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Abstract—Zonal occupant level is of great practical interest
for building energy saving under normal operations and for fast
evacuation under emergency. Though there are many existing
sensing systems to estimate this information, the problem is still
challenging due to the privacy concerns, the random human
movement, and the accumulative error. In this paper, we con-
sider this important problem and focus on infrared beam systems
that monitor the zonal arrival and departure events. We make
the following contributions. First, a rule (i.e., Rule 1) based on
the stay time is developed to reduce the accumulated estimation
error in each zone. Second, a rule (i.e., Rule 2) is designed to
coordinate the estimation among neighboring zones. A decentral-
ized estimation method is then developed using these two rules.
Third, the advantage of this method is demonstrated through sim-
ulation results and field tests. We hope this work brings insight
to zonal occupant level estimation in buildings in more general
situations.

Note to Practitioners— This paper is motivated by the zonal oc-
cupant-level estimation problem in buildings. Infrared beam sen-
sors are considered in this paper due to the privacy concern and the
low cost. An estimation method is developed to use the stay time of
the occupants to correct the local estimation and to propagate the
corrections among neighboring zones to keep the total number of
occupants as a constant. Both simulation results and field tests are
used to demonstrate the performance of this method. This method
can be easily implemented in a decentralized way, which is a salient
feature especially for large-scale commercial buildings.

Index Terms—Building energy saving, discrete event dynamic
system, occupant level estimation, wireless sensor network.
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I. INTRODUCTION

UILDING is responsible for more than 30% of the en-

ergy consumed in developed and developing countries
[1] and has great energy saving potential. The advances in
sensing and control technology now provide the opportunity to
improve the energy efficiency, comfort, and safety in buildings
bsimultaneously. Occupant distribution is an important infor-
mation to achieve this goal. Commercial office buildings are
composed of multiple zones [2], [3]. A zone could be a room,
a corridor, or a sector of a floor. Zonal occupant level is the
number of occupants in a zone. This information can be used to
predict the heating and cooling load of each zone and therefore
to coordinate the heating, ventilation, and air conditioning
(HVAC) system and energy-storage devices to improve the
energy efficiency of the building under normal conditions [4],
[5]. Under emergent conditions, this information can not only
provide an initial condition to generate an evacuation plan, but
also adjust the guidance in real time to avoid congestion [6].
Therefore, zonal occupant-level estimation is of great practical
interest.

Many systems can be used to estimate zonal occupant level,
which can be classified into two groups. The first group requires
collaboration from the occupants. Usually, the occupant is re-
quired to wear a tag. Then, the problem is converted to locate
and to track the tag. These systems usually suffer from privacy
concerns. Also when the occupants are detached from the tags
either accidentally or intentionally, the estimated occupant level
is subject to large estimation error. On the contrary, the second
group does not require such a collaboration. Infrared, video,
CO., sensors are such examples. These systems (except for the
video systems) do not reveal the identity of the occupant and
therefore protect the privacy. The sensors are usually installed
in fixed positions and powered by wired power lines. Due to
these advantages, sensing systems in this group has received
more and more attention recently. More detailed review on the
various sensing systems will be provided in Section II.

Despite the aforementioned existing systems, the occupant-
level estimation is still nontrivial in general due to the privacy
concern, the random human movement, and the balance be-
tween the estimation accuracy and the cost. In this paper, we
consider an infrared beam sensing system. These sensors are
deployed at the boarders among the zones. As shown in Fig. 1,
each set contains a pair of infrared beam sensors. When an oc-
cupant crosses the boarder, the two beams will be blocked in se-
quence. In this way, we can detect such a boarder crossing event
and identify if it is an arrival or a departure event to a zone. This
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Fig. 1. Each boarder sensor contains a pair of infrared beam sensors.

system does not reveal the identity of the occupant and has a low
cost and a high accuracy to detect the boarder crossing event. A
naive estimation method is to use the difference between the
number of arrival and departure events to a zone as an estimate
of the remaining occupant level. Though this method is well
adopted in many commercial systems, it suffers from accumu-
lated error. In other words, when a sensing error occurs (either
a false alarm or a misdetection), such an error remains in the
estimation until the system is reset.

