This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Introducing Novice Operators to Collaborative
Robots: A Hands-On Approach for
Learning and Training

Andreas Kornmaaler Hansen™, Valeria Villani ', Member, IEEE,
Andrea Pupa™, Member, IEEE, and Astrid Heidemann Lassen

Abstract— Collaborative robots (cobots) have seen widespread
adoption in industrial applications over the last decade. Cobots
can be placed outside protective cages and are generally regarded
as much more intuitive and easy to program compared to
larger classical industrial robots. However, despite the cobots’
widespread adoption, their collaborative potential and oppor-
tunity to aid flexible production processes seem hindered by
a lack of training and understanding from shop floor work-
ers. Researchers have focused on technical solutions, which
allow novice robot users to more easily train collaborative
robots. However, most of this work has yet to leave research
labs. Therefore, training methods are needed with the goal of
transferring skills and knowledge to shop floor workers about
how to program collaborative robots. We identify general basic
knowledge and skills that a novice must master to program a
collaborative robot. We present how to structure and facilitate
cobot training based on cognitive apprenticeship and test the
training framework on a total of 20 participants using a UR10e
and UR3e robot. We considered two conditions: adaptive and self-
regulated training. We found that the facilitation was effective
in transferring knowledge and skills to novices, however, found
no conclusive difference between the adaptive or self-regulated
approach. The results demonstrate that, thanks to the proposed
training method, both groups are able to significantly reduce task
time, achieving a reduction of 40%, while maintaining the same
level of performance in terms of position error.

Note to Practitioners—This paper was motivated by the fact
that the adoption of smaller, so-called collaborative robots is
increasing within manufacturing but the potential for a single
robot to be used flexibly in multiple places of a production
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seems unfulfilled. If more unskilled workers understood the
collaborative robots and received structured training, they would
be capable of programming the robots independently. This could
change the current landscape of stationary collaborative robots
towards more flexible robot use and thereby increase companies’
internal overall equipment efficiency and competencies. To this
end, we identify general skills and knowledge for programming
a collaborative robot, which helps increase the transparency of
what novices need to know. We show how such knowledge and
skills may be facilitated in a structured training framework,
which effectively transfers necessary programming knowledge
and skills to novices. This framework may be applied to a
wider scope of knowledge and skills as the learner progresses.
The skills and knowledge that we identify are general across
robot platforms, however, collaborative robot interfaces differ.
Therefore, a practical limitation to the approach includes the
need for a knowledgeable person on the specific collaborative
robot in question in order to create training material in areas
specific to that model. However, with our list of identified skills,
it provides an easier starting point. We show that relatively few
skills and knowledge areas can enhance a novice’s programming
capability.

Index Terms—Robot programming, collaborative robotics,
adaptive training, self-regulated training.

I. INTRODUCTION

N THE last decades, technological progress has signifi-

cantly changed the industrial scenario, not only in terms
of production processes and results but also from the occupa-
tional perspective. With the paradigm of Industry 4.0, formally
started in 2011 as a German strategic initiative to elevate
their manufacturing industry [1], technologies for advanced
automation, interconnectivity, and flexible manufacturing have
become accessible to any-sized companies [2].

Among such technologies, the availability of collaborative
robots (also called cobots) has introduced intelligent agents
that aid human operators, working side by side with them.
They are smaller and quicker to set up than industrial robots,
which helps to make smaller batch sizes achievable with
quicker change-overs in production. Due to a wide range of
internal and third-party external safety measures, cobots can
be placed outside of safety cages (depending on their material
handling) [3]. These capabilities, combined with a lower price
tag compared to traditional industrial robots, have made cobots
attractive to smaller-sized manufacturers [4]. It is not only the
smaller-sized companies who are interested in cobots, as is
seen by the general trend. From 2017-2021, global industrial
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robot installations saw an annual increase of 5%, whereas
cobots experienced a 37% increase in installations in the same
period [5].

An important reason behind the surge in collaborative
robots is that they can safely share spaces, tasks, and goals
with humans and complement each other’s capabilities: while
robots are suited for physically demanding and tedious repet-
itive tasks, human operators can be put in charge of those
tasks requiring advanced reasoning capabilities. Promisingly,
human-robot collaboration (HRC) results in a team with
advanced capabilities that cannot be found otherwise solely
in robots or human operators. As a result, a large body of
the literature has been devoted to the study of algorithms
and solutions that endow collaborative robots with advanced
perception and reasoning capabilities [3]. The goal is to make
robots aware of the surrounding environment and humans’
intentions in order to engage in a fluent collaboration between
peers.

To this end, researchers have explored ways to make
interaction modalities intuitive, for example, resorting to
vocal interaction [6] and gestures [7]. The ultimate aim of
human-robot collaborative strategies is, on the one hand,
to enhance human capabilities by adding robot strengths
to the workforce and, on the other hand, to leverage the
way people collaborate with each other to keep collaborative
work natural and intuitive. This vision is also enforced by
the next-generation paradigm for the factories of the future,
namely Industry 5.0. It complements and extends Industry
4.0, promoting the application of existing technologies beyond
efficiency and productivity as the sole goals. In particu-
lar, Industry 5.0 places sustainability, flexibility, and worker
well-being at the centre of the production process, while
technology is used to provide prosperity beyond jobs and
growth [8].

Nonetheless, the application of such novel approaches
in current industrial scenarios is still quite limited [9].
Small and medium-sized enterprises experience big barriers
to digitalisation, such as knowledge on how to navigate
increased complexity [10], limited funds [11], and lack of
specialised knowledge and training needed across different
professional fields [12]. With respect to collaborative robotics,
Michaelis et al. pointed out that most uses of cobots in
automation are for simple, long-term automation applications,
done as start/stop machine-tending or pick-and-place tasks
(level 1 of HRC interactions [13]). In these applications,
the cobot performs one part of a process, and the human
is limited to starting, setting up, and/or ending the process.
Collaboration is, hence, limited to pressing a few buttons
to start/stop the process, load/unload the robot and basic
navigation through the user interface [9]. One of the reasons
for this is the lack of proper training of workers who interact
with and operate manufacturing equipment. Existing training
designed for collaborative robots focuses on building basic
skills for trivial operations and is inadequate for applications
requiring higher-level collaboration. As a result, it has been
reported that low-skill workers are frequently not capable of
programming, deploying, or collaborating with cobots [9] and
effective training is needed for manufacturing workers [14].
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To cover this gap, in this paper, we propose a training
approach for unskilled workers operating collaborative robots.
Specifically, we target operators who may be highly skilled
in their vocational domain, but are new to the use of robots
and never interacted with or programmed a collaborative robot
before. The current research on human-robot collaboration
concerned with advanced reasoning capabilities and more
intuitive interfaces have yet to leave the research labs. As a
consequence, combining the operators’ experience with the
advantages inherent to collaborative technologies is often
unattainable, in part due to lack of effective and accessible
training. Currently, additional resources for robot experts are
required to implement changes to work cells, brought on
by the increasing need for flexible manufacturing processes.
To overcome this, our aim is to provide such workers not
only with the basic knowledge required to operate robots,
but also to make them develop the capability to configure
them, rapidly program, and reprogram them in the presence
of changes in the manufacturing process and low-volume
tasks. In particular, we investigated what knowledge and skills
a novice robot operator needs to master before they can
safely interact and program simple robot tasks, and explicitly
pinpoint key topics and focus areas. Then, building on such
knowledge, we developed a hands-on training framework for
robot programming that facilitates operators to practice tasks
with increasing difficulty and keep track of their progress.
Specifically, by robot programming, we consider the problem
of writing the code that allows the robot to perform some
tasks, and we focus on programming through proprietary robot
language with the proprietary robot user interface.

