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Abstract— This paper introduces an innovative approach
to designing a user-based Heating, Ventilation, and Air-
Conditioning (HVAC) system management connected with the
District Energy Management System. By classifying the users into
dynamic energy consumption classes to reward energy efficiency
and penalize excessive use, users can modify their behavior to
pass to a less expensive and more virtuous consumption class.
To this aim, a blockchain platform determines the rewards and
penalties and, by a K-means clustering algorithm, categorizes
users into respective groups. Then, a Class Follower Problem
is formulated and solved by a Model Predictive Control (MPC)
strategy integrated with a Long Short-Term Memory network as
a predictive model. If the users follow the suggestions proposed
by the controller, i.e., the thermostat set-points and the time
intervals in which the HVAC system must be switched off or on,
the users can be located in a more virtuous consumption class.
A case study conducted within an energy district in Bari (Italy)
shows how the proposed architectural framework tuned thermal
regulation in intelligent buildings while concurrently achieving
energy optimization.

Note to Practitioners—This paper addresses the challenge of
efficiently managing HVAC systems in smart districts through a
novel blockchain-based framework and an optimization strategy
solved by an MPC approach. The objective is to incentivize users
to optimize their energy consumption by introducing dynamic
Consumption Classes that reward energy efficiency and penalize
inefficient utilization. For practitioners, this strategy translates
to a granular level of energy management that not only adapts to
individual behaviors but also aligns with broader sustainability
goals. Integrating the blockchain platform ensures a transparent
and secure method for managing and recording energy usage.
At the same time, adopting MPC with Long Short-Term Memory
Networks offers accurate forecasts and adjustments to enhance
system responsiveness. Although the study focuses on HVAC
systems, the principles may be extended to other energy-intensive
applications, providing a comprehensive tool for energy manage-
ment and user engagement in smart cities. Future research could
integrate renewable energy sources and explore the implications
of user-driven adjustments on the overall energy distribution and
efficiency.
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I. INTRODUCTION

THE quest for energy efficiency and consumption control
is fundamental from an environmental perspective. Fifty

percent of building energy consumption is used in Heating,
Ventilation, and Air-Conditioning (HVAC) systems [1]. Hence,
effective HVAC control techniques for energy consumption
minimization and thermal comfort guarantee have attracted the
attention of researchers. In order to simultaneously maximize
comfort and minimize energy consumption, it is essential to
manage the building network (district) in a way that optimally
balances real-time energy usage.

While existing regulations have initiated some changes,
traditional penalty-based systems often fail to encourage full
user compliance. Emerging researchers advocate for integrat-
ing blockchain technology, like proposing a novel system that
dynamically rewards or penalizes users based on their real-
time energy consumption. This approach promises enhanced
security and privacy, addressing key concerns in energy man-
agement [2]. The concept of bestowing complimentary energy
credits to domestic end-users as a means to mitigate the
demands during periods of peak loads, leveraging a direct
load control mechanism envisaged by Erdinç et al. [3], has
also undergone scrutiny. Furthermore, Shi et al. work [4]
elucidates the efficacy of incentive-based demand response in
eliciting shifts in consumer energy usage, providing a refined
methodology for assessing load profiles and attenuating peak
loads through economic inducements.

In the context of decentralized energy management, it is cru-
cial to consider the market dynamics. Mnatsakanyan et al. [5]
propose an innovative electricity market structure emphasizing
individual pricing mechanisms for fairer demand response
benefits distribution. Brahmia et al. [6] highlight the challenges
of electricity price forecasting in multi-microgrid systems,
advocating for advanced predictive models. Additionally, using
reinforcement learning, Biemann et al. [7] explore real-time
pricing optimization in data center HVAC control, under-
scoring the need for responsive management solutions in
fluctuating market conditions.

Advanced control and prediction algorithms, such as Long
Short-Term Memory (LSTM) networks, have been utilized

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0009-0004-7597-88795
https://orcid.org/0000-0002-3939-9915
https://orcid.org/0000-0001-6850-6153
https://orcid.org/0000-0002-8612-1852


2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

effectively for time-series prediction in energy manage-
ment, capturing temporal dependencies for accurate real-time
predictions and enabling more efficient energy resource uti-
lization [8]. In parallel, Model Predictive Control (MPC) has
proven pivotal for the dynamic optimization of complex sys-
tems like multi-zone buildings, which is critical in balancing
energy efficiency with user comfort [9]. Integrating energy
management algorithms with blockchains for secure commu-
nication is a substantial advancement. However, there are still
notable gaps, particularly in tracking financial transactions and
enhancing user comprehension of their energy usage patterns.

This paper proposes an HVAC control system connected to
the District Energy Management System (DEMS) and devoted
to improving the HVAC consumptions’ user management.
In detail, the DEMS receives the electricity invoice from the
energy supplier at the end of the billing cycle and other
data concerning weather conditions, calendar days, and law
limitations. Such data are notarized via a dedicated transaction
on a blockchain platform.

Moreover, at the end of the billing period, the blockchain
classifies the users into Consumption Classes, and rewards or
penalties are assigned to each class. Hence, the blockchain
decides all the user payments based on a virtuous classification
performed by a K-means clustering algorithm proposed in our
previous paper [10].

At this point, the users can decide to modify their behavior
to pass to a less expensive class. To this aim, a Model
Predictive Control (MPC) strategy is locally applied by the
user to determine the thermostat set-points of the HVAC
system and the intervals in which the system HVAC must
be switched off or switched on. A lexicographic optimization
allows the user to minimize energy consumption by guarantee-
ing the user’s comfort. In addition, an LSTM-based method is
presented to determine the building’s thermodynamic model
and HVAC energy consumption. Then, the MPC approach
solves the lexicographic optimization problem by using the
building thermodynamic model and the HVAC energy con-
sumption description obtained by the LSTM pre-trained
network.

The new contribution of the paper is twofold.
First, the proposed HVAC control system is connected with

the DEMS pricing and classifies users in the consumption
classes using a K-means clustering algorithm. The approach’s
novelty also lies in the use of the blockchain platform, which
guarantees accountability, transparency, and data notarization.

Second, we propose a methodology that the users can
implement to pass to a more virtuous class. Even if apply-
ing the MPC approaches and the LSTM-based methods are
familiar in the HVAC control, we formulate and solve a
novel lexicographic minimization problem. The solution can
be applied by the users to suitably manage the HVAC system
and reach the desired Consumption Class by satisfying their
comfort.