In this paper, we develop an estimation method to improve
the estimation accuracy. This method is based on two observa-
tions. The first observation is that when there are a large number
of occupants in a zone a departure event usually happens within
a short period of time. On the contrary, when there are a small
number of occupants in a zone, departure may occur after a long
period of time. Based on this observation, we develop a rule to
adjust the estimated occupant level according to the stay time of
the occupants in a zone. This is denoted as rule 1. The second ob-
servation is the conservation of occupants. In other words, when
occupants travel among the zones, the total number of occupants
in these zones should keep constant. Thus, when an estimation
error is identified by rule 1 and a correction term is generated
to improve the estimation accuracy of the current zone, such a
correction term is also used to correct some neighboring zones,
according to the transition probability of the occupant from (or
to) the neighboring zones. This is denoted as rule 2. More de-
tails of these rules will be shown in Section IV. Based on these
two rules, a decentralized estimation method is then developed
and demonstrated by simulation and field tests.

The remainder of this paper is organized as follows. We
briefly review related literature in Section II, mathematically
formulate the occupant level estimation problem in Section III,
provide the two rules, and the estimation method in Section IV,
demonstrate the performance of the method using simulation
and field tests in Section V, and conclude in Section VI.

1483

II. LITERATURE REVIEW

We briefly review related works in this section. Many sensing
systems exist to estimate the zonal occupant level in a building.
As aforementioned, these systems can be classified into two
groups, namely the one that requires the collaboration from the
occupants and the other one that does not. Examples of the
first group include RADAR [7], SpotON [8], LANDMARC [9],
Ekahau [10], UWB [11], (active and passive) RFIDs[12], Active
Badge [13], and Cricket [14]. These systems require the occu-
pants to wear a tag (also called badge or mote in some systems),
and then locate and track the movement of the tag. For those that
use the received signal strength indicator (RSSI) during the lo-
calization, the systems usually suffer from the multi-path effect.
For those that use the ultrasonic signals, usually a large number
of nodes need to be deployed to cover the entire area. When the
occupant is detached from the tag (either intentionally or acci-
dentally), the occupant cannot be localized neither tracked.

Examples of the second group include video cameras, CO,
sensors, energy consumptions, and infrared. Video cameras
[15]-[18] are usually sensitive to background lighting, and vio-
late the privacy of the occupants. CO; sensors usually drift and
energy sensors in general have low accuracies to estimate the
occupant level in a zone [19]. There are two types of infrared
sensors, namely the motion sensors and the beam sensors. The
motion sensors are also called presence sensors and have been
widely applied in many commercial and public buildings to
detect whether a zone is occupied or not. Such information can
then be used for lighting control and HVAC control. However,
when there are multiple occupants in the same zone, motion
sensors cannot tell the exact number of the occupants. Infrared
beam sensors are usually deployed on the boarders among
the zones. They can detect the arrival and departure of the
occupant from one zone to another. Infrared sensors (especially
those that are only sensitive to a short range of the temperature
around 37 °C) barely have false alarms. However, when the
corridor is wide and multiple occupants cross the beam sensors
at the same time, misdetection usually happens.

Fusion information collected by multiple sensors usually
achieves higher estimation accuracies [15], [20], [21]. Various
models on human movement under normal and emergent
conditions exist [22]-[25]. The occupant-level estimation can
be improved using movement models, which will later on be
demonstrated by numerical results in this paper.

III. PROBLEM FORMULATION

Building is composed of multiple zones. A zone could be a
room, a corridor, or an aggregation of multiple rooms. Let each
zone be a node, and the connections among the zones be the
edges. Then the zonal structure of a building can be modeled as
a graph. Consider such a graph G = {V, £}, where V is the set
of zones and £ is the set of edges. An edge between zone i and
j is denoted as (4, j). Let N = |V| and M = |&|. For example,
the layout of a section of a building is shown in Fig. 2(a). The
corresponding graph model is shown in Fig. 2(b).

