
810 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

Reaching Law Approach to the Sliding Mode Control
of Periodic Review Inventory Systems

Andrzej Bartoszewicz and Piotr Leśniewski

Abstract—In this paper, a discrete-time sliding mode inven-
tory management strategy based on a novel non-switching type
reaching law is introduced. The proposed reaching law eliminates
undesirable chattering, and ensures that the sliding variable rate
of change is upper bounded by a design parameter which does not
depend on the system initial conditions. This approach guarantees
fast convergence with non-negative, upper limited supply orders,
and ensures that the maximum stock level may be specified a priori
by the system designer. Furthermore, a sufficient condition for
100% customers’ demand satisfaction is derived. The inventory
replenishment system considered in this paper involves multiple
suppliers with different lead times and different transportation
losses in the delivery channels.

Note to Practitioners—This paper presents a new periodic review
inventory management strategy which prevents from exceeding
the available storage capacity, ensures smooth order evolution
and helps attenuate the bullwhip effect. The strategy is scalable,
computationally efficient, and easy to implement in any typical
inventory replenishment system. The strategy explicitly accounts
for transportation losses and different lead times of commodity
suppliers.

Index Terms—Digital control, sliding mode control.

I. INTRODUCTION

C ONTINUOUS time variable structure and sliding mode
control systems were originally introduced about 60 years

ago in Russia [15], [40]. Their exceptional robustness [13] and
good computational efficiency, have immediately gained them
much interest and many advocates in the control engineering
community [12], [14], [18]. A few years later, discrete-time
slidingmode control systems have also been proposed [32], [41]
and then analyzed in numerous significant studies [1]–[3], [5],
[10], [11], [16], [17], [19], [20], [23]–[26], [28]–[31], [33], [35],
[42]–[44].
Both discrete and continuous time sliding mode controllers

push the system representative point (state vector) onto a prede-
termined hypersurface in the state space. This can be achieved in
two different ways. Either assuming a certain control algorithm
and demonstrating that this algorithm guarantees stability of the
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slidingmotion on the hypersurface, or applying the reaching law
approach. In the latter case the desirable evolution of the sliding
variable is first specified, and then a controller which ensures
that the variable changes according to the specification is deter-
mined. The reaching law approach was first introduced by Gao
and Hung for continuous time systems [18]. In that paper, con-
stant, constant plus proportional, and power rate reaching laws
were considered. Then, in paper [19] (see also [4] for further
comments), the idea of constant plus proportional rate reaching
law has been extended to discrete-time systems. Since then the
reaching law approach to the control of discrete-time systems
has been used by many researchers [9], [20], [22], [28], [31],
[33], [34], [38]. Even though much research in this field has
already been done, the original approach proposed in [19] is
still very popular. Therefore, in this paper, we extend the results
of [19] in order to obtain a non-switching discrete-time sliding
mode controller [3], [5] and to ensure faster convergence of the
controlled system without increasing the magnitude of the con-
trol signal. The first of the two objectives is accomplished with
the application of the quasi-sliding mode definition proposed in
[5], and the latter one is achieved by the introduction of a vari-
able, state dependent convergence rate factor in the proposed
reaching law. In the second part of the paper, we apply the pro-
posed reaching law to design a new periodic review inventory
replenishment strategy [8], [21], [22], [27], [36], [37], [39] for a
warehousewithmultiple remote suppliers and delivery channels
characterized by different commodity loss factors. We demon-
strate favorable properties of the designed strategy which could
not be achieved with the application of the original constant
plus proportional reaching law. In particular, we show that our
reaching law ensures non-negative upper bounded supply or-
ders which do not depend on the warehouse capacity, and there-
fore are fairly desirable in the considered system. Furthermore,
we demonstrate that our reaching law-based controller elimi-
nates the risk of exceeding warehouse capacity and may ensure
full customers’ demand satisfaction. The work presented in this
paper differs from our earlier results [22] in the following three
aspects. First, a totally new reaching law appropriate for any dy-
namic system is proposed in this paper, second, the supply chain
model considered here explicitly takes into account transporta-
tion losses which was not the case in [22], and finally a novel
feasible order allocation among various remote providers is in-
troduced.