The system architecture incentivizes users to shift towards
more virtuous energy practices, ensuring that energy suppliers
do not bear the consequences of inefficient consump-
tion. By implementing a penalty-reward system rooted in
blockchain technology, we advocate for a self-regulating user

community where sustainable actions are incentivized and
wasteful habits are discouraged.

The remaining structure of the paper is as follows: Section II
presents the literature review about the role of blockchain tech-
nology, Machine Learning (ML), MPC and LSTM methods
within Smart Grids (SG) and DEMS. Moreover, Sections III
and IV describe the proposed HVAC Control System and
the blockchain platform architecture, respectively. In addition,
Section V formulates the district user clustering and the class
follower problem. Section VI designs the control system based
on the MPC strategy and the LSTM thermodynamic model.
Finally, Section VII discusses the case study and Section VIII
draws the conclusions.

II. LITERATURE REVIEW

A. Blockchain in Smart Grid and District Energy
Management

With its distributed ledger architecture, blockchain tech-
nology is pivotal in enhancing the reliability and security of
SG and district energy systems. Each transaction within this
system is meticulously cataloged in structured blocks, linked
sequentially to form a sequential or chain-like structure. Each
block in the blockchain is securely linked to its predecessor
by incorporating the output of the Secure Hash Algorithm
256 (SHA-256), commonly referred to as the hash, of the
previous block, which is included in the structure of the
current block [11]. The slightest variation would produce a
completely different control number (H), also known as a hash
number. The strength of storing data in this way lies in the
mathematical certainty of the correctness of the data stored.
The same data processed with the same hashing function will
return the same number H in a deterministic way.

In SG, blockchain can be employed to transparently manage
energy distribution, recording transactions from energy pro-
duction to consumption. This ensures integrity in the trade of
renewable energy certificates and facilitates real-time billing
for consumers. This system could be applied to a database
to certify data integrity. However, the innovation brought by
blockchain lies in the fact that blocks include the H of the
previous block within the input information [12].

In the context of SG security and privacy, various studies
have highlighted the challenges and opportunities arising from
emerging technologies, such as ML and blockchain [13], [14].
Mirzaee et al. [13] explored security and privacy challenges
in SGs, including vulnerabilities and potential attacks in
evolving power networks, emphasizing the need for additional
research into security and privacy mechanisms. Furthermore,
the authors discussed the growing use of ML algorithms
in SG components for attack detection and threat analysis,
highlighting the susceptibility of ML systems to adversarial
attacks.

As previously mentioned, blockchain, a distributed technol-
ogy that, thanks to its structure, enhances system redundancy
and resilience to failures and cyberattacks, has emerged
as a promising application within the SG (Smart Grid)
paradigm [14]. In the pursuit of building Smart Cities, a smart
district model has been designed, leveraging new technolo-
gies and efficient energy management systems integrated into
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an Internet of Things (IoT) and blockchain platform [15].
Christidis and Devetsikiotis [16] delved into the integration
of blockchains and smart contracts with IoT, illustrating how
these technologies could foster a marketplace of services
between devices and automate multi-step processes in a
cryptographically verifiable manner. In a similar vein, Bene-
dict et al. [17] introduced an IoT blockchain solution, i.e.,
an IoT-enabled blockchain for air quality monitoring systems
in smart cities. Implementing chaincodes for air quality moni-
toring systems, the proposed architecture addressed prevailing
security and performance challenges associated with IoT cloud
solutions.

Moreover, blockchain has been applied in the SG for
cybersecurity [18]. Kosba et al. [19] presented a decentral-
ized smart contract system that ensures transactional privacy
in decentralized cryptocurrencies, enabling programmers to
write private smart contracts without implementing cryp-
tography directly, as the compiler automatically generates
an efficient cryptographic protocol. Li et al. [20] provided
a quantitative and qualitative review of blockchain research
from 2015 to 2021, identifying six research hotspots and five
research frontiers to offer a comprehensive view of recent
trends in the field. Malla et al. [21] conducted a state-of-the-
art review on the status, challenges, and future directions of
blockchain technology in power systems, discussing interfaces
and possibilities that can ensure trust, security, and trans-
parency, facilitating a decentralized power system and power
market. The Hyperledger Fabric, a modular and extensible
open-source blockchain system, is a promising solution for
supply chain management, allowing customization for spe-
cific use cases and trust models without relying on a native
cryptocurrency [22]. Although it is important to acknowledge
the inherent limitations associated with its nature as a closed
and non-public platform, the Hyperledger platform enables a
secure and efficient way to track and manage transactions and
assets throughout the entire supply chain.

B. Optimization Models for Energy Management

In recent years, ML algorithms have been applied to energy
consumption prediction in smart buildings, examining the
performance of Support Vector Regression, Artificial Neural
Networks, and Random Forest algorithms. Wu and Chu iden-
tified in their study Random Forest as the best-performing
algorithm and investigated the impact of sampling strategy on
prediction accuracy. They discovered that increasing sampling
density in high variance data enhanced prediction results,
which can be employed to optimize ML algorithms for build-
ing energy consumption prediction, ultimately contributing to
energy conservation, environmental protection, and smart city
development [23].

Another study by Roccotelli et al. addressed the energy
management issue in cooperative microgrids within a smart
energy district [24]. It proposed an optimization model that
aims to maximize the use of energy purchased at the day-ahead
market, minimizes the need for expensive real-time energy,
and optimizes the integration of renewable energy sources,
energy storage systems, and electric vehicle batteries. In order

to tackle the uncertainties of key parameters, the proposed
optimization model was solved using two approaches: one
deterministic and one stochastic.

Muralidar et al. [25] emphasized the need for integrat-
ing blockchain and ML technologies in energy management
systems to enhance efficiency, reduce costs, and support the
implementation of renewable technologies in smart buildings.
In their review, the energy management systems are at the
center of monitoring and controlling energy needs in indus-
trial buildings, underlining the necessity for such systems to
address energy use efficiency improvement, energy cost reduc-
tion, and renewable energy technology implementation to cater
to local energy loads in structures with distributed resources.
Rajith et al. [26] pioneered the development of a real-time
optimized HVAC control system using IoT, which was built
upon an IoT framework that collected thermal parameters from
sensors and user feedback information for real-time processing
in a distributed cloud environment. Incorporating optimization
techniques, demand response, and predictive models in their
system led to a 20%–40% reduction in energy consumption
while maintaining user thermal comfort.