The paper is organized as follows. Section II we discuss
the related work regarding training for cobot programming
and different learning approaches. In Sec. III we present the
proposed contribution and the associated research questions.
Then, in Sec. IV we discuss the elementary skills that are
required to learn how to program robots, while in Sec. V the
proposed learning framework is presented. The methodology
for its experimental validation and the achieved outcomes are
presented in Sec. VI and VII, respectively. Finally, Sec. VIII
follows with some concluding remarks.

II. RELATED WORK
A. Training and Learning for Cobot Programming

Despite the wide diffusion of cobots nowadays, few offer
easily accessible and intuitive learning material beyond hard-
ware specifications and manuals, thus making it a steep
learning curve for non-experts. We surveyed 16 cobot manu-
facturers to investigate whether they offered learning material
and what format it was presented in. In the supplementary
material, we provide an overview and description of the
publicly available learning material from the cobot compa-
nies. We focused on interactive online material designed to
facilitate the learning process with specific learning outcomes,
thereby going beyond structured information such as online
encyclopedias, Wikis, videos, and manuals. We found that
only five out of the 16 cobot manufacturers offer easily
accessible, interactive, and structured learning material on
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how to properly engage with and program their systems via
their web pages. As such, it can be difficult to learn more
about cobot programming suitable for novice users. Moreover,
existing literature has pointed out that text-based manuals
and e-learning approaches are less effective than hands-on
training [15], [16], [17], [18]. These works highlight the
importance of the learning actions to comprise solid hands-on
practical experimentation and promote blended learning pro-
grams, where e-learning training is accompanied by practical
experimentation that considers real problem-solving [15].
Additionally, they highlight the importance of the presence
of instructors acting as facilitators in the demonstration of
examples and answering questions.

Generally speaking, cobots often come with teach pendants
with pre-installed interfaces, making it possible for complete
beginners to relatively easily start programming simple robot
movements and operations. Despite this, the interfaces vary a
lot between different cobot manufacturers [19], which makes
it necessary to devote some time to learn how they operate.
To combat this, Hoyos et al. presented a framework that
enables robot programming through an interface independent
of cobot manufacturer [20]. They identified robot skills and
built a user interface that enables the operator to identify the
specific robot skill they want to use, and quickly program
the robot. Similarly, Ciontos et al. developed an app for a
smartphone, which could program a diverse range of robots
using a single interface [21]. This would enable a person to
only learn one interface but have the ability to control a wide
array of different robot platforms, reducing the complexity
and flattening the learning curve if a new robot platform is
introduced.

Most of the research for intuitive robot programming goes
toward letting robots understand users’ intentions, endowing
robots with some sort of reasoning and sensing capabilities [3].
In this regard, Wang et al. presented an approach to facilitate
the robot to figure out and predict human hand-over intentions
to improve task efficiency in human-robot collaboration [22].
Schou et al. decomposed the problem of programming com-
plex tasks by introducing the concept of robot tasks, skills and
primitives, which can be understood as a layered structure [23].
Device primitives, such as move or open/close gripper, are
simple, primitive operations, but combined together they form
a skill (e.g., pick up object). This can further be elevated
into tasks that contain multiple of these skills and primitives
(e.g., a machine feeding task seen as the combination of: pick
up object, go to the machine, place in the machine, etc.).
Moreover, they added an interface in which operators could get
an overview of available skills and tasks and add new skills
by using kinesthetic teaching, during which the operator is
guided using text and audio output from the interface [23].
Pedersen et al. continued this work and showed that such
robot skills are very intuitive to use for non-expert operators
as they use language they are already familiar with from their
standard operating procedures [24]. Koch et al. also worked
with skill-based programming and looked further into how the
user interface from [23] could be improved for novice users.
They decided to decrease the complexity of the interface,
which meant going from high variation and flexibility of how

the tasks are put together to a finite selection of predefined
tasks [25]. In general terms, these works investigate how to
transfer human high-level reasoning capabilities to a robot in
order to program it. This line of approach is well suited in
the case of complex programming tasks but does not address
the need, in common industrial applications, for novice users
to learn how the robot works and master basic programming
skills.

Thus, a lot of work has gone into the capabilities and
skills of the robot [22], [23], [26], with less attention to
the capabilities and skills of the people intended to interact
with robot systems. Research within learning factories has
produced great results by adhering to a constructivist, problem-
based learning approach, where participants get a mixture
of hands-on experience and theoretical knowledge [27], [28].
A specific cobot learning framework was suggested by May-
erhofer et al. in a learning factory setup [29]. Their approach
aims to adapt the learning to the individual based on their
current experience level and interests. They make use of
“learning nuggets”, where a main learning path is created but
with the possibility to veer off into related topics. Depending
on individual experience level, one starts at different points
on the learning path: for example, if a new robot platform is
introduced and the user has prior robot arm experience, they
are not presented with the basics of cobots. Balancing the
amount of assistance is important, as too frequent feedback
has shown detrimental to learning performance [30]. However,
while advocating for the accessibility of online training mate-
rial to be used whenever needed, few details were provided
in [29] about the online material and what a novice cobot user
needs to learn.

Within surgical robots, an adaptive training framework using
virtual reality was suggested by Mariani et al. [31]. They
identified some elementary skills needed for robotic surgery
and also designed some complex tasks, which consisted of
multiple elementary skills. This could be simulated in an
offline virtual reality environment with no involvement of
real patients, thus reducing risk while increasing learning
outcomes. Here the authors showed that adapting the training
exercises to the actual performance of the trainees showed
an increase in performance and learning compared to a non-
adaptive, self-regulated group. The self-regulated group chose
their own exercises and did not utilise the training period
as efficiently as the adaptive group, thus resulting in lower
performance than the adaptive group.

