
the estimator defined in (19). In this case, its output will be a
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vector containing the estimated occupancy pattern for the
time instants .

A. Finding the Optimal Regularization Parameter
The regularization parameter establishes the typical vari-

ability of the room occupancy signal. Large values of pe-
nalize changes in the value of estimated occupancy, leading to
estimates that are constant for long periods. Small values of ,
instead, yield occupancy signals with high-frequency compo-
nents, thus behaving similarly to the outcomes of the LS esti-
mator (which is obtained by setting ).
A reasonable choice of is obtained by finding the value of

such a parameter giving the best estimation performance during
the training phase. This optimal value can then be computed
with the following procedure:
1) define a grid of candidate values of ;
2) for each solve Problem (19) using the and

collected during the training phase, obtaining , i.e., an
occupancy estimate as function of ;

3) compute the optimal regularization parameter as

(22)

with being the occupancy signal collected during the
training phase.

Remark 3: To find the set one can start by first finding an
opportune for which the problem (19) leads to constant
occupancy estimates. Consider moreover the cardinality of
be given; then one can define the set between 0 and the ob-
tained exploiting a logarithmic grid. The main advantage
of logarithmic gridding is that the grid will be finer for smaller
values of , where the sensitivity is usually higher (see Fig. 5).

V. CHARACTERIZATION OF THE OCCUPANCY ESTIMATOR

In this section, we derive relations between the probability of
obtaining wrong occupancy estimates and the quantities param-
eterizing the estimator, namely, the identified linear models, the
noise level of the measurements, and the regularization param-
eter .
Our first result regards the performance of the estimator when

the occupancy is constant in a window of past values.
Proposition 4: Let be the variance of the noise in (13),
the window length in the estimator, and the regularization

parameter. Assume that is a constant signal. Define

. . . . . . (23)

and , where denotes the Moore–Pen-
rose pseudoinverse of . Then is detected as constant with
probability of at least if

(24)

where is the inverse of the chi-square cumulative distri-
bution function (CDF) with degrees of freedom for the cor-
responding probability and , with
the th row of .

Fig. 3. Graphical representation of bound (24) as functions of the probability
for a given .

The following result studies the case where has a
variation.
Proposition 5: Let be the variance of the noise in (13),
the window length in the estimator, the regularization pa-

rameter. Define , obtained removing the first
column of and . Assume that the first
value of the estimated occupancy is set to the true one, i.e.,

, and that has a unique discontinuity
given by a variation of one unit. Then, is detected as con-
stant, i.e., there is a missed change with probability of at least
if

(25)

where is the first row of .
Fig. 3 shows the behavior of the bound derived in Proposition

4 as a function of the probability that the detected occupancy
pattern is constant.
The previous results can easily be extended to the more gen-

eral case where the true occupancy is piecewise constant with
discontinuities of +1 units. The sufficient condition to estimate
a constant signal in this case is

VI. ACCOUNTING FOR ADDITIONAL INFORMATION

In this section, we address the cases where the available in-
formation contains the additional signals (venting levels)
and [door events, defined in (1)].

A. Accounting for Venting Levels

When the signal is available, a straightforward general-
ization of (10) yields

(26)

Consequently, we can extend the system identification proce-
dure of Section III, with , and
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The same extension applies to the deconvolution step: the es-
timator (13) remains structurally the same as soon as is
redefined as

B. Accounting for Door Opening and Closing Events

Assume now the knowledge of , i.e., a Boolean signal
measuring door opening and closing events. Using the definition
in (1) we infer that implies , while no
deduction on the behavior of can be made when .
In the system identification problem of Section III, informa-

tion on is non-influential, i.e., it does not modify the deriva-
tions in Section III, since during the identification the occupancy
levels are assumed known. In other words, contains already
the information in .
As for the deconvolution problem, knowing changes the

structure of the estimator, since naturally constraints the
estimand occupancy levels to be identical when . More
precisely, knowing corresponds to knowing the sparsity
pattern of the to-be-reconstructed signal. This imply that the
regularization term in (18) is a constant factor that does
not depend on the decision variables; thus (18) is equivalent to
the integer quadratic program (IQP)

(27)