Consider a discrete time version of the problem, where each
stage represents a period of time with length A. Then, the kth
stage represent the period of time [kA, (k 4+ 1)A). To simplify
the notation, we will use time &k and kA interchangeably in the
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Fig. 2. Layout of a section of a building and the graph model (layout 1).

following. Let n;(k) be the number of occupants in zone i at
time k. Then, n(k) = (ni(k),....nn(k)) is the state vector
at k. Let e; j(k) > 0 be the number of arrivals from zone i to
zone j within the kth stage. Then e(k) = (e; ;(k), (i,7) € &)
represent the number of arrivals and departures among all of the
zones during the kth stage. In stage k, let the total number of
arrivals to zone i be e, ;(k) and the total number of departures
from zone i be e; .(k), i.e.,

enilk) = > ejulk)
JEV,(j.1)EE

6,‘7*(]{?) = Z 6i7j(k).
JjeEV,(1,5)€€

A. Sensor Model

There are infrared beam sensors deployed at all of the
boarders among the zones that can detect the boarder-crossing
events. Let é; ;(k) denote the observed number of movements
from zone 7 to j in stage k. Due to the sensing error, we usually
have é; ;(k) # e; ;(k). In particular, when there is a single
arrival from zone i to j in k, i.e., ¢; ;(k) = 1, we assume that

Pr{é;(k) = —1les (k) = 1} =p; "

Pr{é;;(k) = 0le; (k) =1} =p{
Pr{é;;(k) = 1ei;(k) =1} =p;
Prile; (k)| > 1lei (k) = 1} =0

where p; 1, p%,p! > 0and p; 1 + p? + p! = 1. Similarly, we
can define

ey = > &k,
JEV,(§1)EE
Ginlk) = D (k).

jev,(ig)es
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Let (k) = (& ;(k), (4,7) € £). Assume the sensing error for
all the arrivals (and departures) are independent. When there are
multiple arrivals from zone i to j in k, i.e., e; ; (k) = e > 1, we
have

Pr{é; (k) = éle; (k) = e}

= Y TIPriesk) =éle (k) =13

é1+--8.=eT=1

Infrared beam sensors usually do not have false alarms. Thus,
we have

PI‘{éiJ‘(k) > O‘G.i’j(k) = 0} =0.

B. Occupant Movement Model

We use a Markov chain to approximate the movement of the
occupants. Let p; ; denote the probability for an occupant to
move from zone ¢ to zone j within a stage. Then, we have

me‘ =1.

JEV

Assume that the movement of the occupants is identically
independent.

C. Estimation Problem

Note that we have
ni(k + 1) = ni(k) — ei+(k) + e.i (k)

which shows that the total number of occupants in zone ¢ at k&
+ 1 equals the occupant level in this zone at k& adjusted by the
total number of arrivals and departures during the kth stage. Let
7;(k) be the estimated number of occupants in zone ¢ at k, and
f;(k + 1) be the observed number of occupants in zone i at k
+ 1. Then, we have

Rilk + 1) = ni(k) — &« (k) + éxi(k).

A naive estimation (NE) algorithm uses #,(k+1) as an estimate
of ni(k + 1), i.e, AVE(k + 1) = ANP(k + 1). However, this
estimation may be poor due to the accumulation of the sensing
error. Instead, a correction term n:*(k + 1) is used to improve
the estimation, i.e.,

Ai(k+1) = Ak +1) +n (k+1). (1)

There are different performance metrics for an estimation. We
use error rate in this paper. The error rate at time & is defined as

S Ina(k) — s(h)
c(n(k), n(k)) = =——

2)

where Z is the total number of occupants in the zones. Note
that under the conservation of the total number of occupants,
each single miss-count/over-count causes error in two zones.
Therefore the error rate in (2) is adjusted by a factor of 2 in the
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Fig. 3. Sample path of the occupant level in zone .

denominator. We are interested in the average error rate over the
given T stages, i.c.,

T
F(L)= 2B | Y ek LG - 1) ©)
k=1

where H(k — 1) = (IIp,&(1),...,é(k — 1)) represents all of
the historical information that is available at time % including
the a priori knowledge of the initial occupant distribution II,
and the observed events in each of the stage 1, ...,k — 1. Policy
L is a mapping from the space of all of history until time % to
the space of estimated occupant distribution. We want to find a
policy to minimize f(L), i.e.,

min £(L). )
Note that each policy L generates a correction term n (k + 1)

in (1). In other words, we are interested in a policy that can
generate the correction terms to minimize the average error rate.