C. Model Predictive Control for Building Climate
Management

The utility of MPC in sustainable building management is
increasingly recognized, especially when integrated with data-
driven methodologies. Chen et al. [27] introduce a Data-Driven
Robust MPC framework, which tackles the prevalent issue
of weather forecast uncertainty. This work aligns with the
thrust of our proposal to enhance climate control strategies in
buildings. By incorporating ML techniques for constructing
uncertainty sets, paper [27] establishes a foundation upon
which our research builds, particularly in developing a tailored
predictive model that accounts for the unique climatic and
architectural characteristics of our focus buildings.

On the topic of learning-based approaches, the work of
Eini and Abdelwahed [28] is noteworthy for its integration of
Artificial Neural Networks (ANNs) with the MPC framework,
resulting in notable energy savings and improved occupant
comfort. Their method offers a proof of concept that resonates
with our proposal’s objective to optimize energy management
while maintaining thermal comfort. Our research seeks to
bridge the gap identified in their study by extending the
learning-based control scheme to a wider range of building
types and climatic conditions, ensuring broader applicability
and scalability of the proposed solutions.

Recent research has explored the optimization of build-
ing energy management and indoor thermal comfort.
Homod et al. [29] presented a hybrid model highlighting
the importance of non-temperature factors in HVAC system
references. The potential of MPC in HVAC systems has been
underscored by multiple studies, emphasizing its utility in
ensuring energy efficiency and thermal comfort. However,
from a pricing perspective, the limitations on the operational
time-frames of HVAC systems imposed by some nations are
not optimal solutions, as they risk leading to exceeding energy
peaks [30].
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While these studies lay the groundwork for innovative
climate control through MPC, our research intends to expand
on these methodologies. We aim to explore the intersection of
advanced control algorithms and emerging technologies, such
as the IoT and edge computing, to enable more responsive
and adaptive building management systems. By leveraging
the strengths of the existing models and identifying areas
for improvement, our proposal aspires to contribute to the
evolution of smart building energy systems that are both
efficient and responsive to the occupants’ needs.

D. Long Short-Term Memory Networks in HVAC Systems

LSTM networks are special kinds of Recurrent Neural Net-
works (RNNs) that are gaining attention in the field of HVAC
systems for their ability to model and predict time series data
with long-term dependencies. LSTMs are particularly well-
suited for HVAC load prediction because of their capability to
remember information for long periods, which is essential for
capturing the dynamics of energy consumption in buildings.

Friansa et al. [31] compared LSTM and bi-directional
LSTM models for the prediction of HVAC electricity load
based on daily datasets. Their findings showed that Bi-
LSTM models yielded higher accuracy, with a Mean Absolute
Percentage Error of 15.35%, suggesting that LSTMs could
significantly improve the prediction accuracy for HVAC elec-
tricity load management.

In a similar way, Wang et al. [32] proposed a Dis-
tributed Fusion LSTM model to forecast temperature and
relative humidity in smart buildings. Their model, which
utilizes distributed data-fusion technology, outperformed other
forecasting methods, including Support Vector Regression
and classical LSTM, highlighting the efficacy of LSTMs
in predicting key environmental variables that affect HVAC
performance.

Alden et al. [33] explored the use of LSTM networks to
separate HVAC energy use from total residential load, which
can be pivotal for enhancing energy management systems in
smart homes. They developed LSTM encoder-decoder models
using future weather data, which proved to be effective in
providing accurate day-ahead HVAC energy forecasts, thus
facilitating more efficient energy management.

III. HVAC CONTROL SYSTEM

In this section, we propose an HVAC control system at
the DEMS level to improve the user management of HVAC
consumption. The system architecture is described in Fig. 1,
which points out the main system components.

In detail, the DEMS receives the electricity invoice from
the energy supplier at the end of the billing cycle and other
data concerning weather conditions, calendar days, and law
limitations. Such data are notarized via a dedicated transac-
tion on the blockchain platform. On the other side, the IoT
devices transmit HVAC states to the blockchain, such as the
temperature at which the thermostat has been set.

The start-up and closing times of the billing cycle are
managed in a distributed manner through the use of a Smart
Contract. The blockchain also notarises the data collected into

Fig. 1. System architecture.

the Smart Contract with a time-stamp through the same code
of the blockchain platform, which includes the transaction
containing the information within a time-stamped block.

At the end of the billing period, the blockchain classifies
the users in n Consumption Classes and a reward or penalty
is assigned to each class. Hence, the blockchain decides all the
user payments based on a virtuous classification performed by
a K-means clustering algorithm proposed in [10]. In particular,
the users are classified into consumption classes by a K-
means clustering algorithm, and each class is characterized by
a multiplier coefficient that increases (penalty) or decreases
(reward) the user energy costs. Such coefficients are notarized
on the blockchain, which provides payment at the end of a
billing cycle.

Obviously, a user belonging to a virtuous class contributes
less to the payment of an electricity invoice than a user
belonging to a less virtuous class due to rewards and penalties.
For this reason, a user can be encouraged to move from a less
virtuous class to a more virtuous one. The strategy to enable
a user to change their behavior to pass a less expensive class
is implemented by an MPC approach.

In particular, the MPC uses a predictive model to fore-
cast future performance and determines a control action to
meet predefined constraints and objectives over a designated
horizon.

The significance of MPC in smart DEMS lies in its
predictive power and adaptability. It allows the system to pre-
emptively adjust HVAC settings in response to user behavior
and external factors, ensuring that the energy consumption is
simultaneously efficient and economical. The proposed MPC
scheme provides the thermostat set-points of the HVAC system
in the different zones of the building to allow the user to reach
a less expensive consumption class.

IV. BLOCKCHAIN ARCHITECTURE

This section describes the blockchain platform and the
design of the related Smart Contracts.

A. Blockchain Platform

It is worth recalling that reading information on the
blockchain has no cost; on the contrary, writing can be
expensive. This leads to the first critical issue to be addressed,
which is the choice regarding the blockchain platform to be
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implemented in order to prevent the user from incurring costs
that exceed what is necessary.