Following the motivations that brought from (18) to (19), (27)
can be relaxed with

(28)

Due to the lack of the regularization term, (28) does not require
tunings of regularization parameters.
Estimator (28) is based on the hypothesis that the noise

process is white and Gaussian. Such an assumption
may be unrealistic, since the identification phase is likely to
yield non-exact models (due to disturbances and unmodeled
dynamics). One way to address this issue and robustify the
estimator is to further modify (28) adding back the regular-
ization term to obtain

(29)

As noticed before, this regularization term corresponds to pro-
moting small changes in the occupancy signal, with the strength
of this preference dictated by the regularization parameter .
Obviously, implementing estimator (29) requires to find the op-
timal , as described in Section IV-A.

VII. EXPERIMENTS

We have tested the proposed estimator on one of the rooms
of the KTH ACL-HVAC testbed, see http://hvac.ee.kth.se/
for more information. The collected information, available
at http://hvac.ee.kth.se/datasets.html, comprises two weeks
of measurements of and temperature levels from HDH
sensors, and of venting, cooling, and heating actuation levels
from the central HVAC system. Occupancy levels were manu-
ally registered for the whole period. To uniform the sampling
times of the various signals (5 min), or in case of missing
measurements, the information was resampled using linear
interpolation schemes. The first week was used as a training
set, while the second week was used as a test set.

Definition of the Performance Indexes

We consider four performance indexes: (i) the mean squared
error (MSE) (30), characterizing the relative estimation errors;
(ii) the accuracy (32), reporting how many times the estimator
returns the correct value; and (iii) the false positive/false nega-
tive occupancy detection rates (35), describing the ability of dis-
criminating the presence/absence of occupants in terms of false
positives (when the room is estimated to be occupied while it
is not) and false negatives (when the room is estimated to be
empty while it is not).
The MSE associated with and is

(30)

To define the other performance indexes we then transform the
signals , with codomain (number of occupants) to signals
with codomain (corresponding to the states “room is not
occupied” and “room is occupied,” respectively) through the
indicator function

if
otherwise

... (31)

Given (31), the accuracy of the estimate is

(32)

To define the false positive/negative rates we introduce

(33)

dividing the time indexes in two sets: , for the time indexes
for which the room was not occupied, and , for the 's

for which the room was occupied. Using this definition we may
capture wrong matches of the type “the room is estimated to be
occupied while it is empty” and “the room is considered empty
while it is occupied,” We define

(34)
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TABLE I
COMPARISON OF THE PERFORMANCE OF ESTIMATORS (19), (19) WITH

KNOWLEDGE OF VENTILATION LEVELS , (28) AND (29)

Fig. 4. Realizations of the estimates for the test set considered in our experi-
ments for the various estimators proposed in this manuscript.

where we remark that the summation is performed over the set
. With (34) the false positive and false negative rates become

(35)

A. Summary of the Results

1) Evaluation of the Importance of Additional Information:
We assume that the parameters and are optimally scaled
(we discuss tuning of these parameters in the following sec-
tions). Table I numerically assesses the value of knowing the
ventilation levels and the door openings/closing events

, while Fig. 4 depicts graphically the realizations of the re-
sults. From Table I, it can be seen that adding the information
regarding ventilation levels can improve the accuracy of the es-
timator. Moreover, the estimator (29) has the best performance
in terms of MSE. It is worth mentioning that due to the con-
straint on in (29), the regularization term does not impose
(further) sparsity, however, it shrinks the estimates of the occu-
pancy. It is well known that shrinking may improve the MSE
[44]; we can get similar results with other shrinkage methods
such as the ridge regression [44].
2) Evaluation of the Sensitivity to the Regularization Param-

eter : We evaluate the effectiveness of selection strategy for
the parameter described in Section IV-A. Since the best value
of such a parameter for the test set may be different from its best
value in the training set, it is important to evaluate the effects of
this unavoidable mismatch.
Fig. 5 plots the MSE for different values of for estimator

(19) for both the training and test sets. The dependency on
appears relatively weak in the test set, and the MSEs of the

training and test sets attain their minima at approximately the

Fig. 5. Sensitivity of the performance of estimator (19) w.r.t. the choice of
.

