
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Automatic Optimization of Tolerance Ranges for
Model-Driven Runtime State Identification

Sabine Sint , Student Member, IEEE, Alexandra Mazak-Huemer, Member, IEEE,
Martin Eisenberg , Student Member, IEEE, Daniel Waghubinger,

and Manuel Wimmer , Member, IEEE

Abstract— For continuously checking and updating the vir-
tual representation of a real system during operation, the
continuous sensing and interpretation of raw sensor data is a
must. The challenge is to bundle sensor value streams (e.g.,
from IoT networks) and aggregate them to a higher logical
state level to enable process-oriented viewpoints and to handle
uncertainties about sensor measurements and state realization
precision. To address these uncertainties, so-called “tolerance
ranges” must be defined in which logical states are detected
during operation with acceptable deviations. Specifying such
tolerance ranges manually is a time-consuming, error-prone task
and often not feasible due to the huge associated value search
space. To tackle this challenge, the problem is turned into an
optimization problem in this paper. For this purpose, we present
a framework based on meta-heuristic search that enables the
automatic configuration of tolerance ranges based on available
execution traces of multiple sensor value streams. An exploratory
study evaluates the approach. For this purpose, we implemented
a lab-sized demonstrator of a five-axis grip arm robot, which
we continuously monitored during operation in a simulated
environment. The evaluation shows the advantage of using
meta-heuristic optimizers such as Harmony Search or Genetic
Algorithm to identify stable tolerance ranges automatically for
state detection at runtime.

Note to Practitioners—Monitoring sensor values streams is
nowadays a frequently employed technique in many automation
domains. However, combining and mapping single value streams
to higher-level state-based representations such as state machines
or other design-time related models is a major challenge due
to measurement and realization precision uncertainties. Thus,
simply mapping monitored raw data to these design descriptions
can lead to falsely identified or missed states. To improve this
situation, we present an approach that provides a mechanism
to continuously analyze data streams during operation by auto-
matically finding appropriate tolerance ranges to detect realized
system states. The approach uses a small set of annotated
execution traces and meta-heuristic searchers to derive optimal
tolerance ranges, which provide high correctness and complete-
ness of the identified system states. This approach represents
the basis for building a “vertical bridge” from the operation
technology layer considering pure sensor data streams to the IT

Manuscript received 24 January 2024; accepted 20 March 2024. This article
was recommended for publication by Associate Editor E. Estevez and Editor
B. Vogel-Heuser upon evaluation of the reviewers’ comments. This work was
supported in part by the Austrian Federal Ministry for Digital and Economic
Affairs; and in part by the National Foundation for Research, Technology and
Development (CDG). (Corresponding author: Sabine Sint.)

The authors are with CDL-MINT, Department of Business Informatics and
Software Engineering, Johannes Kepler University Linz, 4040 Linz, Austria
(e-mail: sabine.sint@jku.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2024.3386313.

Digital Object Identifier 10.1109/TASE.2024.3386313

layer where state-based process views are provided to perform
monitoring and analytics, e.g., by using process mining.

Index Terms— Uncertainties, meta-heuristic search, harmony
search, genetic algorithm, runtime monitoring, model-driven
engineering.

I. INTRODUCTION

FOR engineering and operating software-intensive systems,
precisely identifying, representing, and reasoning about

runtime states of systems is a must for realizing smart system
features [1], [2]. A particular challenge for effectively per-
forming these activities, especially for successfully identifying
runtime states, is the quantification of realization precision and
measurement uncertainties [3]. Currently, the main focus of
uncertainty quantification is on 3D-CAD models representing
physical parameters during the design phase of systems [4],
[5], [6]. In contrast, models that depict the logical structure
and behavior of the system in operation are often not virtually
mapped and analyzed [7].

In this paper, we target state-based monitoring, focusing on
the logical behavior of the systems. In particular, we collect
sensor data streams of an actual system, e.g., running a robot
on the shop floor, and semantically lift it to a higher level
of abstraction, the so-called “logical state level”. In previous
work [8], we took the first step by presenting a framework
to automatically identify system states during operation. This
framework enables continuous tracing of components of a
software model (e.g., a state machine) based on sensor value
streams gathered at the system level. However, lessons learned
show that the state identification task is challenging due to
uncertainties concerning the measurement of data and realiza-
tion precision of system components. Therefore, we consider
“tolerance ranges” to optimize the state detection process.
A tolerance is the deviation of a quantity from the standard
dimension (normal state) that does not negatively affect the
functionality of a system or its components [9]. The considera-
tion of tolerance ranges is needed since there are sensor delays
and inaccuracies when measuring, and only a certain degree
of state realization precision can be reached, which hinders
the identification of exact values as they were initially set in
the corresponding software model at design time. Defining
such ranges manually, as we did in our previous work [8],
is an error-prone and time-consuming task due to the huge
search space for finding optimal parameters. Please note that

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0001-8076-8228
https://orcid.org/0009-0001-9696-0326
https://orcid.org/0000-0002-1124-7098

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

statistical methods that estimate deviations in sensor data [10]
lack particular support for the state detection task as we
are investigating. This includes the significance of individual
sensors and the importance of specific deviations in specific
circumstances when distinguishing the states.