On the client side, the system is required to record a sub-
stantial amount of data on the blockchain, as the consumption
data needs to be notarized over time. To address this challenge,
several solutions exist: one local approach involves processing
the data locally, regularly generating hashes of the data, and
then notarizing only these hashes on the blockchain. In this
way, the control over the data would not be direct but would
still guarantee high reliability. This is because the optimization
tool would acquire the data via the Application Programming
Interface (API) directly from the server, then submit them
to the same hashing algorithm (deterministic), and eventually
compare the hash calculated with the notarized one in the
blockchain. If data inconsistency occurs, the system assumes
manipulation and applies the maximum possible coefficient.
This hybrid solution involves a high-risk factor, given the poor
resilience of the system to errors. A single variation of data
in the period under consideration would heavily penalize the
user, and it cannot be assumed that all of these errors are
attributable to system manipulations.

Conversely, systems that employ on-chain data storage
demonstrate enhanced resilience, as exemplified by the sub-
sequent proposed solutions. One alternative is a blockchain
that is compatible with the Ethereum Virtual Machine (EVM),
which benefits from reduced costs when compared to notariza-
tion fees associated with the main Ethereum Blockchain.

Alternatively, when full on-chain data writing and opti-
mization execution are required, a more innovative approach
is preferable. This is exemplified by an Avalanche subnet.
To date, the Avalanche Blockchain offers a solution with lower
access costs and more immediate usability, largely due to
its governance policy managed by a Proof of Stake (PoS)
consensus algorithm. In PoS blockchains, part of the nodes
that contribute to archiving the blockchain’s history can also
write to it, composing the new blocks. The requirement is to
lock (stake) some native cryptocurrencies so that any malicious
actors can be penalized by eroding the staked capital (with
different methodologies depending on the parameters of the
consensus algorithm implemented).

The role of these specific nodes on a PoS blockchain
is called “validator”. The Avalanche Blockchain’s validators
can write contextually to the main Blockchain and also to
different blockchains called subnets, and each subnet can be
programmed individually [34]. An evolved use case envisages
that a particularly advanced blockchain application such as the
one being studied here can be implemented on a proprietary
subnet. This solution cuts transaction costs, bringing them to
a minimum. In order to have the subnet working smoothly,
the developed blockchain application must provide incentives
for the validators to attract them to validate the subnet.

Furthermore, while the blockchain itself is not anony-
mous, it offers a high degree of pseudonymity by allowing
transactions and interactions through addresses that are not
directly linked to the users’ identities. This ensures verifiability
and integrity without compromising privacy. Moreover, the
advanced customizability of Avalanche’s subnets permits the
system to be tailored to adhere to specific legal and regulatory

Fig. 2. The blockchain platform connected with the DEMS of Fig. 1.

requirements. Adjusting the parameters of a subnet can ensure
compliance with data protection laws, such as the GDPR in
the European Union, thereby managing permissions and safe-
guarding sensitive data. This flexible configuration underscores
our commitment to ethical and legal responsibility, balancing
technological innovation with due diligence in a dynamic
regulatory landscape.

It should also be remembered that Avalanche blockchain
supports EVM and adopting the EVM allows for the seam-
less migration and verification of smart contracts’ logic and
state, thus reinforcing the advisability of developing on an
EVM-based platform for enhanced flexibility and interoper-
ability [35]. In the proposed scheme, we deploy a diptych
Smart Contracts system to record the connected user’s data
and to manage the payment of the invoices.

B. Smart Contracts Design

Smart contracts, a revolutionary feature introduced with the
advent of the Ethereum Blockchain, automate the execution
of agreements, effectively preventing the need for tradi-
tional intermediaries. These contracts are considered “smart”
because they can self-execute and self-enforce contract terms
embedded in the blockchain’s immutable ledger. Leveraging
Ethereum’s decentralized architecture, smart contracts encode
obligations and conditions in code, thus creating a trustless
environment where transactions, operations, or agreements are
automatically executed once certain conditions are met [36].

In the presented system architecture, the DEMS sends
and receives information and data through the blockchain
platform that is connected with the building HVAC systems
and the energy supplier (see Fig. 2). Utilizing smart contracts,
the DEMS initiates the process by securely sending data to
the blockchain, a step we refer to as “notarization”. This
process ensures that all energy and electricity bill-related data
are immutable and verifiable, fostering trust and transparency
in the energy trading market.
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The notarization process started by the DEMS is performed
by Smart Contract 1 that is designed to handle the complexity
and variety of data generated by the DEMS. The contract acts
as a notary, storing the relevant information transmitted by
each dedicated transaction, thus ensuring data integrity and
non-repudiation. This step lays the groundwork for accurate
classification and subsequent billing.

The pseudo-code for the Smart Contract 1, named Data
Notarization, is described in the following.

Code 1 Smart Contract 1: Data Notarization

c o n t r a c t Data N o t a r i z a t i o n {
s t r u c t UserData {

u i n t 2 5 6 indoorTemp ;
u i n t 2 5 6 outdoorTemp ;
u i n t 2 5 6 seasona lTemp ;
u i n t 2 5 6 lawTemp ;
u i n t 2 5 6 a c t i v e I n t v ;
u i n t 2 5 6 t o t a l I n t v ;

}

mapping ( a d d r e s s => UserData )
p u b l i c u s e r D a t a ;

/ / S t o r e use r ’ s d a t a i n t o t h e c o n t r a c t
f u n c t i o n s t o r e (

a d d r e s s _use r ,
UserData memory _ d a t a

) p u b l i c {
u s e r D a t a [ _ u s e r ] = _ d a t a ;

}
}

A structure called UserData is defined to encapsulate all
the key metrics needed for each user. These metrics include
both indoor and outdoor temperatures, seasonal averages, and
the number of intervals during which the HVAC system is
operational. The contract incorporates a function, denominated
store, which enables the secure archival of data corre-
sponding to each user on the blockchain. This step furnishes
a reliable and immutable ledger that can be subsequently
accessed for analytical endeavors.

Upon the notarization of energy data, Smart Contract 2,
named Kmeans Clustering, determines the payment classes,
the incentives and the penalties, also in collaboration with
the energy supplier. The smart contract encodes the payment
mechanism, ensuring that once the classification is complete
and bills are calculated, payments are autonomously disbursed
to the energy suppliers’ accounts. The automated nature of
these transactions reduces the latency and potential errors
associated with manual processing, offering a streamlined and
efficient payment process. This contract is initialized with
the address of the DataNotarization Smart Contract, enabling
it to fetch the necessary data for clustering. Specifically,
it retrieves the notarized data from the blockchain to perform
the clustering algorithm.