Building upon existing works, our proposed framework
focuses on identifying the elementary robot knowledge and
skills that are needed for a novice who is learning how to
program a cobot and implement them in a training framework.
To this end, we were inspired by the principles of cognitive
apprenticeship. The robot manufacturer we chose had a good
online e-learning course for people new to robot programming.
Their e-learning overlaps with how we presented our tasks
to the learners. However, the main differences boil down
to us demonstrating learning in a physical robot setup and
relying on cognitive apprenticeship, which made sure that the
tasks varied in both execution, complexity, and the physical
environment.
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B. Use of Cognitive Apprenticeship as a Learning Approach

In a cognitive apprenticeship learning environment, tasks
are chosen to elucidate specific knowledge and techniques,
which will be useful in a diverse range of settings that trans-
late into real-world applications [32]. Typically, this entails
increasing complexity slowly as the learner advances to allow
them to combine elementary skills into more cohesive and
meaningful tasks. Thus, tasks should be sequenced in such
a way as to support the changing demands of learning [32].
This is also referred to as scaffolding, meaning a theoretical
structure of support, which slowly gets dismantled as the
learner becomes more capable. According to Collins and
Kapur, cognitive apprenticeship relies on four key principles:
content, methods, sequencing and sociology [32]. In the fol-
lowing, we have highlighted elements which we used in our
work:

« content: Domain knowledge about key concepts, proce-
dures, and subject matter facts.

o methods: A common method relies on scaffolding,
which means that learning is structured and sup-
ported for the learner. As they progress, the support
is gradually dismantled in keeping with their learning
development.

o sequencing: Increasing complexity and diversity of the
tasks presented to the learner. This may be combined with
the scaffolding method.

« sociology: Situated learning where the learner is taught
or works in the context of realistic tasks, e.g., a real
collaborative robot instead of a simulated environment.

III. OUTLINE OF PROPOSED CONTRIBUTION

In this work, we propose a learning framework for cobot
programming, which covers the elementary robot knowledge
and skills that are needed for a novice who is learning how to
program a cobot. The learning framework is inspired by the
principles of cognitive apprenticeship [32], where operators
can combine theoretical learning with hands-on practice, thus
being guided to become self-sufficient in using robots. Specif-
ically, we analyse the importance of an adaptive approach to
training, where the training and exercises are more closely
tailored to the individual’s level like the approaches in [29]
and [31] suggest.

To elaborate on these considerations, we introduce two
research questions:

RQ1 What are the elementary robot knowledge and skills
that a non-expert operator should master to program
a collaborative robot?

Operators need a baseline of knowledge and understanding
of a robot before they will be able to understand and create
robot programs. This holds true irrespective of the modality to
program and interact with the robot. To answer this research
question, as discussed in Sec. IV, we surveyed experts in
collaborative robotics and automation to define the set of
essential knowledge and skills needed to program and operate
a collaborative robot.

Then, building on the outcome of RQ1, we focus on how
to transfer such knowledge to workers.
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RQ2 How could such elementary knowledge and skills be
taught to make non-expert operators self-sufficient in
the use of collaborative robots?

We used the general elementary skills identified with RQ1
to create a training curriculum to provide hands-on teaching
support in a physical environment. The framework used to
structure the curriculum, discussed in Sec. V, was inspired
by the concept of cognitive apprenticeship [32] drawing on
the four key principles of content, methods, sequencing and
sociology introduced in Sec. II-B. The rationale behind it was
to expose the learner to the elementary knowledge derived
from RQ1 (content), and let them gradually develop the
needed skills. The framework should provide guidance (i.e.
providing a learning scaffold) in the execution of related tasks
with increasing complexity (methods and sequencing), and
let learners practice in a tangible, hands-on situated learn-
ing environment (sociology) [32]. Moreover, we investigated
how the approach to learning may have an effect on the
learning outcome when being introduced to physical robots,
as shown by Mariani et al. [31]. However, Mariani et al.
used a virtual reality simulation for robot-assisted surgery,
which focused mostly on the proprioception and motor skills
of the learner. In contrast, we demonstrate how elementary
knowledge and skills needed to program a collaborative robot
could be introduced in a physical training environment, where
the interaction is cyber-physical as the commands received in
the digital interface culminate into physical manipulations of
the environment.

To this end, the designed training and learning framework
was administered with two different conditions: i) an adaptive
approach; and ii) a self-regulated approach. While the findings
of both [29] and [31] support that an adaptive approach is
preferable, this also entails more complexity e.g., the addition
of a ranking or scoring system to assess the performance of
the learners. Therefore it is interesting to investigate if there
are any notable differences between an adaptive approach and
a self-regulated approach in physical human-robot training
scenarios.

IV. ELEMENTARY SKILLS FOR ROBOT PROGRAMMING

In this section, we discuss the methodology implemented to
answer RQ1 (Sec. IV-A) and the resulting set of elementary
skills and knowledge for robot programming (Sec. IV-B).

A. Methodology

1) Description of the Questionnaire: A questionnaire was
created to identify the elementary skills needed for novice
robot users to safely and effectively program a cobot,
in response to RQ1. It was administered to experts within
the field of collaborative robots and automation. The form
listed skills and knowledge areas that the authors heuristically
perceived as being essential to elementary cobot programming
and generally applicable for simple operations in a manufac-
turing environment (e.g., a pick-and-place task). To this end,
the form was separated into two fields:

1) knowledge about cobots, meant as knowledge the oper-
ator needs to know before programming the cobot;
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2) cobot programming skills, meant as actual hands-on
skills that the operator needs the capability to perform.

The experts were asked to look through the list and check
the boxes they found relevant, and leave boxes unchecked
in the fields that seemed either irrelevant, too specific, or not
generally applicable across cobot platforms. They were invited
to add additional skills that a novice operator is expected
to master, which we may have overlooked. They had the
option to add multiple topics, if necessary. In the end, they
could provide additional comments or clarifications on their
answers to iteratively identify the right elementary skills and
knowledge. When an expert added a point, the form was
iteratively updated and the expert additions were visible to
the next expert.