In this paper, we propose integrating meta-heuristic search
techniques into the state detection framework to calibrate the
tolerance ranges for detecting states from sensor logs. In par-
ticular, we adopt two population-based algorithms, namely
Harmony Search (HS) [11] and Genetic Algorithm (GA) [12],
where each individual represents a possible configuration for
the detection tolerances. The contributions are as follows:

• A characterization of the uncertainty problem when gath-
ering state traces from sensor logs based on the modeled
process flow. We consider exhaustive and manual methods
impractical due to the complexity of the problem.

• A framework for the step-wise alignment from modeled,
discrete system behavior to actual execution subject to
uncertainty, logged as continuous sensor streams, to facil-
itate traceability and monitoring capabilities.

We perform a case study based evaluation of our approach
on two different workflows using a lab-sized demonstrator
of a five-axis grip arm robot. We investigate HS and GA
algorithms’ detection correctness and completeness compared
to Random Search. Results show that meta-heuristic searchers
are effective techniques for finding tolerance ranges that enable
effective detection of discrete state events.

The remainder of this paper is structured as follows.
Section II explains the background and motivation of our work.
Section III characterizes the complexity of the investigated
problem and presents meta-heuristic search as a solution for
finding optimal tolerance ranges for runtime state detection.
Section IV presents the evaluation of our approach by a lab-
sized demonstrator. Finally, in Section V, we discuss related
work and conclude with an outlook in Section VI.

II. BACKGROUND

In this section, we present a motivating example and give
a brief overview of previous research efforts [8], which have
led us to the problem space and the solution presented in this
paper. We provide a short introduction to Harmony Search
(HS) [11] and Genetic Algorithm (GA) [12], both forming the
basis for our meta-heuristic approach.

A. Motivating Example

Consider an automation system in the form of a three-axis
grip arm robot (gripper), consisting of sensors, actuators,
and a controller, operating in a lab-sized environment
(cf. Fig. 1). The gripper’s controller is model-driven engi-
neered by using the Systems Modeling Language (SysML) [13],
specifically the Block Definition Diagram (BDD) and the
State Machine Diagram (SM). However, the presented
approach is neither limited to this language nor to these
diagram types. There are several other languages, such as
UML1 or BPMN,2 which are also suitable for modeling the
gripper and its workflow.

1https://www.uml.org
2https://www.bpmn.org

Fig. 1. Design-time (a) and runtime perspective (b) of the gripper system (c).

The BDD defines the different angle positions the grip-
per takes at runtime by properties of its actuators: Base
Position (BP), Main Arm Position (MAP), and
Gripper Position (GP) (cf. Fig. 1a, BDD System)
and their values (cf. Fig. 1a, x,y,z) for different states
(e.g., DriveDown, PickUp, etc.). For instance, when driv-
ing down, MAP is set to 1.50 (cf. Fig. 1a, SM Grip-arm
robot) in the design model. Such value assignments are
mainly based on the machine operator’s knowledge and the
manufacturer’s configuration parameters. The problem is that
sensors will never measure precisely predefined values. On the
contrary, they vary (upwards and downwards) from measure-
ment to measurement. This fact is considered in Fig. 1a with
the symbol ±u (“u” indicates uncertainty) indexed by x , y or
z for each of the properties of the BDD.

At design time, the behavior of the gripper managed by
the controller is modeled by various state settings and tran-
sitions as a predefined workflow by the SM (cf. Fig. 1a,
SM Grip-arm robot). In the given example, there are
two states: DriveDown and PickUp with different value
assignments for specifying the respective angle position to be
taken when operating.

During operation, the gripper moves within a pick-and-place
unit based on the SM (cf. Fig. 1c), and all its movements
are recorded by angle sensors and returned as continuous
sensor value streams of the properties (BP, MAP, GP) to
a log recording system (cf. Fig. 1b). These records display
that the gripper does not move time-discrete from one state
to another, as initially modeled by the workflow in the SM.
On the contrary, the movement is continuous, i.e., long-
running operations instead of instant realizations.