IV. MAIN RESULTS

A. Two Rules

We have the following two observations. First, people do not
stay in a zone forever. When there are a large number of occu-
pants in a zone, a departure usually happens within a short pe-
riod of time. Second, the total number of occupants in all of the
zones does not change when occupants move among the zones.
Based on these two observations, we provide two rules.

1) Rule I—Correction Generation: The idea is to adjust the
estimation of the occupant level in a single zone based on the
stay time. Consider a sample path of the occupancy level in zone
t,{n:(k),k =1,...,T}. Suppose the departure events occur at
time {dy, d2, ...} and the last (arrival or departure) event before
the jth departure occurs at time ¢;. Then, we have a sequence
of pairs {(n;(t;),d; —t;),j =1,2,...}. Each such pair means
that there are n;(¢;) occupants in the zone and one of them
leaves after d; — t; units of time. We show one example in
Fig. 3. Because the occupants follow independent identically
Markovian movement model, we have

Pyi(i,n,t)

= Pr {No departure within ¢ stages|n;(k) = n}

= (sz)n

Py(i,n,t)

= Pr{The next departure is within t stages|n;(k) = n}
=1-(pi,)"-
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Fig. 4. Relationship among €, €2, Tiin, and Tiax.

Let us define

Tin(?,n) = max {t|P1(i,n,t) < e}
Tmax (i, n) = min {t| P2 (i,n,t) < ez}

where €1, €5 € [0, 1] are two constants that are set by the user.
The relationship among €1, €3, Tinin, and Ti,,x are shown in
Fig. 4.

By taking small values of €1 and €5, this means that, if there
are n occupants in zone #, then with a large probability one
should expect to see a departure within [Trin (2, ), Trnax (7, 7)]
stages. In other words, if one has an infinite long sample path,
and obtains {d; —t;,j =1,2,...}, then

J

1 .

]E{I}»loo j J;I(d] — t] S 71min (7’7nl(t.7))) S €1
1 J

i ST > T i) <

where I(A) is an indicator function, I(A) = 1 (or 0) if the event
A is true (or false).

In practice, due to the sensing error, we do not know
the sample path {n;(k),k=1,...} for sure. Instead, we
have a sample path of the estimated occupancy level
{ni(k),k =1,...}. Then, we can define the estimated values
d; and f;, respectively. Then, we define

J
1 = .
Omin — j ZI (d] - tj § Tmin (27 nl(t])))
=1
1 J
Omax = 7 1 (d_] - 2?j > Thax (i7 n; (EJ)))

1

Y

where J is the total number of departures that have been ob-
served in zone ¢ so far. If &, > €1, this means that the de-
partures happen faster than expected. This implies that there are
more occupants in zone ¢ than estimated. If 7,ax > €2, this
means that the departures happen slower than expected. This
implies that there are less occupants in zone ¢ than estimated.
Also note that we always require the estimated value 72; (k) > 0.
This leads to the following rule:

n2k+1) =T Guin(k +1) > €1) — I (Frmax(k 4+ 1) > )
+ Ik + 1) + I (Gmin(k +1) > 1)
— I{Fmax(k +1) > €3) <0)
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where &pmin(k + 1) and Fax(k + 1) are the values of 7p;, and
Jmax that are calculated using all of the sample path by stage &
+ 1.

The idea of the correction generation is to correct the estima-
tion if the departures occur significantly faster or slower than
expected. In order to justify this idea, we introduce
Ai('l’h t)
= Pr{The next departure is within ¢ stages|n;(k)=n+1}

— Pr{The next departure is within ¢ stages|n;(k)=n}
=Ps(i,n+1,t) — Pa(i,n,t)
= (ha)" (1= pia)-

We have

Theorem 1: 1f

Pr{The next departure is within ¢ stages|n;(k) = n}
— Pr{The next departure is within ¢ stages|n;(k) = 7}
> Ai (ﬁ7 t)
then n > 7.