Our questionnaire approach was reminiscent of the dis-
sensus Delphi study approach introduced by Steinert [33].
While the Delphi approach is a standard technique to gather
and appraise expert opinions, the dissensus Delphi approach
aims to maximise the range of expert opinions via itera-
tive online inputs. With reference to the dissensus Delphi
approach [33], we took a less grounded approach, where we
presented skills and knowledge heuristically deemed necessary
for novice users but with the option for the experts to expand
or dispute the proposed skills and knowledge areas iteratively.

2) Respondents to the Questionnaire: The questionnaire
was administered to experts within the field of collabo-
rative robots. A total of 19 experts (14 from academia,
5 from industry) contributed to the questionnaire from five
different organisations. From academia, we targeted research
fellows, PhD. students, assistant professors, associate pro-
fessors and full professors who specialise in industrial
manipulators, mobile robots, physical human-robot interac-
tion in natural settings, interfaces for collaborative- and
industrial robots, machine learning for cobots, cobots for
surgical purposes, and dynamic motion planning. From indus-
try, four respondents worked for a renowned collaborative
robot company and one within a private research and
technology institute that collaborates closely with industrial
partners to solve their cobot implementation challenges. Their
key areas included innovation, research and development,
competence development, learning environments, operational
management, artificial intelligence and learning cobots, cobot
implementation, and research and business development for
cobots.

B. Expert’s Feedback From the Questionnaire

Table I reports the respondents’ feedback on the required
elementary skills. Specifically, the count in the right column in
the table shows how many respondents considered each item
relevant with respect to RQ1.

Regarding general knowledge about cobots, the experts
considered being informed about the emergency stop and how
to turn the system on and off as essential. Moreover, knowl-
edge about different motion types was considered important
by the greatest majority of respondents. Conversely, the less
important items were deemed robot joint names, speed and
acceleration and interfaces for external safety equipment. The
latter might be considered as an advanced skill, relevant more

TABLE I

QUESTIONNAIRE ABOUT ELEMENTARY SKILLS FOR
ROBOT PROGRAMMING (N = 19)

Item Count
Emergency Stop 19
Turn system on/off 17
- Motion types 11
E Tool Center Point (TCP) 11
§ Degrees of Freedom (DoF) 10
é Payload and center of gravity 9
S Safety standards 9
%D Collision avoidance 8
:3) Jogging the robot 7
Q Speed and acceleration 7
Kinaesthetic teaching 5
Interfaces to external equipment, safety precautions 5
Robot joint names 2
@ Set waypoints 18
% Activate/deactivate tool (e.g. open/close gripper) 17
&b Adjust speed and acceleration 12
g Structure a program (e.g. sequence of operations) 12
§ Mount tool 11
é‘) Adhere to safety standards 9
‘? Configure payload and center of gravity 9
3 Use wait commands 9
© Optimize trajectories 2

to design than the use of robotic systems, and thus not that
important with respect to RQ1.

Regarding specific cobot programming skills, experts agreed
on the importance of setting waypoints and operating tools.
Indeed, these represent the minimum set of skills needed to
program a robot task, assuming that the system was set up
by an expert. All the other skills were considered relevant
by nearly half of the respondents: they represent some more
advanced skills that go beyond basic robot operation. Accord-
ingly, techniques for optimising trajectories were considered
not relevant by the greatest majority of the experts. Such
optimisation techniques are particularly valuable for users who
already possess an understanding of how cobots operate and
require a comprehensive knowledge of the task. As a result,
these techniques can be acquired in the subsequent learning
phase.

Building upon the experts’ feedback, the outcome of the
questionnaire was then leveraged in a training framework,
which can be used generally across cobot platforms to teach
novice operators and make sure they gain the necessary skills
to program simple operations within manufacturing.

V. TRAINING AND LEARNING FRAMEWORK
FOR ROBOT PROGRAMMING

In this section, we discuss how the experts’ feedback on
the questionnaire presented in Sec. IV was used to design a
training and learning framework for shop floor workers novice
to cobots.

A. Methodology

With reference to RQ2, the aim of the framework is to
teach the elementary robot knowledge and skills that are
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Fig. 1.  Organization of the proposed training and learning framework in

three parts. /) Training material is available for each elementary skill for robot
programming. 2) Hands-on practice material consists of guided examples and
exercises with different levels of guidance and complexity for each learnt
skill. 3) A combined programming task is introduced to let learners practice
on combining and applying the learnt skills. Solid line arrows show that the
first two parts are meant to be visited in parallel, while the third one is
meant to be visited after completing the others. The learner can revisit the
training material if knowledge is still lacking while performing the combined
programming task. The dashed arrows refer to the adaptive logic described in
Sec. V-Al.

required to non-expert operators to be self-sufficient in the
use of cobots. By non-expert operators, we refer to those
subjects who have poor or no knowledge of collaborative
robots, despite possibly having high vocational skills in their
work domain. The framework is intended to teach them how
to use a cobot in an already set up collaborative cell, program
simple tasks, or reprogram existing tasks following changes to
manufacturing processes.

As discussed in Sec. IV-B, the experts’ feedback to the
questionnaire was used to define curriculum content. The
framework was organised into three main parts, which are
depicted in Fig. 1.

First, a description is provided for each elementary skill
or piece of knowledge to be used as an introduction to
the skill and reference material when practising throughout
the curriculum. This is represented in the left upper corner
of Fig. 1, where, for the sake of generality, we refer to a
number N of elementary skills. The training material for each
skill is augmented with images, schemes, and short videos
to demonstrate the related skill. The training material briefly
presents a cobot, introducing its axes, the rotations that axes
are capable of, and the teach pendant. Then, as suggested by
the experts in Sec. IV-B, the emergency stop is introduced,
explaining when it is needed and how to activate it. The
following set of instructions refers to the possible ways to
move the robot. To this end, details about kinesthetic teaching,
jogging and moving the robot through waypoints, and how
to set them are provided (this could for example represent
SKILL 1, 2, and 3 in Fig. 1). Available motion types are
presented, together with their features and their recommended
use. Then, instructions on setting a gripper and changing
payload are given for pick and place tasks. Finally, brief
instructions are given for slightly more advanced commands,
such as setting input/output for tools and sensors and defining
the tool center point (TCP).
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Second, hands-on practice material is provided for each
elementary skill or piece of knowledge. This is represented
in the right upper corner of Fig. 1, where a set of M;
guided examples are represented for the skill i (we consider
the general case where M; # M;, with i,j = 1,...N
and i # j). Guided examples have progressively increased
complexity and gradually reduced guidance by the frame-
work, as suggested by the cognitive apprenticeship approach.
Specifically, for each skill, we provide scaffold training in
the form of pre-programmed tasks requiring either minimal
input from the learner or slightly more advanced reasoning
capabilities. Examples with the lowest level of complexity
require the learner to enter limited input in an already set
robot program structure, reminiscent of a fill-in-the-blanks
type of task. A task description is provided in text, and a
video recording of the robot correctly executing the program
is shown for every task. As complexity increases, the learner is
expected to apply the learnt skill in a non-structured example.
Finally, each example in this part of the framework is specific
for a single skill in order to help the learner consolidate it
and build on previously learnt skills, as the learning scaffold
is slowly reduced and complexity increases.