The actual run shows that, e.g., when the gripper is in
the state PickUp, the initially (precisely) assigned values
(BP = 0.0, MAP = 1.50, and GP = −0.40) are not reached. For
monitoring a system, it is, therefore, essential to identify if the
measured state values have acceptable degrees of variation or if
the system must be reconfigured. For this purpose, appropriate
tolerance ranges (i.e., lower and upper bounds) are needed
when recording sensor values, as depicted in Fig. 1b, e.g., see
the green curve: y + bUy ,y − bL y . Without such ranges, e.g.,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SINT et al.: AUTOMATIC OPTIMIZATION OF TOLERANCE RANGES 3

Fig. 2. Architecture for model-driven runtime state identification based
on [8].

a useful target-actual-comparison of models at design time
(Fig. 1a) with its real-world counterparts (Fig. 1c) cannot be
performed. This is needed, e.g., when improving the quality
management during the system’s monitoring process to deter-
mine how large the tolerances could be without (negatively)
affecting other factors or the outcome of a production process.

B. Model-Driven Engineering for State Detection at Runtime

In previous work [8], we present a model-driven runtime
state identification approach where we derive state realization
event queries from design models. We listen to sensor value
streams during runtime to detect system states. As illustrated
in Fig. 2, we automatically transform a State Machine
Diagram into State Realization Event Queries,
which uses manually defined Tolerance Ranges,
to match Sensor Value Streams with predefined
variable values coming from the design models. The sensor
streams are collected at runtime in a Time Series
Database (TSDB). We execute the event queries on the
TSDB, which result in Identified System States,
bundled into a State-based Log Model. Based on this
log, analysis techniques, e.g., [14], can be applied to validate
whether the runtime model corresponds to the design time
model.

Lessons learned showed that to detect the states success-
fully, an expensive manual calibration process is required to
set tolerance ranges properly. Such a process consists of the
following steps: (i) checking the results after each iteration,
(i i) manually adjusting the ranges each time, (i i i) verifying
if the achieved results are more precise and complete results
in the next iteration, and so on. To handle the enormous
search space, we treated the adjustments for all angle sensors
similarly (±0.1 as tolerance range equally for all sensors).
Such a “one-size-fits-all” approach is inappropriate for practi-
cal use, and the manual configuration is too time-consuming
and error-prone. The outcomes made clear that even if such a
trial & error approach may work for small-scale systems, it is
of exponential complexity in large-scale systems as further
discussed in Section III-B.

C. Harmony Search (HS) Algorithm

The HS algorithm was introduced as a meta-heuristic
algorithm for optimization tasks [11]. Over the years,

numerous HS variants, HS comparisons to other heuristic
techniques, and applications of HS in science and industry [15]
have been presented.

1) Analogy: The name and idea grounding the functionality
of HS originate from the domain of musical improvisa-
tion [11]. It is based on the process of composing a
novel harmony. In this process, the musician has three
options: (i) including notes of music pieces learned by heart,
(i i) adding adjusted versions of notes that are remembered,
and (i i i) adding random notes. This process of composing
harmonics creates new harmonies successively by aiming to
find the most audibly pleasing one. Thus, the process can
be seen as an optimization task [15], where all notes the
musician can select represent a search space. Each iteration
during composing yields a solution vector (i.e., ordered notes
of a certain harmony) that is then evaluated by an objective
fitness function where under-fitting parts will be rejected, and
the fitting ones will be stored. Thereby, the fitness of the
population, i.e., harmony memory, gradually increases w.r.t.
the objective function.

Algorithm 1 Harmony Search [11], [15]
1: Define objective function f (x), x = (x1, x2, . . . , xd)

T

2: Initialize HMCR, PAR, BW, HMS
3: Initialize Harmony memory with random harmonies
4: while (t < max number of iterations)
5: while (i < number of decision variables)
6: if (rand < HMCR), Choose a value from HM for

the variable i
7: if (rand < PAR), Adjust the value by adding a

certain amount
8: end if
9: else Choose a random value

10: end if
11: end while
12: Accept the new harmony (solution) if better
13: end while
14: Return the current best solution

2) Procedure: The procedure of the HS algorithm is shown
in Algorithm 1. At first, the search-defining parameters are set,
and the Harmony Memory (HM) is initialized [lines 1-3]. In the
next step, new solution candidates are explored within the
search space [lines 4-13]. Each iteration results in a solution
vector to be evaluated and used as a substitute for the worst
solution stored in the HM. This iterative process continues
until a certain stop criterion is met. Such a criterion may be
a fixed number of iterations, or a solution that satisfactorily
meets the expected outcome (fulfilling a certain threshold) of
the objective function is found.