Proof: We prove by contradiction. Suppose n < 7. Then,
we have

Pr {The next departure is within ¢ stages|n;(k)=n}
— Pr {The next departure is within ¢ stages|n;(k)=7n}
+ n t n
= (pi,i) - (PH)
= ()" (1 (k)" ")
n
< (sz) (1 - pg,i)
=A; ('ﬁ, t).
This contradicts the condition in the theorem. So the assumption
that n < 72 is wrong. We have n > #i. This completes the proof.

[ |
Theorem 2: 1f

Pr{The next departure is within ¢ stages|n;(k) = n}
— Pr{The next departure is within ¢ stages|n;(k) = n}
>A;(R—1,1)
then n < 7.
Proof: We prove by contradiction. Suppose n > n. Then
we have
Pr {The next departure is within ¢ stages|n;(k)=n}
— Pr{The next departure is within ¢ stages|n;(k)=n}
= (k)" (h)"
= \Pii Pis;
n n—-n
= (sz) (1 - (piz) )
< (via)" (1= pis)
= A'i (’I’L, t)
<Ay (7 —1,1).
This contradicts the condition in the theorem. So the assumption

that n > 7 is wrong. We have n < 7. This completes the proof.
]
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Theorem 1 shows that if the departures happen faster than ex-
pected, then there are more occupants than estimated. Theorem
2 shows that if the departures happen slower than expected, then
there are less occupants than estimated. This justifies the idea of
rule 1.

2) Rule 2 — Correction Propagation: The idea is that occu-
pants only move among the neighboring zones. Therefore, when
a correction n2* (k + 1) = 1(or —1) is generated for zone i at
stage k + 1, this correction should be propagated to the neigh-
boring zones according to the movement model among these
zones. In particular, if n£(k + 1) = 1, this means that there
are more occupants in zone 4 than estimated. This “miscounted”
occupant may have come from some neighboring zone j € 4;,
where A; = {j|(j, %) € £}. So there are less occupants than es-
timated in one of the zones in A;. To be specific, we have

Dji

E P

le A,

njA(k: +1)=—-1w.p. pfll =

where w.p. is short for with probability. If n®(k + 1) = —1,
this means that there are less occupants in zone ¢ than estimated.
This “overcounted” occupant may have moved to some neigh-
boring zone j € A;. So there are more occupants than estimated
in one of the zones in A;. To be specific, we have

A ~1_ DPij
ns(k+1)=1wp.p, ;, = =>—
i ) BT pia
lcA;

Note that the probabilities p;Lll and p;_ ]-1 can be estimated from

k
Z éj,z(t)
pli =7 )
> Exilt)
=0
k
Z éi,] (t)
p;jl - t:O (6)
> €ixlt)
=0

Note that >, 4. p;Lll =1land > 4, p[j =1

The idea of correction propagation is to correct the estimates
in the neighboring zones to keep the total number of occupants
as a constant. When the sensors are identical, miscounted and
overcounted events on an edge is proportional to the total
number of events that has happened on that edge. This explains

(5) and (6).

Algorithm Design

In order to demonstrate the performance of rules 1 and 2, we
design three algorithms, namely Algorithm 1, 2, and 3. Algo-
rithm 1 is naive estimation and does not use any rule. Algorithm
2 only uses rule 1 to correct the estimation. Algorithm 3 uses
both rules. Note that if each zone has a computing node, then
all three algorithms can be implemented in a decentralized way,
i.e., the computing node in each zone can update the estimated
number of occupants in that zone based on the arrivals and de-
partures to that zone, the correction that is generated by rule 1,
and the correction that is propagated from the neighboring zones
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by rule 2. We will demonstrate the performance of this decen-
tralized version by field test in Section V-B. Algorithm 3 Naive estimation with correction and propagation

Algorithm 1 Naive estimation

1: Initialize 7;(0),i = 1,..., N,k = 0.
2: Observe é; ;(k), (i,j) € &.
3:fori =1to N do
40k +1) = a;(k) — & . (k) + é.:(k).
5:7;(k + 1) = max{n;(k + 1), 0}.
6: end for
7k =k+4 1.
8:if k < T then
9: Go to step 2.
10: else
11: Stop.
12: end if

Algorithm 2 Naive estimation with correction

1: Initialize 72;(0),i = 1,..., N,k = 0. Set €1 and e5.
2: Observe é; ;(k), (i,j) € &.
3:fori =1to N do

4: 0k +1) = (k) — é; . (k) + &, i (k).