Third, a combined programming task is included in the
framework, which integrates and combines all the skills learnt
separately in the first two parts. This is meant to be visited
at the end of the training programme after completing the
other two parts. The first two parts are meant to be executed
in parallel, practising each skill after having been introduced
to the robot and occasionally revisiting the training material
if something is not clear (further details in this regard are
provided in Sec. V-Al.). The final combined programming
task was used as an evaluation and practical demonstration of
learnt skills in order for the learner to demonstrate the ability
to integrate multiple skills needed to solve a programming task
in a cohesive manner.

A key aspect of the proposed framework is how learners
navigate it. Since it is composed of different parts, it becomes
important that learners do not get lost and the effectiveness
of the training programme is not reduced. To this end,
we considered two ways of introducing the same material
to the learner: i) an adaptive training approach, and ii) a
self-regulated training approach.

1) Adaptive Training: The adaptive training approach builds
upon the results achieved in [29] and [31], where the progres-
sion through the curriculum is adapted to the learner’s learning
rate and competence development. In other words, we propose
that the learner is shown which tasks to perform and told
whether to perform them again, study training material, or wait
for the next task to be presented. Adaptation of curriculum
progression is thus based on the learner’s performance in the
hands-on practice, meaning the learner performs a certain task,
and their performance is then assessed. This is used to decide
which exercise to perform next, whether it is needed to revisit
relevant training material, or whether the learner is ready to
move to the next skill. The possible outcomes for the adaptive
logic are depicted with dashed lines in Fig. 1. According
to the figure, once the training material for a skill (“SKILL
i’ in the figure) is visited, the learner is presented with the
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Fig. 2. The logic followed by the WoZ operator (experimenter).

hands-on practice material for that skill. Depending on how
the learner performed with a guided example (“EX. SKILL
i’ in the figure), they can be presented with the following
example (with increased complexity and reduced guidance) or
led back to the training material for the current skill or any
previous skill (“SKILL 2” in the figure), if they showed poor
confidence with it.

In our implementation, the adaptive logic was designed
according to the flow chart reported in Fig. 2 and was
implemented with the Wizard of Oz (WoZ) method [34], [35],
i.e., the experimenter controlled the user interface by selecting
the next task and presenting prompt messages to the participant
based on their performance (e.g. prompting them to complete
the task again). The WoZ method relies on slight deception
to make it appear, in this case, as if the robot and interface
detects the user’s performance and then autonomously decides
the next steps. The WoZ method has proven effective within
human-robot interaction studies to quickly obtain convincing
results regarding functionalities and interaction modalities not
yet fully developed as part of an iterative design cycle [35],
[36] — i.e., in this case, the adaptive logic. Prior to the
experiments, the flowchart of how to present the information
to the participant (Fig. 2) was rehearsed by the WoZ operator
in order to provide a uniform experience between subjects.
Fig. 2 depicts the simplest flow, where the subject starts with
a scaffold task (Ex. Skill x). If they experience trouble (’Yes’),
they are shown training material relevant to the task, before
they are prompted to redo Ex. Skill x. If they understand
the task but the execution was poor ('Some’ trouble), they
are prompted to redo the task to practice their skill. If 'No’
trouble occurred, they are led to a similar task with increased
complexity and so on. The flowchart repeats where the subject
advances to the next skill (Ex. Skill y).!

2) Self-Regulated Training: In the self-regulated training,
the learner can independently choose which tasks they want
to perform and how many times, or seek out relevant train-
ing material by navigating the interface. Thus, the learning
progress is put into the hands of the learner in a more
exploratory manner compared to the adaptive approach. In this
setting, the learner has complete control of the user interface
displaying the curriculum and can freely navigate through
it.?

! Adaptive interface video demo
2Self-regulated touch interface video demo

ROS protocol Experimenter

Interface control

Interface
VN
W 1 =

Teach pendant

Emergency stop

Participant

Interaction area

(b) Layout of the experimental setup.

Fig. 3. The experimental setup.

VI. EXPERIMENTAL VALIDATION
A. Experimental Setup

The framework was demonstrated in two independent
setups, located in Italy and Denmark, using two different
robots: a UR10e and UR3e, respectively. Both collaborative
robots had 6 degrees of freedom and were equipped with
an RG2 OnRobot gripper. To monitor and record the robot
positions, the ROS Melodic framework with the official Uni-
versal Roots ROS drivers were used.’ The experimental setup
is shown in Fig. 3. The learner stands in front of the robot, the
teach pendant, and the user interface displaying the training
material and tasks. The experimenter is located on their side
but outside their field of view governing the controlling devices
for the experiment.

B. Implementation of the Proposed Framework

A prototype of the curriculum was implemented as a
slideshow with Microsoft Powerpoint.* An example of the
interface is depicted in Fig. 4. The figure shows the main
navigation page for the hands-on practice, where the learner
can practice on the single learnt skills: examples on the left
offer guidance (i.e., scaffolding), as a program structure is
already set up for each skill. Exercises on the right require
more processing by the learner, as they are only shown a
description and a video with no provided program structure.

3https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
“https://www.microsoft.com/en-ww/microsoft-365/powerpoint
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Fig. 4. The main navigation page for the guided examples.

The lower part of the page hosts the link to the training
material to allow navigation back and revisit some previous
content. Fig. 5 shows a couple of examples with different
levels of complexity for practising the use of the gripper.

C. Enrolled Subjects

The inclusion criteria used for the study required partici-
pants to possess no, or very low, previous experience with
the use of cobots and little knowledge of the basics of
robotics. In total, 20 participants were enrolled: following a
between-subjects study design, 10 interacted with the UR10e
and 10 interacted with the UR3e. In each case, five were
randomly assigned to the self-regulated approach and five were
randomly assigned to the adaptive approach. Thus, the same
approach was followed in both lab settings. The participants
(4 females, 15 males, 1 preferred not to say, age range:
21-36 years, mean age: 26.5 years) were volunteer students
enrolled in programs related to manufacturing (namely, pro-
grams for automation technician, mechatronics engineer and
former electricians) and all of them were completely naive to
cobot programming.