Successively, it invokes a K-means clustering algorithm
kmeans that has three main tasks: 1) retrieving the user data
stored in Smart Contract DataNotarization, 2) executing the
K-means algorithm using such data, 3) allocating users to
their respective clusters, 4) calculate the pricing through an
internal function that can use a particular pricing model and
5) distribute these results to the users’ accounts.

Utilizing separate smart contracts for data notarization
and the K-means algorithm presents distinct advantages
and disadvantages. On the positive side, separating these
functionalities clearly delineates responsibilities, simplifying
system management and future extensibility. Furthermore,
this separation allows for easier scalability as each contract
can be optimized for its specific task. The separation also
offers the benefit of code reusability, particularly for the
data notarization contract, which could be employed in
various other contexts or projects. Conversely, the system’s
overall complexity could increase due to managing multiple
contracts. Additionally, interacting between multiple contracts
(when writing) may incur extra transaction costs in terms
of gas. However, this concern is mitigated by the current
implementation using an EVM-compatible environment with
negligible gas costs for such operations.

Code 2 Smart Contract 2: K-Means

c o n t r a c t K m e a n s C l u s t e r i n g {
Data N o t a r i z a t i o n d a t a N o t a r i z a t i o n ;

/ / I n i t i a l i z e wi th D a t a N o t a r i z a t i o n
/ / c o n t r a c t a d d r e s s c o n s t r u c t o r
c o n s t r u c t o r (

a d d r e s s _ d a t a N o t a r i z a t i o n A d d r
) {

d a t a N o t a r i z a t i o n =
D a t a N o t a r i z a t i o n ( _ d a t a N o t a r i z a t i o n A d d r ) ;

}

/ / Execu te K−means a l g o r i t h m and s e t
p r i c e s

f u n c t i o n kmeans ( ) p u b l i c {
/ / 1 . F e t c h d a t a from
/ / D a t a N o t a r i z a t i o n c o n t r a c t
/ / 2 . Per fo rm K−means c l u s t e r i n g
/ / 3 . Ass ign u s e r s t o c l u s t e r s
/ / 4 . C a l c u l a t e p r i c i n g based on
/ / c l u s t e r i n g ( i n t e r n a l fn )
/ / 5 . D i s t r i b u t e t h e p r i c i n g t o
/ / a c c o u n t s

}
/ / C a l c u l a t e p r i c i n g
f u n c t i o n c a l c u l a t e P r i c i n g ( )
i n t e r n a l {

/ / i t can use a p r i c i n g model
}

}

V. DISTRICT USER CLUSTERING AND CLASS
FOLLOWER PROBLEM

In this section, the preliminary District User Clus-
tering scheme based on k-means algorithm is formally
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described and the subsequent Class Follower Problem is
introduced.

A. K-Means District User Clustering

Let us consider the set of m users U = {ui |i = 1, 2, .., m} in
the district. A Consumption Class c j ∈ C, with C = {c j | j =

1, . . . , n}, is assigned to each user ui ∈ U . A Consumption
Class c j basically represents the user’s consumption profile in
a certain time frame h ∈ N , where N is the set of natural
numbers, and a billing period is made of a certain number of
time frames. As suggested in [10], the profile can be driven
by the level of compliance of the user to the law and to
the best practices in terms of energy saving and environment
preservation.

To the purpose of class assignment, for each consid-
ered time frame, the set of feature vectors V(h) =

{v1(h), v2(h), . . . , vi (h), . . . , vm(h)} is defined, where vi (h)

is the feature vector associated with the user ui at time frame
h. The components of vi (h) are four average metrics collected
by the sensors operated by i-th user over h and safely stored
in the Smart Contract 1.

In this work, the following metrics for vi (h) are defined:

• the average indoor temperature Tih of user ui ;
• the average outdoor temperature T eh ;
• the average seasonal outdoor temperature T s;
• the seasonal indoor temperature threshold enforced by the

law T l;
• the number of time intervals Hih in which the air condi-

tioning system is powered on for user ui ;
• the total number of time intervals Htot in h.
Now, with the defined data, the feature vector of user ui is

formally defined as vi (h) = [α1i (h), α2i (h), α3i (h), α4i (h)]T

with:

• α1i (h) = Tih/T eh ;
• α2i (h) = Tih/T s;
• α3i (h) = Tih/T l;
• α4i (h) = Hih/Htot .

In particular, α1i (h), α2i (h), α3i (h) represent the average
indoor temperature measured at time h compared to the
average outdoor temperature, the seasonal average temperature
and the threshold enforced by the law, respectively. In addition,
α4i (h) considers the level of operation of the air conditioning
system by comparing the total number of hours of operation
to the total number of hours Htot in time frame h.

Now, the k-means clustering algorithm is applied to the set
V(h) and each vector vi (h) is assigned to a class c j ∈ C .
We denote by k j (h) with j = 1, . . . , n the centroid of class c j ,
i.e., a vector with the same dimensions of vi (h) representing
the center of cluster c j at time frame h. The class assigned to
the i-th user at time frame h is denoted as Pi (h) ∈ C , where
Pi (h) is the class with the least Euclidean distance between
vi (h) and the centroid k j (h) for j = 1, . . . , n.

For the purpose of applying discounts or penalties to each
user, the centroids can be calculated by averaging the values
of all time frames belonging to a specific billing period.
Moreover, the classes in the set C are ordered on the basis

Fig. 3. K-means clustering.

of their centroid in an appropriate way, starting from the most
virtuous class (c1) to the least virtuous one (cn).

Example: Figure 3 shows the clustering performed by
k-means with n = 5 classes and m = 2000 users. At the end of
the procedure, based on collected values, users are partitioned
into five different classes ranked from Small (c1), meaning a
small power consumption, to Bad (c5), in which the users with
high power consumption and high relative difference between
indoor and outdoor and seasonal temperatures are placed.
In order to visualize the partitions in only two dimensions,
the Principal Component Analysis (PCA) [37] is applied to
the classified user set by projecting the data on the first two
principal components (PC1 and PC2 in Fig. 3).

B. Class Follower Problem

Let us assume that user ui ∈ U has been assigned to class
ck for the h time frame and at time h the current billing period
ends. This user wants to be assigned to a different and better
class c j for time frame h + 1, where k ̸= j . Now, the Class
Follower Problem (CFP) for each generic user is defined as
follows:

min
v(h+1)∈V(h+1)

∥k j (h) − v(h + 1)∥. (1)

Note that for the sake of simplicity, the index i denoting
the i-th user is omitted in the following.