3) Parameters: HS builds on four parameters [11]:
• Harmony Memory Consideration Rate (HMCR): the prob-

ability of randomly choosing a solution from the HM as
a new solution candidate.

• Pitch Adjusting Rate (PAR): the probability of adjusting
the solution randomly picked from the memory (assuming
that a solution is reused based on HMCR).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

• Bandwidth (BW): value range from which a value is
randomly selected for optimizing the solution vector
(assuming that a solution from HM is reused based on
the HMCR and adjusted based on PAR).

• Harmony Memory Size (HMS): the number of solution
vectors stored in the HM.

Depending on the objective function, a minimum and max-
imum value defines the search space. This avoids the
consideration of candidates that are far off. As discussed
in [16], there is a trade-off between diversification and inten-
sification for any meta-heuristic approach. For instance, PAR,
in combination with BW, controls the search intensity of the
neighborhood of previously considered reasonable solutions.
When setting HMCR too low, the possibility of finding local
optima is strongly reduced since solutions from memory are
rarely exploited for searching for new candidates. In contrast,
if HMCR is too high (i.e., solutions are mostly reused from
memory and adjusted slightly), the risk increases that parts of
the search space will not be considered, and thus, potential
optima will never be found.

D. Genetic Algorithm (GA)

First conceptual considerations on the GA go back to the
work of Holland [12]. Further developments and features led
to versatile adoptions [17], and thus, GAs are successfully
applied in several application areas [18].

1) Analogy: GAs belong to the family of evolutionary algo-
rithms [17] and are stochastic, population-based algorithms
that reflect the evolution process. Within a population, new
individuals emerge as offspring from the current generation,
and only the fittest individuals survive to form the next
generation’s population, and so on. This evolutionary cycle
is characterized by selecting individuals for reproduction, the
reproduction process, and the fitness assessment [17]. In GAs,
an individual is represented as a chromosome consisting of a
set of genes, which encode the decision variables of an opti-
mization problem. Furthermore, reproduction is considered by
selecting chromosomes and applying crossover and mutation
operators.

Algorithm 2 Genetic Algorithm (based on [18])
1: Initialize P(0), pc, pm , t = 0
2: Evaluate P(0)

3: while (notT erminated)
4: PO = Selection(P(t))
5: PO = Alter(PO) // crossover and mutation based on

pc, pm

6: Evaluate PO

7: P(t + 1) = Selection(P(t), PO)

8: t = t + 1
9: end while

10: Return the current best solution

2) Procedure: Algorithm 2 shows the general steps fol-
lowed by GAs [18]. During initialization, an initial population
P(0), which may comprise random individuals, is generated
and evaluated, and crossover (pc) and mutation (pm) proba-
bilities are set [lines 1-2]. The evolutionary cycle [lines 4-8]

is bound to a termination condition, e.g., a fixed number of
generations. Therein, the offspring population PO is selected
from the current population. New individuals are then pro-
duced as the result of recombination and mutation applied to
individuals of PO . Individuals carried on to the new population
P(t + 1) are ultimately selected from the original population
of the current cycle and the altered offspring population.

3) Parameters: The following operators are typically
used:

• Crossover: Offspring are produced by recombining two
individuals during the crossover. A common approach
is to exchange parts based on one or multiple cut
points.

• Mutation: Mutation performs a variation on the individual
level to ensure genetic diversity after crossover. Such can
be achieved, e.g., by reversing the gene sequence of a
chromosome or displacement of genes.

• Selection: Subject to evolutionary progress, only the fittest
individuals are carried on in the population considering
the current generation and the emerged offspring.

Another crucial factor is the encoding scheme used [18],
and the choice of operator also depends on the representation
of a solution. In this respect, recombination and mutation
strategies exist specifically for, e.g., the binary, permutation,
and real-valued encoding schemes. For floating-point rep-
resentation, commonly, the mutation operator changes the
gene within its domain given by the bounds, whereas for
recombination, values can be merely exchanged (discrete
recombination), or the intermediate point between the parents
is taken (intermediate recombination) [17].

III. APPROACH

We now tackle the aforementioned challenges by applying
a meta-heuristic search approach to find optimal tolerance
ranges for state identification, starting from the MDE-based
approach of our previous research [8].