II. NON-SWITCHING REACHING LAW

Let us consider the following discrete-time system:

(1)
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where is the state vector , is the state
matrix, is themodel uncertaintymatrix, is the input vector,

is a scalar input, and is a disturbance vector. We
denote the demand state vector by , and define the closed-loop
system error as . Then, we select the sliding
variable as

(2)

With this choice of variable , equation deter-
mines the sliding hyperplane. The elements of
vector are selected in such a way that and that the
closed-loop system exhibits the desired performance. This can
be done in a few ways including quadratic optimization [26],
pole placement method [19], dead-beat design [6], [23], etc.
In this paper, the quasi-sliding mode is defined similarly as in

[5], i.e., it is such a motion of the system that its representative
point (state) remains in a given band around sliding hyperplane

, where is defined by (2). According to this
definition, the representative point (state of the system) in the
quasi-sliding mode is confined to a specified vicinity of the hy-
perplane. Contrary to the definition introduced in [19], in this
paper, crossing the hyperplane is allowed but not required.
Let us now consider the following reaching law

(3)

where

(4)

represents the influence of the model uncertainty on the sliding
variable evolution and

(5)

denotes the effect of disturbance on this variable. Furthermore,
and are the mean values of and , namely

(6)

where are upper and lower bounds of , and are
upper and lower bounds of , i.e.,

(7)

The notation used in (4)–(7) is adopted from [19].
Convergence rate factor in (3) is given by

(8)

where is a design constant. The constant is chosen so that
, where and represent the greatest possible

deviation of and from their mean values

(9)

Appropriate choice of allows to find a satisfactory com-
promise between excessive magnitudes of the control signal

generated in the system, and sluggish convergence to the
vicinity of . The proposed reaching law has two
major advantages over the one presented in [19]. First, it
does not contain a discontinuous term, so it does not lead to
chattering. Second, since increases with the decrease
of , our reaching law results in faster convergence and
better robustness with the same bounds on the control signal
magnitude.
In order to find the control signal which ensures that

the sliding variable evolution is indeed described by (3), we use
(1) to rewrite (2) as follows:

(10)

Then, comparing (3) and (10), we obtain

(11)

Since all terms in (11) are either constants, or variables which do
not depend on unknown terms or , this is a feasible
control signal which can actually be implemented in the system
considered in this paper.
In the next two theorems, we demonstrate that once the rep-

resentative point of system (1) has reached a band around the
sliding hyperplane , it remains inside the band, and
also that the proposed reaching law makes the point always
move towards this band.
Theorem 1: If the following inequality:

(12)

is satisfied at some instant , then it is also true for any
.

Proof: From (3), we observe that increases
with the increase of . Therefore, even assuming the
most disadvantageous possible influence of the disturbance and
model uncertainty, if (12) is satisfied for some , then from (3),
we obtain

(13)

Using this observation and assumption (12) by virtue of the prin-
ciple of mathematical induction, we conclude that (12) indeed
holds for all .
Theorem 2: If the absolute value of is greater than the

right hand side of (12), then converges, at least asymp-
totically, to the band specified by (12).

Proof: In the proof, we will consider two cases, namely,
the positive and negative values of .
Case 1: If

(14)
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Fig. 1. Inventory supply model.

then using (3), we obtain

(15)

Since , the difference
is negative and it approaches zero only if tends

to zero. This proves that if initial value of is positive, then it
asymptotically converges to the band specified by relation (12).
Case 2: Similarly if

(16)
then again, using (3), we obtain

(17)
Inequality (17) shows, that if (16) is satisfied, then difference

is positive and it approaches zero only if
tends to zero.
Taking into account the conclusions of both cases, we find

that if lies outside the band around specified
by (12), then it asymptotically converges to this band.