The aim of the objective function (1) is selecting vector
v(h + 1) ∈ V(h + 1) that exhibits the minimum Euclidean
distance between vector v(h + 1) and the centroid k j (h) of
the desired c j class as calculated in previous time frame h.
In that respect, it is evident that the global minimum of (1) is
reached when v(h + 1) = k j (h).

In order to minimize (1), it is necessary to determine the
indoor temperatures and the HVAC actuators values during the
time frame h+1. To this aim the time frame h+1 is divided in
S time steps s = 1, .., S and the following decision variables
are defined:

Th+1(s) ∈ R+ for s = 1, 2, . . . , S; (2a)
Hh+1(s) ∈ {0, 1}, for s = 1, 2, . . . , S; (2b)
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where Th+1(s) is the indoor average temperature collected at
time step s and Hh+1(s) = 1 means that the HVAC of user
ui is powered on during the time step s, otherwise Hh+1(s) =

0 means that it is powered off.
Moreover, the feature vector elements at at time h + 1 for

each user ui ∈ U are computed by the following variables:

α1(h + 1) =

S∑
s=1

Th+1(s)
T eh+1(s)

(3a)

α2(h + 1) =
1
S

1

T s

S∑
s=1

Th+1(s) (3b)

α3(h + 1) =
1
S

1

Tl

S∑
s=1

Th+1(s) (3c)

α4(h + 1) =
1
S

S∑
s=1

Hh+1(s). (3d)

Now, the CFP (1) can be rewritten as follows:

min
4∑

k=1

(k j (h)k − αk(h + 1))2 (4a)

s.t. (4b)
Hh+1(s) ∈ {0, 1} ∀s = 1, . . . , S (4c)
Th+1(s) ∈ R+

∀s = 1, . . . , S. (4d)

We assume that the average outdoor temperature T eh+1(s)
at each time step s is determined by a suitable stochastic
function.

To solve the CFP (4), we need to predict the values of
the indoor temperature Th+1(s) at each time step s. However,
the indoor temperature is related to intrinsic features of the
building, such as the wall and floor materials and the number,
position and size of the windows. Nevertheless, when an
HVAC system is present, the indoor temperature is mainly
driven by the thermostat set-point. We denote by yh+1(s) ∈

[0, 1] the real value of the set-point at time step s in time
frame h + 1, so that we can write:

Th+1(s) = L(yh+1(s)) s = 1, . . . , S

where L(yh+1(s)) denotes the building thermodynamic model
and determines the indoor temperature Th+1(s) at time step
s corresponding to the thermostat set point yh+1(s) ∈ [0, 1].
Hence, the decision variables of CFP (4) are the thermostat
set-point values yh+1(s) for s = 1, . . . , S.

C. Energy Consumption Optimization

Since CFP (4) may have more optimal solutions,
we have the possibility of considering a second objective
function, related to the energy consumption denoted by
E(yh+1(s), Hh+1(s)), which is function of the set points
yh+1(s) and the ON/OFF positions of the HVAC system at time
steps s = 1, . . . , S. Then, the cumulative energy consumption
over the time frame h + 1 is the following:

S∑
s=1

E(yh+1(s), Hh+1(s)). (5)

Since equation (5) is not straightforward to ascertain, its value
will be computed through an approximation in a subsequent
part of this work, facilitated by the introduction of an LSTM.
Now, the following lexicographic minimization problem is
formulated:

lex min
4∑

k=1

(k j (h)k − αk(h + 1))2,

S∑
s=1

E(yh+1(s), Hh+1(s))

s.t. yh+1(s) ∈ [0, 1] ∀s = 1, . . . , S

H yh+1(s) ∈ {0, 1} ∀s = 1, . . . , S. (6)

The lexicographic optimization consists of subdividing a
multi-objective problem into a set of single-task optimizations
that are solved in series according to their priority order [38]:
the optimization with the highest priority is solved first and,
then, the successive one is addressed with an additional
constraint which aims at guaranteeing the optimality of the
higher priority cost function. In this work, problem (6) is
denoted as Energy Consumption Optimization CFP (OCFP).

VI. CONTROL SYSTEM DESIGN AND SIMULATION

In this section, a data-driven MPC strategy to solve the
OCFP in real-time is introduced. Since the proposed approach
is iterated over each time frame h, for the sake of simplicity,
the suffix h + 1 is omitted in the relevant notations.

A. System Architecture

The architecture of the proposed system for a specific build-
ing is depicted in Fig. 4. In more detail, the system is made
of three main blocks: (i) the Plant, (ii) the State Observer and
(iii) the MPC Controller. The Plant is represented by the user
building and the associated HVAC system. The State Observer
is basically constituted by a set of sensors installed inside and
outside the building to monitor indoor and outdoor tempera-
tures. The components of the State Observer are detailed in
the subsequent Algorithm 1. The MPC Controller is composed
of three sub-blocks: the outdoor temperature predictor, the
LSTM-based plant thermodynamic model that predicts indoor
temperatures and energy consumption based on historical
thermostat set-points and HVAC operational times, and the
Optimizer that solves the OCFP problem (6) over time frame
h + 1.

More specifically, the Optimizer, at each time step s, first
takes the current Plant state and the target class k j (h) to follow
as a reference, then it determines a set of feasible inputs that
minimizes the distance to k j (h) and, finally, it selects the
solution with the least energy consumption. At the end of
the optimization procedure, the updated inputs are applied to
the Plant by adjusting thermostat set-points and switching ON
or OFF the HVAC system.

B. LSTM-Based Plant Thermodynamic Model

The indoor temperature variation and the HVAC energy
consumption are influenced not only by the inputs, such as
the thermostat set-points, but also by several intrinsic features
of the building and the HVAC system. Hence, finding an
analytical solution is not always feasible. Moreover, both the
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Fig. 4. MPC architecture.

TABLE I
LSTM EQUATIONS:

temperature and the consumption depend not only on the
current input but also on the past inputs applied to the HVAC
system.

In this section, we propose an LSTM-based method to
determine function L(y(s)) for s = 1, . . . , S and the energy
consumption function E(y(s), H(s)) for s = 1, . . . , S. LSTM
is a variant of typical RNNs and can avoid the vanishing
gradient problem existing in regular RNNs.