A. Overview

Fig. 3 gives an overview of our approach, which we
describe in more detail in Section III-C. The input for the
optimizer is two-fold: (i) the value streams of each
sensor and (i i) a reference set of annotated logical
states. This set is derived through manual annotation of
the sensor measurements, e.g., by a system operator, after
keeping records of the execution workflow. Based on these
inputs, the meta-heuristic algorithm searches for a
configuration that best reflects the discrepancy between the
model and reality of the state properties. By instantiating one
of the solution configurations, which are continually adjusted,
it follows a matching process between the reference set and the
states captured. For this purpose, the optimizer considers two
objective functions: (i) maximize (F-measure), i.e., the
harmonic mean of precision and recall of the detection process,
and (i i) minimize / maximize (distance between
offsets) for guiding the search process. As output, we get
Optimized Offsets (OpOs), which are the optimal
lower (oLsi) and upper offsets (oUsi) to derive the optimal

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SINT et al.: AUTOMATIC OPTIMIZATION OF TOLERANCE RANGES 5

Fig. 3. Approach overview: Computation of optimized tolerance ranges.

tolerance range for each state’s property for a sensor (si).
This enables identifying and verifying the optimal tolerance
ranges for each property of a system operating within a certain
setting.

Before we present our approach in detail, we briefly discuss
why a meta-heuristic search is needed for the given problem.

B. Problem Complexity

Due to the consideration of float numbers for the property
values of a system and the combinatorial complexity of value
combinations, the search space can grow very quickly. Thus,
finding the best combination of tolerance ranges (i.e., lower
and upper offsets) for each sensor is computationally intensive.
In particular, the search space is considered as a variation
problem, as shown by the following equation: where k is the
number of possibilities of objects (i.e., number of options for
upper and lower offsets) and n the number of places (i.e.,
number of sensors).

SearchSpace = (k2)n (1)

Considering this magnitude, not only is a manual search
impossible, but even an exhaustive automated search. Thus,
we need an intelligent search algorithm to find good tolerance
ranges in a reasonable time.

C. Meta-Heuristics for Tolerance Range Identification

We now describe how the meta-heuristic approach is applied
to the discussed tolerance range optimization problem. For
this purpose, we use the lab-sized gripper introduced before
as an example. As a starting point, we take a set of deployed
sensors Ssensors of the system, e.g., the gripper, from which
we aim to abstract a logical state model based on the sensor
value streams gathered during operation. We assume that
inaccuracies (e.g., based on measurement uncertainty) exist
in the sensor readings and/or recordings, as is often the case
in practice [19]. Additionally, we have to consider that such
inaccuracies are not symmetrical in both directions (upwards
and downwards). Therefore, we need for each sensor of the set
(si ∈ Ssensors) a so-called upper offset (oUsi) and lower offset
(oLsi). These optimized offsets lead to the optimal tolerance
ranges for the sensor properties for the sensors (Ssensors)
considered in each state:

OpOs(Ssensors) =

[
oLs1 oLs2 · · · oLsn

oUs1 oUs2 · · · oUsn

]
(2)

As already mentioned in Section III-A, our meta-heuristic
approach uses two sets as input to compute a set of Optimized
Offsets (OpOs) as output (cf. Fig. 3). One set is the sensor
value streams of the system logged as tuples (t, s1, . . . , sn)

with timestamp t during operation, and the other set is the
reference set, a subset of the logged value streams manu-
ally annotated with logical state information. For the gripper
example, the value streams come from the individual angle
sensors. In this context, identifying states from continuous
value streams can be seen as an information retrieval problem.
Given the streams recorded over a period, only those tuples
that correspond to a point in time when a specific state
occurred, as indicated by a match with the reference set, should
be retrieved. Which tuples are retrieved thereby depends on
the state realization event query, where upper/lower offsets
are added/subtracted to the state’s properties defined in the
behavior model [8]. In this regard, we denote optimal offsets as
the ones that lead to a consistent and complete reconstruction
of the states in the reference set. The challenge now is to find
the sweet spot for the permitted deviation: On the one hand,
large enough to allow for regular deviations, on the other hand,
small enough that the resulting range for one state allows for
its identification and differentiation from another. However,
further circumstances in reality may threaten the consistency
of the identification. For example, the gripper holding out at
the same position for an extended time period further compli-
cates the detection. In these dwell times, the sensor streams
will be recorded with identical properties over a certain time
window, while in the reference set, states of the executed
workflow are noted once, namely when the corresponding
position is reached for the first time. Accordingly, in such
cases, the query erroneously leads to multiple detections of the
same state. In a further experiment in Section IV, we account
for this by temporally ordering the set of detected states, then
considering only the first instance of each immediate duplicate
occurrence.