A participant information sheet was emailed to the partici-
pants prior to participation and a physical copy was provided
when they showed up. The sheet explained the purpose of the
study as well as what was expected of them. The participants
all signed an informed consent form agreeing to participate in
the study and acknowledged that they understood they were
free to withdraw from the study at any time before simple
demographic information was collected. All the data were
analysed and reported confidentially.

D. Experimental Protocol

The considered experimental protocol is depicted in Fig. 6.
It comprised six steps, three of which are the core parts of
the proposed learning framework, as in Fig. 1, and the other
three were introduced to quantify the subject’s improvement
and gather their feedback. In particular, the steps are detailed
hereafter.

1) Introduction to the training material. In this part, subjects
were presented with the whole training material to build
their domain knowledge.

2) Baseline measurement task. The aim of this step was
to assess the subject’s baseline programming skills,
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before practising with the proposed framework. The task
consisted of guiding the robot to four different points,
as shown in Fig. 7(a). TCP robot pose was recorded
by the experimenter for each point. The points were
marked on two sides of a box placed in front of the
robot, as shown in Fig. 3(a).

3) Hands-on practice. In this step, subjects were given
a fixed time slot to practice the learnt skills through
scaffolding training. Duration was set to 70 minutes for
the UR10e, and 60 minutes for the UR3e: participants
needed more time with UR10e due to the robot being
larger and heavier to manoeuvre. During this step, the
participant may revisit the training material, as illus-
trated by the dotted arrows in Fig. 6 and as introduced
in Sec. V-A. The A, B, C, and D markers shown in
Fig. 3(b) could be re-organised by the experimenter
when a task was replayed. This meant that the same
programming task contained some variation in order
to test the learner’s understanding of the programming
skill in different physical positions. For every task, the
experimenter loaded the right program on the teach
pendant (either empty or the scaffolding program in
question) and set up the interaction area according to
the task.

4) Intermediate measurement task. This was the same as the
former baseline measurement task. Similar TCP poses
were recorded to be compared to those from baseline
measurement in order to assess a subject’s individual
improvement.

5) Combined programming task. Following the rationale in
Sec. V-A, a set of tasks was designed to combine the pre-
viously learnt skills into a coherent program in the form
of a synthesis of elementary skills. The task is shown in
Fig. 3(b). This step served to show whether the learner
is capable of putting together multiple elementary skills
into actionable programming without access to training
material.

6) Exit interview. Participants were asked about their expe-
rience with the robot and how the information was
portrayed to them.

With reference to Fig. 7(b), the final combined programming
task consisted of programming the robot to pick a bottle from
a box (subtask 1 in the figure) and place it on the table (2).
Then, the robot had to pick another small box (3), wait for
a digital input (4) before placing the box in a specified area
(5). Finally, the robot had to linearly move along the sides
of the box (6, red line). The digital input was connected to
a manually activated switch, simulating input from a sensor,
while the last sub-task was meant to simulate a welding or
gluing task. Indeed, during a welding or gluing task the robot
end-effector has to follow exactly a path, usually linear, with
a custom tool that performs the operation.

The protocol was organised through the same steps for the
self-regulated and adaptive groups, with the only difference
being in the hands-on practice. Specifically, for the self-
regulated training, the interface was presented on a touch
screen, and navigation among the different parts of the frame-
work and the scaffold training was allowed between all the
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(a) Baseline and intermediate mea-
surement task.

(b) Final programming task.

Fig. 7. Organization of the baseline and intermediate measurement task, and
the final programming task.

pages and controlled by the learner. For the adaptive training,
the learner had no access to the touch interface but rather
saw the monitor displaying the interface, and navigation was
controlled by the experimenter acting as a WoZ operator,
following the logic in Fig. 2. Each participant was handed
a stylus pen for the teach pendant as UR10e and UR3e were
not always responsive to touch input.

E. Performance Metrics

To assess the impact of the proposed framework on learning
how to program a robot, we considered different quantitative
and qualitative metrics. Subject performance was assessed dur-
ing baseline measurement, intermediate measurement and final

combined programming tasks. Specifically, during baseline
and intermediate measurement, time-on-task was measured,
and the TCP pose for each point was recorded. Time and TCP
poses were used to assess any improvement in terms of time
and accuracy in the intermediate measurement with respect to
the baseline. During the final combined programming task,
the time to accomplish the whole task was recorded, and
TCP poses in the four vertices of the box in the gluing
task were recorded. Additionally, the experimenter took note
of any errors that occurred during the entire programming
task. All the robot data were collected using the official UR
ROS Driver,” which provides complete access to the current
joint configuration. For measuring task time, a stopwatch was
manually employed, as the introduced error is negligible.

Feedback from test participants was gathered in a short exit
interview, consisting of four questions. These asked whether
i) they found the training material adequate to program the
robot (Was the training material adequate to program the
robot?), ii) there were any points during the experiment where
there was missing information (Did you encounter any points
during the experiment where you were missing information?),
iii) they would have preferred to look up their own training
material (for the adaptive group) (Would you prefer to look up
your own training material? or have relevant training material
presented (for the self-regulated group) (Would you prefer
to have relevant training material presented to you, while
programming the robot, opposed to looking it up yourself?),
and, finally, iv) if they had any comments on the way the
information was presented on the monitor (Do you have any
thoughts on how you experienced the way the information
was presented to you on the monitor?). Additionally, a think
aloud approach, which consists in keeping track of the user’s
thoughts while using the system, was used to report unsolicited
feedback [37].

VII. OUTCOMES OF EXPERIMENTAL VALIDATION
A. Subjective Feedback

At the end of the experimental protocol, test participants
provided, in general, positive feedback about the training mate-
rial and facilitation. In reply to the first two questions of the
exit interview, they all reported the training material adequate

5https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
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and did not report a lack of important information. Two of
them mentioned that there was a lot of information presented
to them in the beginning, which felt a little overwhelming
at first. Interestingly, in reply to the third question, two of
the subjects in the self-regulated training reported that they
navigated the different tasks in almost random order and would
prefer some guidance in navigating through the interface. In
reply to the same questions, all the participants in the adaptive
group reported that they were satisfied with guided navigation
since they trusted the system and the experimenter. No relevant
comments were provided in reply to the fourth question.

B. Common Novice Mistakes

During the entire experimental protocol, the experimenter
observed and took notes of participants’ behaviour, comments,
and mistakes. Moreover, we inspected the programs generated
in the final combined task and held them up against a baseline
program created by the experimenter, which served as the
correct way of solving the more complex programming tasks.
As a result, it was possible to identify some commonly
occurring mistakes for novice users who are just learning to
program collaborative robots.