5: Update the series of (occupant level, departure time)
pair (ﬁl(t_]),d] — {J) ,j = 1, ceey J.

6: Grin(k + 1) = (l/J) ZJ
(d; — t; < Toin (1,73(25))).
)Z

7: Fmax(k + 1) = (l/J
(d —1; > Trax (i, 7 (T )))

8:

n(k+1)
=1 (Gumin(k+1) > €1) — I (Tmax(k +1) > €2)
Ik +1) + T (Gmin(k + 1) > €1)
— I(Fmax(k+1) > €3) <0).

9:7;(k+1) = A (k+1) + nP(k +1).
10: end for
11: k= k+ 1.
12:if kK < T then
13: Go to step 2.
14: else
15: Stop.
16: end if

1: Initialize 71;(0),i = 1,..., N,k = 0. Set €1 and €.
2: Observe é; ;(k), (i,7) € €. Setn®(k+ 1) = 0,i € V.
3:fori=1to N do
4:7;(k 4+ 1) = 7 (k) — é;.. (k) + é.i(k).
5: Update the series of (occupant level, departure time)
pair (7;(Z;),d; — ;) , 5 =1,...,J.
6: Fmin(k + 1) = (1/J)
(d —t; < Toin (3, 7; )))
)

Py

7: Tmax(k + 1) = (1/J Z

(dj — Tj > Toax (i, i ().

8:

n(k+1)
=1 (Fmin(k +1) > €e1) — I (Frmax(E+1) > €2)

+I(A;(k+ 1) + I (Gmin(k+1) > €)
— I(Fmax(k + 1) > e2) < 0) + n2(k + 1).

9:if n2(k + 1) = 1 then
10: Pick j € A; w.p. p;“ll
:nf(k+1) =nf(k+1) - 1.
12: else if n*(k + 1) = —1 then
13: Pick j € A; w.p. p;jl.
14:nf(k+1) = nf(k+1) + 1.
15: end if
16: end for
170k +1) =ak+1) +n2(k+1).
18: k= k+1.
19:if £ < T then
20: Go to step 2.
21: else
22: Stop.
23: end if

V. NUMERICAL RESULTS

Here, we demonstrate the performance of the algorithms
by simulation results in Section V-A and by field test in
Section V-B.

A. Simulation Results

1) Layout 1: The layoutin Fig. 2(a) is part of the FIT building
in Tsinghua University, Beijing, China, where zones 1-11 are
rooms, zones 12 and 13 are corridors, and zones 14 and 15 are
exits. Instead of assuming a Markovian movement model for the
occupants, we have used video cameras to tape the movement
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Fig. 5. Total number of occupants in the rooms and corridors throughout a day.
(x-axis: hour; y-axis: occupant level).

of the occupants and manually obtained the ground truth for a
single day. The total number of occupants in the room zones and
corridor zones are shown in Fig. 5. We use these real trajectories
of the occupants in our simulation. The randomness comes from
the sensors and the estimation methods.

To apply algorithms 2 and 3, we set e; = 0.001, e5 = 0.001.
We discretize the time and let each stage be 1 s. In order to
calculate 71, and Thax, We need to estimate p; ;, which is the
probability for an occupant to stay in the same zone after one
stage. This probability depends on the zone. We divide the zones
into two groups, namely the room zones and corridor zones. For
the room zones, suppose that the occupant may stay in the zone
for longer than 77 = 4 hours w.p. 3. Then, we have

pg}:62’ izl,...711.

Therefore, p;; = 0.9995, ¢ = 1,...,11. For corridor zones,
suppose that the occupant may stay in the zone for longer than
T5 = 10 s w.p. €5. Then, we have

pi=e, i=12.13. (7)
Therefore, p; ; = 0.5012, i = 12, 13. Note that this probability
is only used in the algorithms to generate the estimation, but not
to simulate the movement of the occupants. As aforementioned,
the movement of the occupants in the simulation are from the
ground truth and are fixed.