The precision determines which state identifications were
correct, whereas the recall determines which proportions of
the actual states to detect were identified [20]. Both metrics
are, by definition, in a field of tension since improving
precision typically reduces recall and vice versa. In terms of
our approach, the best set of tolerances is the one that enables
the recognition of all logical states without missing any or
providing false positives. For the evaluation of one tolerance
range configuration, both measures are calculated for each
state st and respectively combined to their harmonic mean,
the so-called F-measure, denoted as Fst (O) in Equ. 3.

Fst (O) = 2 ∗
Precisionst (O) ∗ Recallst (O)

Precisionst (O) + Recallst (O)
(3)

To obtain reasonable offset values, the first objective function
for the meta-heuristic algorithm in Equ. 4 aims to maximize
the arithmetic mean (Fmean(O)) over the sum of all F-measure
values (Fst (O)) for all states st j ∈ Sstates .

max Fmean(O) =
1

|Sstates |

Sstates∑
j=1

Fst j (O) (4)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

The second function serves to optimize the tolerance limits
so that the tolerance ranges turn out as small/large as possible:

min/max Osum =

Ssensors∑
i=1

(oLsi + oUsi) (5)

The second objective function can be applied to two different
strategies. By limiting the acceptable tolerance ranges to
a minimum, measurement accuracy deterioration (equipment
aging, errors, etc.) can be detected immediately. This provides
the opportunity to investigate the causes early and take appro-
priate countermeasures. However, if the primary purpose is
to detect states as accurately as possible in the long term,
maximizing the deviation ranges seems reasonable to allow
potentially higher deviations. This is necessary, e.g., when
improving quality management during system monitoring
to determine how large tolerances can be without (nega-
tively) affecting other factors or the outcome of a production
process.

In the search process, the meta-heuristic algorithms pro-
duce new solution vectors (cf. Definition 2) based on their
underlying mechanisms. These vectors are then employed to
perform state detection, the detected states of which are used
to evaluate the solution against our objective functions under
consideration of real occurrences given in the reference set.

IV. EVALUATION

We now present the setup and the results of an exploratory
study according to the guidelines of [21]. All artifacts of
the evaluation, including prototypical implementation, data,
computations, statistical tests, and figures, can be found in
the accompanying repository.3

A. Research Questions

The study addresses the following research questions (RQs).
RQ1 Detection performance: How good is the state detec-

tion performance? We use HS and GA to evaluate a certain
number of configurations and evaluate as many randomly
generated configurations with Random Search (RS) to draw
a comparison. Of interest are consistency and completeness
of the detection on the set of training traces, as well as how
quickly improvements occur. Moreover, how well the found
offsets hold for the test set is assessed. In general, the success
of search algorithms can be affected by different parameter
settings. Thus, we first perform parameter tests to configure
them accordingly.

RQ2 Dwell time impact: How critical are holdouts of the
gripper for our approach? With the state realization queries not
carrying a temporal dimension, such cases impede unambigu-
ous identification. To this end, we investigate the consistency
of recognition before and after specific treatment of successive
duplicates in the recognized state sequence.

RQ3 Tolerance level optimization: How flexible are the
tolerance ranges? Here, we investigate the influence of a
tendency towards rather wider or narrow detection ranges.
They should not come at the expense of detection performance.

3https://github.com/cdl-mint/AutomOptStateIdentification

In particular, we are interested in whether the minimization or
maximization of the tolerance range, denoted by the lower
and upper offset, impacts the F-measure results. Furthermore,
we aim to assess to what extent the tolerance ranges can be
minimized or maximized using this objective function.

B. Study Setup

For the use cases described in the following, we have
logged the sensor properties and created the reference set for
60 workflow executions each. Even if an optimal tolerance
setting can be determined to reconstruct these traces, this
should also apply to new executions in the running system.
Therefore, for one experiment execution, we consider only ten
(randomly selected) traces as a training set to determine the
offset configuration and subsequently apply it to the held-out
set of 50 remaining traces, i.e., the test set. By doing so,
we obtain an estimate of the detection performance for the
system in production while keeping the preliminary annotation
overhead for the reference set low.

1) Use Cases: We re-use the example introduced in
Section II-A and extend it to a five-axis gripper. We log
the rotations of all angle sensors during every run using the
time-series database InfluxDB.4 We implement two use cases
with different scenarios and complexity for a production unit.