However, because there does not exist a finite solution for
solving the tasks, but many different ways and approaches
could be used to solve the tasks, we focused on major mistakes
and discarded minor deviations such as using more waypoints
than needed or different angles of approach.

In both robot setups (UR10e and UR3e), regardless of
condition (adaptive or self-regulated training), some partici-
pants made more mistakes compared to others. There were,
however, common recurring mistakes such as neglecting a wait
command after activating the gripper, troubles with correct
payload, correct use of motion types and neglecting intermedi-
ate waypoints in pick and place tasks for safer object handling.
Additionally, the experimenter had to activate the emergency
stop to avoid collisions with either the environment or the
robot itself. These mistakes are summarised hereafter.

o Wait command: If a wait command was neglected when
activating a gripper or misplaced, it was noted as an error.
This happened for 8 participants out of 20.

« Motion type: While not critical to task completion,
a non-ideal use of motion types was noted as an error.
This happened to 11 participants.

« Payload: If setting payload was neglected or incorrect,
this was noted as an error. This happened for 6 partici-
pants.

« Intermediate waypoint: If intermediate waypoints in
pick and place tasks were neglected, it counted as an error
(despite not always resulting in collision). This happened
for 4 participants.

« Task related: If the experimenter had to intervene ver-
bally or objects were placed imprecisely, this was counted
as a task-related error. This happened for almost all the
participants, specifically 13 out of 20.

o Emergency stop: The experimenter had an external
emergency stop button on hand and noted down each time
it was activated preemptively to avoid minor collisions
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(a) Setup with UR10e robot. (b) Setup with UR3e robot.

Fig. 8. Time required to complete the different phases of the experimental
sessions in the two considered setups (blue: self-regulated; red: adaptive). The
boxplots show a significant reduction of time exploiting the proposed training
method.

and protect the equipment. This happened for § partici-
pants, in some cases more than once per participant.

A few additional comments are worthy to be reported.
A very common observation for pick and place tasks was that
the participants typically did not grip the object to program a
precise place position. Instead, they tried to eyeball the right
distance from the table with an empty gripper, which very
often resulted in imprecise placement or collision with the
table. Moreover, it was also often observed that the participants
brought the robot in configurations close to singularity, thus
accidentally triggering a protective stop. When close to max-
imum arm extension, the low-level controller is not capable
of computing the Cartesian input to move the robot in the
desired position [38] and automatically stops the robot to avoid
dangerous movements. In our experimental evaluation, this
was observed more with the smaller UR3e robot due to the
smaller reach available.

C. Comparison Between Self-Regulated and Adaptive
Training

Performance  comparison  between  adaptive  and
self-regulated training was carried out in a post processing
phase, considering the time required to complete the
experimental protocol and the accuracy of the programmed
tasks.

Fig. 8 shows time measurements for the two learning
conditions. Specifically, in all the panels, we compared
self-regulated (blue, left) and adaptive training (red, right),
considering the two setups (with UR10e robot on the left
and with UR3e robot on the right). Circles represent the
time measured for each test participant (five participants
per condition, per setup), while dashed lines denote mean
values. From the top, the panels refer to: i) time required
to accomplish the initial baseline measurement task (7),
ii) the intermediate measurement task (7;,,), which was the
same as the baseline task but happened after the hands-on
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Fig. 9. Position of the end-effector recorded during the baseline task and the intermediate task for both training with the UR10e setup (left) and the UR3e
setup (right). The plots show that the users have been able to achieve good performances in positioning the robot.

practice phase, iii) the improvement, for each test participant,
between the intermediate and baseline measurement tasks with
respect to Tj;, defined as AT = T’”T—;T”’ - 100, and iv) the
final combined programming task depicted in Fig. 7(b) (T;p).
Overall, the figure shows that no relevant differences in terms
of required time were measured between the two conditions
of self-regulated and adaptive training. Nevertheless, the third
panel of both setups, namely AT, shows that a notable
improvement was achieved with the hands-on practice, thus
showing the effectiveness of the proposed training approach.
Considering the two setups together, on average, the relative
improvement was of 42.0% for the self-regulated condition
and 42.5% for the adaptive approach.

Regarding the accuracy of programmed tasks, we measured
how accurately users could program the robot to move to the
points in Fig. 7(a) and the edges of the box in Fig. 7(b) (step 6,
red line).

First, with respect to Fig. 7(a), we assessed any improve-
ment in the intermediate task with respect to the baseline,
comparing robot positions in the four points in the inter-
mediate and baseline tasks. Specifically, Fig. 9 shows the
points reached by the two groups during both the baseline and
the intermediate task for both scenarios, w.r.t. the reference
position recorded by the experimenter. In the figure, the big
blue circle markers represent the reference points, while the
other markers represent the points reached by each user in the
baseline task, coloured small circles, and in the intermediate
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(a) Setup with UR10e robot. (b) Setup with UR3e robot.

Fig. 10. Position error in the different phases of the experimental sessions for
the two considered setups (blue: self-regulated; red: adaptive). The boxplots
show that the position error achieved by both groups is always low, without
significant difference between the baseline and the intermediate task.

task, coloured small crosses. The same colour refers to the
same user.

Starting from the points collected in the experiments,
it is possible to perform a quantitative evaluation on the
performance of each user. It is worth underlining that to
achieve a more realistic comparison and evaluation, these three
post-processing operations were exploited:

1) The starting point was set coincident with the nominal

one for all the users. This is necessary to avoid the
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Fig. 12. Boxplots of the position error during the gluing task.

accumulation of errors due to a wrong placement of the
box. In fact, we are only interested in how the users
perform in programming the robot and not how they
performed in manually placing the box.

2) The direction that goes from the first point to the second
one is set equal for all the users. As before, this is
necessary to compensate for the orientation errors in the
placement phase.

3) The Z component has been compensated. This is due
to the fact that each user prefers to put the gripper to
a different distance w.r.t. box, i.e. someone prefers to
touch the box while others prefer to stay at a higher
position to avoid contact.

Starting from all the points collected, it is possible to compute
the error Ep that each user made in performing the task, i.e.
the Euclidean distance w.r.t. the reference. This is represented
in Fig. 10. Specifically, as done for time data analysis in Fig. §,
we compared self-regulated (blue, left) and adaptive training
(red, right) in both setups. Circles represent the Euclidean
distance measured for each test participant, while dashed lines
denote mean values. From the top, the panels refer to: i) error
achieved during the baseline task (Ep ;), ii) the intermediate
task (Epns) iii) the improvement, for each test participant,
between the intermediate and baseline measurement tasks
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Epinn—Epp

(AP, = Frm - 100). The figure shows that for the
UR10e setup, the adaptive training performed slightly better,
while the contrary happened for the UR3e setup. Regarding the
difference between before and after the training, on average
we did not register notable variations in the performances. The
only exception is the adaptive training with the UR3e setup.