Infrared beam sensors are deployed on each edge, which usu-
ally do not have false alarms. These sensors do have miss detec-
tion w.p. p? = 0.005, and even mistakenly detect the moving
direction of the occupants w.p. p; 1 = 0.005. Overall speaking,
if an occupant passes such an infrared beam sensor, this event
is detected correctly w.p. pL = 0.99.

We are interested in the error rate of the following four
methods.

NE Implement algorithm 1 in all of the zones.
M1  Implement algorithm 2 only in the corridor zones.
M2  Implement algorithm 2 in all of the zones.
M3  Implement algorithm 3 in all of the zones.

Assume that the initial distribution of the occupants are
known to the methods, i.e., 71;{(0) = 0, 7 # 14. Then, the error
rate curves for the four methods are shown in Fig. 6(a). We
can see that M1 has smaller mean error rate than NE, which
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Fig. 6. Error rate curves of the four methods with perfect knowledge on the
initial occupant distribution. (x-axis: hour; y-axis: error rate).
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Fig. 7. Error rate curves of the four methods with imperfect knowledge on the
initial occupant distribution. (x-axis: hour; y-axis: error rate).

shows that rule 1 helps to reduce the error. M2 is better than
M1 because rule 1 is applied to all of the zones in M2 but only
to the corridor zones in M1. M3 is the best, because both rules
are applied. We can also see that NE has accumulative error
over the time, i.e., if an error happens early in the morning,
that error will remain in the estimation until the system is
reset. Though M1 can cancel part of these accumulative error,
such a cancellation only applies to the corridors and are not
propagated. Therefore, M1 also has accumulative error. M2
and M3 manage to cancel the accumulative error by the end of
the day. This is a nice feature comparing with NE.

2) Impact of Knowledge on the Initial Distribution: Assume
that the knowledge of the initial distribution of the occupants
are subject to error. We show the error rate curves for the four
methods in Fig. 7(a) and the mean error rate in Fig. 7(b). We can
see that the initial error significantly degrades the performance
of NE and M1. M2 and M3 successfully reduce the error rate in
the beginning. The mean error rate of M2 is slightly higher than
that in Fig. 6(b). The performance of M3 almost is not affected
by the initial error. This shows that M3 is robust to the initial
error. Note that traditional methods such as NE usually require
to start from the midnight when the building is usually empty, so
the performance degradation that is caused by imperfect initial
knowledge can be minimized. However, the above results show
that M3 can start from any time in a day, which is much more
flexible.

3) Impact of Occupant Population: Recall that Z is the total
number of occupants in the building. From Fig. 5, we can see
that Z < 30 in the previous simulations. In order to demonstrate
the performance of the four methods under different occupant
population, let Z = 10, 20, ..., 100. We assume that the move-
ment of the occupants follow a Markov chain. Using the ground
truth of the trajectories, we estimate the transition probabilities
p;,;. For each value of Z, we use five replications to estimate the
average mean error rate of the four methods and show in Fig. 8.
We can see that M1, M2, and M3 are better than NE. M2 and
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Fig. 8. Mean error rate of the four methods under different occupant popula-
tions (averaged over five replications).
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Fig. 9. Mean error rate of the four methods under different sensing accuracies
(averaged over five replications).

M3 are better than M 1. The average mean error rate of all of the
four methods reduce when the occupant population increases.
One reason is that when there are more occupants in the area,
miscounts and overcounts tend to cancel each other more often.
This leads to a smaller error rate.

4) Impact of Sensing Accuracies: Consider different sensing
accuracies. Let the probability of correct sensing p} = 0.5, 0.6,
0.7, 0.8, 0.9, and 0.99. For each value ofpé, let pg = p;l =
(1 — pl)/2, respectively. Let Z = 30. We run five replications
and show the average mean error rate of the four methods in
Fig. 9. We can see that the performance of all four methods be-
come worse when the sensors are less accurate. M3 performs
better than M2, which in turn is better than M1. NE performs
the worst. It is noticed that the mean error rate of the NE method
starts to drop when the sensing accuracies p’ drops beyond 0.7.
One reason is that in our sensor model, when pi is low, both
miss detection and detection with reverse direction occur more
often. This makes the observed occupant level in some zones
reach negative more often. Because in the NE method, the ob-
served occupant level will be corrected to 0 if it is negative, this
correction helps to reduce the error rate. In short, M3 performs
the best under all of the sensing accuracies.