Use Case 1 (UC1): The gripper takes workpieces from
a conveyor belt, puts them down on a test rig, and finally
releases them in a red or green storage box based on the
information coded on each workpiece through a QR-code that
is read by a camera on the rig. The gripper can take up to
14 logical states during operation. To ensure the plausibility
of our approach, only two rather distinctive logical states,
DriveDown and PickUp, are considered in a first test to
determine tolerance ranges. Subsequently, tolerance ranges are
computed and analyzed under consideration of all 14 logical
states the gripper can take.

Use Case 2 (UC2): This use case models a simple pick-and-
place unit within the working station, where a gripper takes
workpieces from one conveyor belt and puts them on a second
one for further processing. In this scenario, the gripper runs
through 8 logical states.

We use these scenarios to evaluate our approach, once by
maximizing the F-measure and minimizing/maximizing offsets
and once by maximizing the F-measure only. Since HS is a
single objective approach, the following procedure/weighting
was implemented when using two objective functions. First,
we compare whether the new solution has an F-Measure that
is equal to or higher than those in the memory. If this is the
case, the second objective function picks a solution where the
distance between the lower and upper offset is smaller/larger.

For implementing GA, we employ Jenetics.5 We use the
same encoding and objective functions as for HS and a custom
selection operator following the same hierarchical evaluation
approach: optimizing the F-measure is paramount, and the size
of the tolerance limits is secondary.

4https://www.influxdata.com
5https://jenetics.io

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SINT et al.: AUTOMATIC OPTIMIZATION OF TOLERANCE RANGES 7

2) Evaluation Metrics: For answering our RQs, we com-
pare our meta-heuristic approaches HS and GA with RS.
The comparison with the baseline search through RS should
evaluate whether a meta-heuristic search approach is nec-
essary. The comparison of HS and GA checks whether a
local or global search is more efficient for finding tolerance
ranges. Therefore, we analyze the F-measure of the different
searches and apply statistical tests to validate our assumptions.
Meta-heuristic algorithms are stochastic optimizers that may
produce different results for the same input. Thus, for each
configuration (i.e., different scenarios of the two use cases),
we perform 30 independent runs for every problem instance.
Since our samples have the same underlying population (where
we do not know the distribution), we apply a non-parametric
statistical test, namely, the Wilcoxon rank-sum test [22] for
two independent samples. We use R6 to compute the tests with
a significance level of α = 5%. It indicates the probability
of rejecting H0 if it is true. For evaluating the performance,
we use a one-sided Wilcoxon rank-sum test to show whether
there is a statistically verifiable significance between HS, RS,
and GA.

3) Parameter Settings of HS and GA: Given the variety of
problem kinds, encodings, performance metrics, and operators,
general recommendations for any problem type are considered
infeasible [17], [23]. Settings that have proven effective for
certain applications nevertheless provide guidance. In this
respect, for GA, ranges pc = .6 − .95 and pm = .001 − .01,
and population sizes between 20 and 100 have shown mod-
erately different results on the same test suite [23]. For
real-valued encodings, a common setting is .7 (pc), .05 (pm),
and 10 for the population size [17]. For HS, common values
range between .7-.95 and .1-.5 for HMCR and PAR, respec-
tively [15], [16]. Regarding BW, a general recommendation
is to take 1% to 10% of the value range of the variables’
domain [24].

In order to exclude the setting as a possible determining
factor for the final results, we dedicate effort towards test-
ing different parameter configurations before performing the
actual experiments. In this sense, we start from a canonical
configuration for HS and GA and proceed one at a time. This
means that we first vary only the population size, then proceed
to determine the selection and mutation operators, and finally
test different crossover and mutation rates. Likewise, different
memory sizes are tested before the control parameters of HS
are varied. In each step, we advance with the configuration
showing the best mean fitness at the end of the search. The
results shown in Table I are laid out in Section IV-C.

The termination criterion plays a crucial role in the fair
and unbiased comparison of algorithms [25]. Note that the
bottleneck in our case is the evaluation of each tolerance
setting by employing it for state detection. Accordingly, for
each new candidate solution, a query is performed in the TSDB
for each state. Therefore, adhering to the recommendation
in [25], the same number of objective function evaluations is
granted for each execution of the algorithms after evaluating
the solutions in the initial population.

6https://www.r-project.org

TABLE I
PARAMETER SETTINGS OF HS AND GA FOR EVALUATION

C. Results and Interpretation

We now present our results to answer the RQs.
1) Results RQ1: We measure the performance of our

approach to determine the efficiency based on the objective
function evaluations for each algorithm, i.e., HS, GA, and RS.
Additionally, we evaluate the effectiveness by validating the
ability to produce desired results and, finally, determine the
quality of achieving these results by computing an F-measure
value for each use case. This is done based on the best
configuration, which is determined below.