Lastly, Fig. 11 shows the overall path computed during
the gluing task required in the combined programming task
(Fig. 7(b)), w.r.t. the reference one. Since the gluing task
requires a linear trajectory of the end-effector, in this phase
all the intermediate points have been recorded. It is possible
to note that all paths have the lower left corner coincident and
that the direction of the left side is equal. This is due to the
fact that, as before, we wanted to analyse only the quality of
the path performed with the end-effector, without considering
the box placing error. In fact, if the box is placed in a wrong
position or wrong orientation, it is still possible to achieve
a perfect gluing. Thus, in a post-processing phase, the paths
have been aligned at the starting point. It is worth noting that
the box used in the UR3e setup was not perfectly rectangular,
which is why the left side appears skewed.

Starting from the paths, it is possible to compute the
error that each user made in the gluing task. As opposed
to the time measurements, we have a lot more data points,
i.e. the entire path for each user, and thus the error can
be meaningfully represented through boxplots, illustrated in
Fig. 12. Specifically, for the experiment with the UR10e, the
self-regulated training performed slightly better, while for the
UR3e it was the opposite.

VIII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we highlighted a list of necessary knowledge
and skills for letting novice operators be self-sufficient in the
use of collaborative robots (RQ1 - see Table I). We then pre-
sented and tested an approach for cobot programming training.
The approach focuses on industrial operators who are novices
to collaborative robotics and aims to teach them essential
elementary knowledge about cobots and their programming
basics. The suggested training approach was inspired by
a hands-on problem-based approach, relying on cognitive
apprenticeship principles (RQ2).

Overall, the proposed approach shows promise and is able to
adjust to different robots and settings. It shows that relatively
little training in a few selected key focus areas can produce
great advances in cobot programming capability for novice
users in a short time span. All participants demonstrated
individual improvement and were capable of programming
the robot by the end of the experiments. However, based on
our sample of 20 participants, it was inconclusive whether
an adaptive approach as suggested by Mariani et al. [31]
and Mayrhofer et al. [29] performed better compared to a
self-regulated training approach. A deeper investigation of
more appropriate adaptive training approaches was out of
the scope of this paper. However, it would be useful to
extend previous results achieved in the literature to the use
of collaborative robotic arms in industrial scenarios.

We also identified some commonly occurring novice
mistakes, which highlights specific areas, where increased
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attention may be necessary when facilitating training for
novice cobot users. Many of these mistakes may have been
made due to the fact that, during the learning phase, the users
become more confident and underestimate the importance of
a certain skill, e.g., not adding a pause when operating the
gripper could cause a collision. Due to the lack of experience,
this could be perceived by the user as a waste of time.
An example of a dangerous situation that may occur by not
adhering precisely to a skill procedure would be an interesting
addition to future training material. This could give the user
a more detailed view of the importance of the single skill.
One user commented that they would be more precise in their
programming if they knew the program was to be run in a real
production environment. This underlines the importance of a
situated learning environment closely resembling real-world
applications [32].

The results achieved in our experimental validation relied
mainly on an interface with text-based information, which may
not always be the best suited modality to introduce material
for learners. Others have compared multiple modalities such
as augmented reality projections onto the collaborative robot
workspace, which scored high on task performance and user
preference compared to text printouts or monitors [39], [40].
Robots endowed with speech capabilities to guide users also
show promise when applied in structured learning environ-
ments [6]. It is worthwhile to investigate not only adaptive
learning environments but also different modalities to facilitate
the learning framework for training.

Learning how to operate a robot arm is only a small part of
the issues faced when pursuing automation. A robot arm, like
a cobot, is often a mere part of a larger automation puzzle
with increased complexity for every piece in the network.
Just to mention a few common examples, the cobot often
needs a tool mounted with additional sensors, which may
send signals to activate a conveyor, control external safety
devices, or receive signals from other connected machines
in the production flow. It all has to fit together in cohesion
for automation to work. Learning about the robot may be
a first step but the real challenge is how to convey and
navigate the complexity of entire automation solutions to the
existing workforce. Notwithstanding, small to medium-sized
enterprises may use the proposed learning approach as a way
to garner interest, engage, and support novice workers in their
initial encounter with collaborative robots. Many participants
commented on how it was fun to program the robot, which
may provide the right incentive to learn more about how the
technology works and could be adapted to suit their day-to-
day production needs. This also suggests that the difficulty
level was just right to achieve a flow-state, where the learner
is engaged in tasks that are just challenging enough to keep
them going, yet, not easy enough that they feel bored or
disengaged [41].

An ‘Operator 4.0 typology has already been proposed by
[42] , which outlines the type of capabilities workers within
Industry 4.0 should be able to do when working in production
environments rich with data, virtual reality, exoskeletons,
increased information and communication flow, biometric sen-
sors, and robots. Future research may look into unfolding

the operator typology specifically for operators expected to
work closely with robots. Such a typology could help identify
multiple responsibility areas and the extent of the competences
needed in those. For example, a shop floor worker may only
need the competences to start/stop the robot to refill materials
or edit established waypoints, whereas specialised knowledge
surrounding safety standards and communication protocols
is needed to initially set up the robot on the factory floor
to ensure safe operation. Arriving at such a typology may
aid in more focused training suitable to the knowledge and
skill level required of that person’s responsibility area. Future
work could also look into more longitudinal effects of the
training program or explore more diverse programming tasks,
e.g., using cobots from different manufacturers or adding
safety-related training. Being safe around robots is still a
major topic, and detailed open source safety information for
human-robot collaboration (HRC) already exists, such as the
COVR Toolkit.° Our proposed framework could be used in
combination with the COVR toolkit to provide a structured
approach to learning for the type of robot operator that is
being targeted.

Finally, an extension of this work is ongoing, where the
cognitive load of subjects related to the proposed framework is
measured. Several physiological data (heart rate, eye activity,
electrodermal activity, and brain activity) have been recorded
together with user feedback using the NASA-TLX ques-
tionnaire while subjects were learning through the proposed
framework and performing different programming tasks with
varying difficulty [43]. The aim of that study is to collect
further insights about the users’ perception of the proposed
framework and its usability. The collected dataset, named,
SenseCobot, is publicly available’ for further research on this
topic.
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