Fig. 6. Dependency of the performance of estimator (29) w.r.t. the choice of
.

same point. This suggests that the proposed estimation strategy
for is reliable and effective.
3) Evaluation of the Sensitivity to the Optimization Horizon
: The parameter trades-off computational requirements

with information: the larger the optimization horizon, the
more information the estimators have about the dynamics of
the system. Intuition suggests that, beyond a certain horizon,
adding more information does not improve the estimation
performance, i.e., beyond this horizon the room dynamics
do not influence the current estimates. The results shown in
Fig. 6 indicate that in our experiments the horizon is of about
five days.

B. Alternative Occupancy Estimation Methods
We hereby consider two classical Machine Learning strate-

gies and compare them against estimator (19) with knowledge
of ventilation levels .
1) Estimation Using SVM: In their basic form, SVMs per-

form classification tasks as follows: given a dataset of sam-
ples for with and

, try to find a separating hyperplane in ) that:
(i) separates the points of the form from those of the
form and (ii) maximizes its minimum distance from
the ’s. This concept can then be extended to cope with non-
linear and imperfect separation rules, andwithmulticlasses clas-
sification tasks [46, Part II].
SVMs have already been exploited for building occupancy

estimation tasks, e.g., in [22] and [23]. The most common ap-
proach is to let contain functions of the current and past

, temperature and ventilation levels (e.g., the average of
). instead usually represents the building

occupancy level . With these definitions it is possible to
train a general multiclass SVM on the couples that form
the training set. After this step one can then estimate the un-
known building occupancy by applying the trained SVM on the

that form the test set.
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The SVM implemented in our tests that led to the best es-
timation error performance is a -SVM exploiting a polyno-
mial kernel of order 3. As features, it considers current and past
values of the temperature, , and ventilation levels up to
1 hour in the past, and their first and second derivatives in time.
2) Estimation Using NN: The (NNs) maps considered in this

manuscript are of the form [47, Sec. 44]

with and having the same meanings of Section VII-C1.
The structures of the functions , , are design parameters,
that usually remind how biological neurons electrically react to
external stimuli. Once the design parameters have been chosen,
training the network corresponds to search for a set of weights
for which the corresponding NN best fits the training examples.
Once this function has been learned, it can be used for prediction
purposes analogously to the SVM case.
The NN implemented in our tests that led to the best esti-

mation error performance is a complete feed-forward network
with Sigmoid activation rules and one hidden layer composed
by 8 neurons. It considers the same features exploited to train
the SVM based estimator.
3) Results of Comparisons: We compare in Table II the per-

formance of estimator (19) with knowledge of ventilation levels
against the performance of the NN and support vector classifica-
tion (SVC) strategies described above. All these estimators are
comparable in the sense that they use the same amount of infor-
mation. It can then be noticed that the estimation strategy pro-
posed in this manuscript outperforms the aforementioned ma-
chine learning strategies on the considered dataset.

VIII. CONCLUSION

We have proposed methods for estimating occupancy levels
in closed environments that exploit different sources of infor-
mation. We have aimed at understanding which of such sources
are mostly meaningful in addressing the task of estimating how
occupancy levels change in time. The main standing assump-
tion in our methodology is that it is possible to access to direct
measurements of the true occupancy levels for a limited period.
The proposed estimation scheme first obtains a dynamic

model by a suitable identification method using pilot data.
Then, it formulates the occupancy estimation problem as a
regularized deconvolution problem (where the regularization
exploits prior information on the features of the searched
signal). The obtained results show that adding information on
ventilation and door opening/closing events can significantly
improve the performance of the estimator.
We have also analyzed the statistical performance of the esti-

mation scheme, showing that the probability of obtaining wrong
estimates can be suitably bounded when we know specific de-
sign parameters and the measurement noise variance.

TABLE II
COMPARISON OF THE PERFORMANCE OF ESTIMATOR (19) WITH KNOWLEDGE

OF VENTILATION LEVELS AGAINST THE PERFORMANCE OF
EQUIVALENT NN AND SVC STRATEGIES

The idea considered in this paper can be extended towards the
construction of occupancy estimators for whole buildings, and
towards the identification of building occupancy patternmodels.
Moreover it may be possible to adapt the models identified in a
single room to other rooms of the same building, by an oppor-
tune rescaling of the identified impulse responses accounting
variations in the structural properties of rooms.