III. INVENTORY SUPPLY MODEL

In this section, we consider an inventory management system
with remote providers. The transportation channel between
the th provider and the warehouse is character-
ized by its lead time and commodity loss factor .
Furthermore, each of the providers has its own maximum ad-
missible supply rate, i.e., the greatest amount of goods that it
can send during one review period. This amount, for the th
provider is denoted by .
The commodities obtained from the providers are used to sat-

isfy an a priori unknown consumers’ demand. The orders for the

commodities are generated by the controller located at the distri-
bution center. The control signal determines the total amount
of supplies requested from all of the providers. This value is dis-
tributed among the providers, proportionally to the maximum
amount of goods they can send, i.e., supplier receives an order
equal to . The block diagram of the
periodic review inventory system considered in this section is
shown in Fig. 1. It is assumed, that each lead time is a mul-
tiple of the review period , i.e., , where is a posi-
tive integer. In fact, this is a well justified assumption, since even
if the actual order procurement time is a non-integer multiple of
the review period, still the arrival of goods at the warehouse
is detected by the enterprise management system only at dis-
crete-time instants. Therefore, this time is actually rounded up to
the nearest integer multiple of . The warehouse stock level at
time is denoted by . The consumers’ demand is mod-
eled by an a priori unknown function of time , bounded
by a known constant . If the amount of stored goods is in-
sufficient, the demand cannot be fully covered. Therefore, an
additional function is introduced, which represents the
amount of goods actually sold to the customers. For any ,
the following inequalities hold:

(18)

The warehouse is assumed to be empty prior to the beginning
of the control process, i.e., . Moreover, the first
order is sent at , i.e., . The inventory
stock level for can therefore be obtained as the differ-
ence between all acquired and sold goods

(19)

where .
We can represent all providers with equal lead times as a

single “aggregate” supplier, so as to get a simplified, equivalent
version of the system model. The amount of commodities that
arrive at the distribution center from this “aggregate” supplier
is equal to , where

(20)
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for and . Naturally, if no
provider has the lead time , then the corresponding coefficient

. Now, we can express the stock level as follows:

(21)

We can also represent the above relation in the standard state
space form

(22)

where is the state
vector, is the on-hand stock level. The re-
maining state variables are the delayed values of the control
signal, i.e.,

(23)

for . is state matrix

...
. . .

... (24)

and , , and are vectors

... ...
...

(25)

The desired state of the system is , where
is the demand level of the on-hand stock. In general, the

bigger parameter is chosen, the greater amount of goods has
to be accommodated in the warehouse and the better demand
satisfaction is achieved. Still, the effect of this parameter on the
overall system performance will be more precisely analyzed in
the next section.
Closer analysis of the system described in this paper reveals

that its total control signal is limited by the following constraint:
. This precludes the use of a linear

controller, as the magnitude of its output would strongly depend
on the initial conditions of the system and could not satisfy the
constraint. Therefore, in the next section, we propose a non-
linear sliding mode controller.

IV. CONTROLLER DESIGN

In this section, we will develop a sliding mode controller that
ensures the desired sliding variable evolution. We begin by se-
lecting the elements of vector , which describe the sliding hy-
perplane, so that the closed-loop system exhibits dead-beat char-
acteristics. First, we calculate the control signal needed to sat-
isfy as

(26)

and substitute it into (22). This results in the following state
matrix of the closed-loop system:

...
. . .

...

(27)

which has the following characteristic polynomial

(28)

We have already assumed that . This condition and rela-
tion (25), imply . A linear discrete-time system is asymp-
totically stable if and only if all of its eigenvalues lie inside a unit
circle on the -plane. Moreover, to obtain finite time error con-
vergence to zero the characteristic polynomial (28) should have
the following form:

(29)

We find that (28) reduces to (29) when vector is chosen as
follows:

for (30)