A data-driven solution is proposed to approximate both L
and E functions using LSTM. The calculation formulas of
LSTM cell units from the input to the output are obtained as
shown in Table I [39], [40], [41], where i , f , c̃ and o, represent
an input gate, forget gate, candidate vector and output gate,
respectively, Wi , W f , Wc and Wo denote weight matrices, bi ,
b f , bc and bo represent bias vectors, σ(·) and tanh(·) denote
the sigmoid and hyperbolic tangent functions, respectively, ⊙

denotes a dotwise product, and c represents a cell state.
As shown in Fig. 5, the cell unit structure of an LSTM

network consists of three gates: (i) a forget gate, (ii) an input
gate, and (iii) an output gate. The forget gate determines what
information of the past cell state is to be forgotten. The input
gate is used to control what information of the input at the
current time is to be added to the cell state. Finally, the output
gate is used to determine what information of the cell state at
the current time is to be used as output.

In order to train the LSTM, sample data need to be collected
for a certain time from temperature sensors inside and outside
the building, as well as the associated thermostat set-points
and HVAC operating states. Although in OCFP problem (6)
only indoor average temperature is considered, a building is
composed of a set of rooms, each one is equipped with a

Fig. 5. LSTM cell architecture.

thermostat and indoor sensor. The sample input and output
vectors collected for LSTM training at time step s are defined
as follows:

X(s) =
[
y(1), . . . , y( j), . . . , y(N ), T e, H(s)

]T
(7)

T(s) =
[
T (1), . . . , T ( j), . . . , T (N ), E

]T
(8)

where N is the number of rooms in the building, y( j) is the
set-point of thermostat j , T ( j) is the environment temperature
of room j , H(s) ∈ {0, 1} is the HVAC operating state and E
is the cumulative energy consumption measured in Watts.

As it is shown in Fig. 6, if S consecutive time steps
are considered for LSTM training, the final structure of the
network is made of a series of S interconnected unit cells
and the final value T(S) is the output prediction of indoor
temperatures and energy consumption after S time steps. The
mean indoor temperature value T (S) at time step S can then be
easily calculated by averaging the individual rooms’ predicted
temperatures.

C. Model Predictive Control Scheme

The real-time control of the HVAC system is implemented
by the MPC approach. In detail, at each time step s, the
MPC solves the OCFP (6), in which the functions L(y(s))
and E(y(s), H(s)) are approximated by the LSTM pre-trained
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Fig. 6. LSTM final structure.

network. The time horizon of the MPC scheme is equal to S
time steps, i.e., the duration of the time frame h + 1.

Algorithm 1 Proposed MPC Scheme
1: Set reference as k j (h)

2: Collect:
• Indoor temperatures:

T (1)(s), . . . , T ( j)(s), . . . , T (N )(s)
• Thermostat set-points:

y(1)(s − 1), . . . , y( j)(s − 1), . . . , y(N )(s − 1)

• HVAC state:
H(s − 1)

3: Average indoor temperatures
4: Perform lexicographic optimization (6) over S steps:
5: for each time step s do
6: Compute candidate input vector X̂(s)
7: Select input vector with least energy consumption
8: Apply thermostat set-points

y(1)(s), . . . , y( j)(s), . . . , y(N )(s) and H(s)
to the HVAC system

9: end for

In Algorithm 1, the proposed MPC scheme is shown.
At step 1, the system takes the followed class k j (h) as
reference. At step 2, the State Observer collects current
indoor temperatures: T (1)(s), . . . , T ( j)(s), . . . , T (N )(s), last
applied room thermostat set-points y(1)(s − 1), . . . , y( j)(s −

1), . . . , y(N )(s − 1), as well as last HVAC operating state
H(s − 1).

At step 4, the Optimizer pre-processes the data by averaging
the indoor temperatures and performs the lexicographic opti-
mization (6) over the next S time steps by minimizing the two
cost functions. The non-linear problem can be solved by itera-
tive methods, such as Sequential Least SQuares Programming
(SLQP) [42]. Moreover, for each time step s, the Optimizer
calculates a candidate optimal input vector X̂(s) for the LSTM
model as follows:

X̂(s) =
[
y(1)(s + i), . . . , y( j)(s + i), . . . , y(N )(s + i),

H(s + i), . . . , y(N )(s + S − 1), H(s + S − 1)
]T

(9)

for i = 0, 1, 2, . . . , S − 1.
Here, the outdoor temperature T e(s), required by the LSTM

network as part of the input, is not considered as a decision
variable as it is assumed as predicted by a stochastic function
and, therefore, is not included in (9).

Fig. 7. 5-zones air-conditioned building.

The input vector spans from time step s to s + S − 1 and
allows the Optimizer to fit to the MPC time horizon. At the end
of the optimization procedure, the input vector with the least
cumulative energy consumption over the considered future
time horizon is selected as optimal solution and the first set of
thermostat set-points: y(1)(s), . . . , y( j)(s), . . . , y(N )(s), as well
as the operating state H(s) are applied to the HVAC system.

The whole control scheme reiterates for time step s + 1 up
to the end of the billing period h + 1.

VII. CASE STUDY

In this section, the results of the numerical simulations
performed to validate the proposed approach are described
and discussed. The well-known building energy simulation
EnergyPlus is used with a standard 5-zone building to collect
data and simulate the plant in the MPC scheme.

A. The Studied Building

We use a single-floor rectangular building of 30.5m×15.2m
made of five different air-conditioned zones with individual
thermostats, named Zone 1 to Zone 5. The building is located
in the city of Bari, in Italy. There are windows on all four exte-
rior facades and glass doors on the south and north facades.
The air conditioning system is made of centralized HVAC
equipment with an electric chiller, air-cooled condenser, and
a return plenum. The total floor area is 463.6 m2.

The building is shown in Fig. 7 and is included in the
standard EnergyPlus package as 5ZoneAirCooled.idf file.

B. The Used Dataset

The dataset used to train the LSTM network is collected by
running multiple Monte Carlo simulations with EnergyPlus
and the 5-zones building file. To get the outdoor temperature
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TABLE II
SAMPLES FROM THE DATASET FOR JULY 7

throughout the simulations, we use a weather file in Ener-
gyPlus Weather File (EPW) format containing one year of
historical weather data of Bari city, in Italy.

We set the time step s to one hour and we draw each
thermostat set-point value, for each sample, from a uniform
distribution between 19◦C and 25◦C. Similarly, we set the
HVAC operating state to ON or OFF from a random dis-
tribution between 0 and 1, by rounding each sampled value to
the nearest integer.