APPENDIX

Proof of Proposition 4:

The proof is divided in three main parts: i) Rewrite (19), de-
rive the dual of the rewritten problem and the structure of its so-
lution. ii) Find some analytical relations between the estimated
and the true occupancy levels. iii) Exploit these relations to de-
rive bounds that characterize the statistical performance of the
estimator.
i): Introduce the variable and rewrite (19) as

(36)

where for the purposes of the proof, the function (the vector-
wise rounding operator) is omitted. The Lagrangian of (36) is
then

(37)

where is the Lagrange multiplier. The dual problem, obtained
minimizing w.r.t. and , is [48]

(38)

We notice that, since is a lower triangular matrix, it admits
an inverse as long as . This is satisfied as soon as there
is (only) one delay in the effects of the occupancy on the
levels of the room.
To obtain the structure of the dual solution, consider again the

derivative of the Lagrangian with respect to

if
otherwise (39)
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Let then be the dual solution and be the primal
solution of (36) for a specific . Given the computations above,
it satisfies

if
if
if .

(40)

In other words, to maximize (39), the element of the dual
solution, i.e., , should be equal to either if the corre-
sponding element in the primal solution is positive or if the
corresponding element in the primal solution is negative, see
[48]. For those elements of the primal solution with zero values,
we can only say that the dual problem must satisfy the condition

.
From (40), one can conclude that , only if
.
ii): Relax problem (38) by removing the -norm constraint.

The resulting problem is a unconstrained LS problem, with so-
lution

(41)

If holds, then two facts hold:
1) is also the solution of problem (38);
2) due to the last implication described in i), , i.e., the

estimated occupancy is a constant signal.
These two facts connect variations in the estimate with the
measured signal , considering , since they
read as

(42)

To explicit , consider that the vectorized version of (13),
namely

(43)

with white and Gaussian innovation, and the true
occupancy signal. Rewriting as

(44)

and substituting (44) into (42), we rewrite the latter as

(45)

which in turn implies . As can be seen, (45) relates
conditions on the true occupancy and the innovation process
with conditions on the final estimate .
iii): We now analyze the case when the true occupancy is

constant . In this case, condition (45) reads as

(46)

that is equivalent to

(47)

The Cauchy–Schwarz inequality yields .
Letting , the sufficient condition for (46)
becomes

(48)

In (48), is known, while is white Gaussian noise: thanks
to the PEM paradigm, , with estimated during
the system identification phase. It thus follows that:

(49)

where is a Chi-squared distribution with degrees of
freedom. Thus, with the probability of at least , will have
the following upper bound

(50)

where is the inverse of the Chi-square cdf with de-
grees of freedom for the corresponding probability . Substi-
tuting (50) into (48), we get the statement of the proposition.

Proof of Proposition 5:

In this case, we impose another constraint on the optimization
problem (19) by setting the first element in the occupancy signal
to its true value. Using the same approach as in the proof of the
Proposition 4, we will have (36) subject to ,
where is the true value of the occupancy signal at time

. Substituting the new constraint into
the cost function, one can rewrite (36) as

(51)

where

Using the same approach as the previous proof the dual problem
for (51) can be written as

(52)

where the Lagrange multipliers satisfy

if
if
if .

(53)

Notice that is invertible and thus the condition (45) for this
case reads as

(54)
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where is the -th column of and .
Notice that this is a upper triangular Toeplitz matrix, satisfying
(letting be the th row of )

(55)

This implication refers to the case where the estimator commits
the error of missing the change in the occupancy signal at time
.
The -norm above can be expanded, as before, to obtain the

component-wise equivalent condition

(56)
or using the bilinearity of inner products

(57)
Cascading now Cauchy–Schwarz and triangular inequalities
with (55) and (57) it is possible to derive the sufficient condition

(58)

or equivalently

(59)
Same considerations as in the previous case thus follow and (59)
can be rewritten as

(60)
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