5) Impact of Topology: In order to test the impact of the
topology, we consider another layout as shown in Fig. 10. There
are eight zones in total. Zones 1-3 are rooms. Zones 4—6 are
corridors. Zones 7 and 8 are exits. Note that the graph model
of layout 1 (Fig. 2) is a tree, but there are cycles in Fig. 10.
There are 30 occupants in total. All of the occupants are in node
7 in the beginning. Their movements follow a Markov chain.
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Fig. 11. Error rate curves of the four methods with perfect knowledge on the
initial occupant distribution. (x-axis: hour; y-axis: error rate).
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We follow the parameter setting in Section V-Al and set p; ; =
0.9995 fori = 1, 2,3 and p; ; = 0.5012 fori = 4, 5, 6. We
assume that the occupants move among the neighboring zones
with equal probabilities, i.e., p; ; = 1/|4;|,i # j. The sensor
model is p! = 0.99, p? = 0.005, p, 1 = 0.005. When the initial
distribution of the occupants are known, the error rate curves
for the four methods are shown in Fig. 11. When the knowledge
of the initial distribution is subject to error, the error rate of the
four methods are shown in Fig. 12. We can see that M3 is better
than M2, M2 is better than M1, and M1 is better than NE in both
cases. NE and M1 have positive terminal error rate. M2 and M3
successfully remove all the accumulative error by the end of the
day.

B. Field Test

We use layout 1 to run the field test. Recall that this is part of
an office building in the campus. Infrared beam sensors are de-
ployed on each edge to monitor the edge-crossing events. Video
cameras are used to record the movement of the occupants. We
then obtain the ground truth manually. In order to make the es-
timation system easily scale up, we test a decentralized version
of the methods. In particular, a computing node is deployed in
each zone. When a sensor detects an event, this information is
sent to the computing nodes in both zones. All four methods
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Fig. 14. Error rate curves of the four methods in one day in the field test.
(x-axis: time; y-axis: error rate).

are implemented in the same time, and decentralized in each
computing node. The estimations are transmitted to a computer
simply for record. By comparing the estimated occupant dis-
tribution with the ground truth, the error rate can be calculated.
The daily mean error rates of the four methods in seven days are
shown in Fig. 13. We also show the error rate curve in a partic-
ular day in Fig. 14. We can see that M1, M2, and M3 are better
than NE. NE has a significantly large terminal error rate. By ap-
plying rule 1 to the corridors, M1 achieves a small terminal error
rate. By further applying rule 1 to all of the zones and incorpo-
rating rule 2, M2 and M3 achieve much smaller terminal error
rates, respectively. Note that the performance of M2 and M3 is
much better than NE and M1 in the afternoon in Fig. 14. This is
because that there are many arrival and departure events in that
afternoon, which improves the estimation of &y,in and & ax and
improves the performance of M2 and M3.

VI. CONCLUSION

In this paper, we consider zonal occupant distribution estima-
tion in buildings. Two rules are developed. Rule 1 compares the
stay time and the estimated occupant level. Under the assump-
tion that more occupants in a zone lead to faster departure, a
correction term to the estimation may be generated. Rule 2 then
propagates this correction to the neighboring zones to keep the
total number of occupants as a constant. The performance of the
two rules are demonstrated by simulations and field tests. The
results show that both rules reduce the error rate. When com-
bined together, these rules usually can cancel the accumulative
error by the end of the day. These rules have good performance
under imperfect knowledge of the initial occupant distribution,
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different occupant population, different sensing accuracies, and
different layouts. Also, these rules can be implemented in a de-
centralized way as shown in the field test.

Note that when multiple sensing systems exist on the edge,
fusing these information usually improve the sensing accuracy,
which can improve the performance of the two rules. Also, if
there are sensors in each zone to detect whether the zone is oc-
cupied or not, this information can be used to further improve
the two rules.
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