We observe, that with this choice of vector the variable
has a clear physical meaning, i.e., it represents the difference be-
tween the desired warehouse stock level and the sum of amounts
of goods in the warehouse and currently in transit.
We will now implement the proposed reaching law to derive

the controller that steers the representative point of the system
to the proximity of the sliding hyperplane , where
is given by (30). For the considered periodic review inventory
system, the perturbations of the sliding variable caused by the
model uncertainty and disturbance are

(31)

Using (2) and (31) with (11), we obtain

(32)

One can easily notice, that by selecting according to (30), we
have obtained . Therefore, using (25) and
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(30), we can obtain the control signal, which ensures the desired
sliding variable evolution as

(33)

Let us notice at this point, that any other choice of vector
would lead to a more convoluted expression determining
and less computationally efficient controller. Moreover, it is
worth to point out that application of other hyperplane design
methods (pole placement or quadratic optimization) in conjunc-
tion with the reaching law approach is redundant as both the
reaching law approach and these methods are used primarily
to satisfy input and state constraints of the controlled systems.
These observations justify the choice of the sliding hyperplane
determined by (30).
In the remainder of this section, important properties of the

proposed control strategy will be stated in three theorems and
proved. In the first one, we will demonstrate, that control signal
(33) is always non-negative and upper bounded by an a priori
known constant. Since this signal directly corresponds to the
amounts of goods sent by the providers, both of these features
are essential for the practical application of the proposed
strategy.
Theorem 3: For any , control signal (33) satisfies the

following two inequalities:

(34)

Proof: As shown in Theorems 1 and 2, sliding variable
will start at some initial value , and in each consecu-

tive step its absolute value will decrease unless (12) is satisfied.
Moreover, once (12) becomes true, it will hold for the rest of the
control process. For the system under consideration

(35)

Using (12), (31), and (35), we observe that

(36)

for all .
We now notice, that the value of the control signal (33) is al-

ways increasing with the increase of . Therefore, its min-
imum value will be generated for the smallest possible ,
and the maximum value for the greatest . This observa-
tion allows us to simply substitute the limits of interval (36) into
(33) and conclude that (34) indeed holds.
We have assumed that the requests for goods are distributed

among the providers according to the maximum amount of
goods that they can deliver. Therefore, if is selected in such
a way that the right-hand side of (34) is equal to ,
then no supplier will be requested to send more goods, than it
is actually able to provide.
Any successful inventory management strategy should guar-

antee that all of the incoming goods can be stored in the distri-

bution center. In the following theorem, we will determine the
upper bound of the on-hand stock. Therefore, if warehouse ca-
pacity equal to or greater than this bound is secured, then there
will be no risk of hiring (usually very costly) emergency storage
space.
Theorem 4: With the application of the proposed control

strategy, for every , the inventory stock level will satisfy
the following condition:

(37)

Proof: From (36), we obtain

(38)

for any . Using (2) and (23), we can rewrite (38) as

(39)
We have already proven that the control signal is always non-
negative. Therefore, we conclude that (39) implies (37).
In order to obtain the greatest possible profit, one may wish to

eliminate lost sales risk. Therefore, it is reasonable to establish
conditions ensuring that the consumers’ demand is always fully
satisfied. For that purpose, in the last theorem, we determine
the smallest value of the demand inventory stock level ensuring
that after some initial time, the warehouse will not be empty.
We can notice from (21) that this implies full satisfaction of the
customers’ demand.
Theorem 5: If the following condition is satisfied:

(40)

then for any , where is the first
time instant when (12) is true.

Proof: Using (12), for any , we obtain

(41)

Moreover, substituting (12) into (33), we get

(42)

which is also true for any . By combining (41) and (42),
we arrive at

(43)

for any . Therefore, if (40) holds, then the right-
hand side of the above inequality is always strictly positive.
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TABLE I
SIMULATION PARAMETERS

Fig. 2. Consumers’ demand.

Fig. 3. Control signal.