We collect 43,800 one-hour samples over five consecutive
yearly simulations. Each sample includes the individual ther-
mostat set-points at time step s and the HVAC operating state
as the input X(s), and the individual indoor temperatures and
the energy consumption in Watts as the output T(s). Table II
shows some sample rows of the dataset.

C. The LSTM Training

We use the collected dataset to train the LSTM network
and predict the thermodynamic behavior of the building.
We present the samples to the training procedure in groups
of S = 6 hourly time steps. More specifically, each
input sample X(s) is grouped with the previous X(s − 1),

X(s − 2), . . . X(s − 5) samples and is paired with the output
sample T(s), in order for the resulting LSTM network to be
able to predict the indoor temperatures and energy consump-
tion after six consecutive thermostats set-points and six HVAC
operating state settings.

We run the training on a server equipped with a 14 cores
Intel Core i7 CPU and 32GB RAM. Python Keras library and
TensorFlow are used to implement the LSTM network with
Adam optimizer. The dataset is normalized and split into 80%
of values for training and 20% for test. Mean Square Error
(MSE) metric is adopted to evaluate the performance of the
training procedure.

In Fig. 8, the results after 60 training epochs are shown.
At the end of the procedure, the MSE for training and testing
converges to 5e−3, allowing good predictions for the MPC
Controller.

D. The OCFP Solution
In order to assess the performance of the proposed approach,

we consider for the case study a district U of m = 2000 users
located in Bari (Italy) for a billing period of one week in July.
We set Ts = 25◦C , which is the average temperature in July
and Tl = 26◦C , that we assume as the minimum temperature
prescribed by the law for public offices and institutions to save
energy.

We assume that at the end of the current billing period,
at time frame h, the user set U has been partitioned in

Fig. 8. LSTM training.

TABLE III
PARTIONED USERS SET

n = 5 behavior classes by the k-means algorithm described
in Section V-A. Table III shows the classes resulting from
applying the k-means clustering algorithm.

The classes are ranked based on the average indoor tem-
perature compared to the average outdoor temperature, the
seasonal average temperature and the temperature prescribed
by the law. In addition, the total operational time of the HVAC
is considered. The closer the indoor temperature is to the
reference values and the less operational time, the better the
class is ranked. Based on the above evaluations, we labeled
the resulting classes from Small (c1) to Bad (c5).

Now, two OCFP scenarios for time frame h + 1 are
proposed. In that respect, we assume that user ui has been
ranked in class Nearly Bad (c4) for the current time frame h
and that he wishes to scale up to class Good (c2) and Normal
(c3) for the first and second scenario respectively.

We implement the MPC scheme by using the pre-trained
LSTM to model the thermodynamics of the i-th building and
we use EnergyPlus to simulate the plant. We set the MPC time
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Fig. 9. Optimized Class Follower MPC scheme progress over the billing period.

horizon to S = 6 hours and we reiterate the control scheme up
to the end of the next billing period. To implement and solve
the lexicographic problem (6), we use Python and the SLQP
optimization algorithm provided by the SciPy library.

The results of the class following procedure for the time
frame h + 1 in the two considered scenarios are shown in
Fig. 9.

In Fig. 9(a) and 9(c), black star points represent the average
centroids calculated over the whole billing period for the i-th
user at each time step s for Scenario 1 and 2 respectively.
We observe that, in both cases, the points move from the
Nearly Bad (c4) cluster to the Good (c2) and Normal (c3)
cluster, respectively, by gradually approaching the relative
cluster center. Since the Good (c2) class is far more distant
from Nearly Bad (c4) than the Normal (c3) class, the initial
error for Scenario 1 is much greater than for Scenario 2. As a
result, the path of Scenario 1 looks much more extended than
the one of Scenario 2.

The above difference is also observed in Fig. 10, which
shows the class tracking relative error of Scenario 1 compared
to Scenario 2 and confirms that the convergence to a stable

Fig. 10. Class follower tracking error.

residual error of around 0.14, in the first case, takes more
time steps than of Scenario 2. However, the residual error of
Scenario 2 stabilizes around 0.20, which is higher than that
of Scenario 1. As a result, the numerical simulations show
that the proposed scheme works better when the initial error
is large and the followed class is relatively distant.

In addition, in Fig. 9(b) and 9(d) the average individual
indoor temperatures and the average outdoor temperature are
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Fig. 11. Cumulative energy consumption.

shown. In Scenario 1, the indoor temperatures are much closer
to the outdoor temperature. On the contrary, in Scenario 2, the
indoor temperatures are lower than the outdoor temperature.
As observed in Table III, the values obtained by the MPC in
both scenarios are in line with the respective followed classes
Good and Normal.

Finally, in Fig. 11, the cumulative energy consumption
in kW over the considered billing period is shown. It is
evident that, in Scenario 2, at the end of the week, the HVAC
consumed more electricity than in Scenario 1. In Scenario 2,
the gap between the indoor and outdoor temperature and the
higher operational time leads to higher energy consumption
by the HVAC to fit the following class requirements.

VIII. CONCLUSION

This paper introduces a novel approach to managing the
HVAC control system at the DEMS level to optimize the
user HVAC consumption. The HVAC control system includes
the synergistic use of blockchains, MPC strategies and LSTM
networks. In particular, the district users are divided into con-
sumption classes, and each class is associated with a suitable
energy price based on consumption behaviors. A blockchain
platform ensures data integrity and facilitates transparent trans-
actions, enables dynamic categorization of users based on their
energy consumption behaviors, and processes payments on-
chain. Moreover, the users can modify their behaviors and
pass to a less expensive class. To this aim, the MPC strategy
is proposed to provide the thermostat set points and the time
intervals in which the HVAC must be switched off or switched
on.

The application of the proposed model to a case study of a
smart district shows promising results. The system effectively
guides users from less virtuous energy consumption classes
towards more energy-efficient ones while maintaining thermal
comfort. Moreover, it is observed that the control scheme
performs better with larger initial tracking errors, suggesting
its robustness in scenarios requiring significant user behavioral
adjustments.

In conclusion, the presented research highlighted the poten-
tial of combining blockchain with advanced control techniques
to improve energy systems management within smart urban
districts.

Future work will study the system’s scalability to larger
districts, the integration with other smart grid components
and the extension of extensive tests under different seasonal
conditions with a broader set of user profiles. Additionally,
there is an opportunity to refine the predictive algorithms,
considering the impact of integrating renewable energy sources
into the proposed model.
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