V. SIMULATION RESULTS

In order to verify the properties of the proposed control law
computer simulations of an inventory system with three sup-
pliers were performed. The review period day and the pa-
rameters of the suppliers and transportation channels are shown
in Table I. The greatest lead time equals 11 days, which implies

, and . The elements of the first row
of matrix are , , , and the
remaining elements are equal to zero. The maximum daily
consumers’ demand . The actual evolution of
the demand in the simulation example is shown in Fig. 2. The
demand exhibits abrupt changes between small and large values,
which reflect the most adverse conditions that can appear in the
considered system. The total amount of goods, which can be
provided by all suppliers on a single day is

. Therefore, in order to ensure that the control signal
never exceeds this value, we select . As–ac-
cording to Theorem 5–the minimum demand value of the stock
level that ensures full consumers’ demand satisfaction is 513
items, we select equal to 530 items. The simulation results
are presented in Figs. 3– 5. The control signal is shown in Fig. 3.
One can easily see that it is always non-negative and smaller

Fig. 4. On-hand stock level.

Fig. 5. Sliding variable evolution.

than or equal to . Therefore, no sup-
plier is at any time expected to provide more commodities than
it is really able to. Furthermore, comparing Figs. 2 and 3, we
notice that the supply orders are significantly smoother than
the consumers’ demand is. This shows that our strategy attenu-
ates the highly undesirable bullwhip effect. The inventory stock
level is illustrated in Fig. 4. As stated in Theorems 4 and 5 it
never exceeds 594 items, and after some initial time it does not
drop to zero any more. This means, that the risk of hiring costly
emergency storage is eliminated, and full consumers’ demand
satisfaction is ensured. The evolution of the sliding variable is
shown in Fig. 5. As determined by Theorems 1 and 2 the vari-
able converges to the band (the band limits are
shown by dashed lines), and after reaching the band, the vari-
able does not leave it for the rest of the control process.
We also consider the performance of the system when all its

parameters, and the consumers’ demand transient are the same
as in the first scenario, but initially the warehouse is not empty.
We analyze two cases: the first one when the initial stock level

is equal to the half of its maximum value,
and the second one when the level equals
its maximum value. Since the initial on-hand stock affects only
the beginning of the control process, in Figs. 6– 8, we depict the
transients until the 25th day. This is justified by the fact, that
later on the transients are almost identical to each other and also
to those shown in Figs. 3–5.
As we can observe from Figs. 6–8 all of the advantageous

properties of the proposed controller mentioned before, hold
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Fig. 6. Control signal for: (a) and (b)
.

Fig. 7. On-hand stock level for: (a) and (b)
.

Fig. 8. Sliding variable evolution for: (a) and (b)
.

also for nonzero initial stock values. Comparing Fig. 3 and
Fig. 6(a), we can notice that the initial value of the control
signal only marginally depends on the initial conditions, in
fact much less as compared to a linear controller. Furthermore,
we can observe from Fig. 7 that if the initial stock level is
sufficiently high, then it will not drop to zero, even before the
start of the quasi-sliding motion, and full consumer demand
satisfaction will be ensured for any .

VI. CONCLUSION

In this work, a new reaching law for discrete-time sliding
mode control of dynamic plants has been introduced and applied
to design a feasible management strategy for periodic review

inventory systems with multiple suppliers and transportation
losses. The reaching law introduced in this paper, as opposed
to the ones previously proposed in literature does not require
crossing the sliding hyperplane in each successive control step
of the quasi-sliding motion. This property eliminates chattering
and allows fast convergence with limited control signal. The
proposed reaching law based inventory management strategy
ensures non-negative and upper bounded supply orders, elim-
inates the risk of costly emergency storage, and may ensure that
no business opportunities are lost. These important properties
have been proved analytically and verified by computer simula-
tions. Our further research efforts will be focused on inventory
systems with different customer classes, i.e., customers whose
orders can be backordered and those whose orders must be re-
jected if they cannot be satisfied immediately from on-hand in-
ventory [7]. We will also employ the reaching law proposed in
this paper for other applications. This is possible as our reaching
law is not customized, but may be directly used with all other
types of hyperplanes or even nonlinear hypersufaces.
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