The parameter evaluation is performed as described in
Subsection IV-B3 starting from a common application,
namely: Uniform crossover (pc = .8) and self-adaptive Gaus-
sian mutation [17] (pm = .1) for GA and H MC R = .9,
P AR = .1, BW = .07 for HS. The population size shows
better performances on the lower side (Np ≤ 100), whereas
marginal differences are observable for HS and tested mem-
ory sizes. Regarding HMCR and PAR in Fig. 4a, extensive
recycling of memory solutions (H MC R = .8 − .9) and the
occasional variation of a reused value (P AR = .1 − .3)
seems more beneficial than focusing more on random explo-
ration and a higher probability of varying more values of a
tolerance configuration at the same time. Slight differences
are observable for BW set between 1% to 10% of the total
tolerance range with a tendency towards higher improvements
through more (higher PAR) and smaller (lower BW) adjust-
ments. Considering different alteration operators in Fig. 4b,
remarkably, intermediate approaches are outperformed by the
generically applicable discrete recombination [17] approaches
such as uniform or single-point crossover. In this respect,
assembling a new configuration from the tolerance settings
of two configurations appears superior to their interpolation.
Furthermore, swapping genes in the gene sequence using
Swap mutation [17] performs similarly to using Gaussian
mutation, which applies to floating point encodings. That is,
exchanging the tolerance values between sensors seems as
reasonable as preserving and slightly adapting them. In their
application, small differences occur, with the best performance
emerging from a regular crossover and a moderate mutation
probability (pc = .8, pm = .05). Ultimately, we use the best
configurations (cf. Table I) to perform the experiments for our
case studies.

For a sanity check, we limit UC1 to two logical states.
Results showed no significant difference regarding effec-
tiveness when computing optimized offsets, whether using
HS, GA, or RS. All algorithms achieve F-measure values
of 1.

Considering the complete workflow of UC1, Fig. 5a shows
the mean F-measure scores of the different algorithms for the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 4. Varying control parameters for HS and GA.

Fig. 5. UC 1: Mean F-measure development (30 independent runs). Shaded
areas indicate the 95% confidence interval for the true mean.

training set. It is apparent that RS (blue line) lags behind HS
(green line) and GA (orange line), with HS seeming to deliver
slightly better results than GA. The one-tailed Wilcoxon rank

Fig. 6. UC 2: Mean F-measure development (30 independent runs). Shaded
areas indicate the 95% confidence interval for the true mean.

sum test confirms these observations and shows that the
final F-measure values of HS are higher than those of GA
(p = .025). This result is also observed when comparing
the precision; HS finds the most relevant elements, and HS
and GA are both better compared to RS (p < .01, for
all hypotheses). Concerning recall, there is no significant
difference between the three algorithms. Regarding the test
set, the picture is similar for all metrics: RS is worse than the
meta-heuristics regarding F-measure and precision, and there
are no significant differences for recall. When comparing HS
and GA, there is no significant difference in F-measure and
recall, whereas, for precision, the test shows that HS is slightly
better than GA (p = .045).

In UC2, with 8 logical states, the F-measure score of RS
also lags behind the scores of the meta-heuristic searchers
(cf. Fig. 6a, blue line). This result is also confirmed by
the statistical tests. Again, there is no significant difference
between the algorithms in terms of recall. Notably, there is also
no significant difference in the metrics (F-measure, precision,
recall) between HS and GA. This is already indicated by
Fig. 6a. In this evaluation configuration, we get a maximum
mean F-measure of .594 for HS (compared to .593 and .564
for GA and RS, respectively).

Table II gives a detailed list of the mean values and standard
deviations for F-measure, precision, and recall of the training
and test sets for UC1 and UC2. In all cases, precision is the
decisive factor for low F-measure values.

2) Interpretation RQ1: The statistical tests indicate that HS
and GA yield better results than RS in both use cases. All
algorithms achieve good results (high recall) regarding recall
of relevant items, thus, few false negatives. However, the rate
of false positives is high, as seen from the low precision.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SINT et al.: AUTOMATIC OPTIMIZATION OF TOLERANCE RANGES 9

TABLE II
EVALUATION METRICS (MEAN AND STANDARD DEVIATION)

ON TRAINING AND TEST SET

Hence, the occurrence of some states is perceived too often in
contrast to their actual occurrences.

On the one hand, the reason for this indeed lies in the
underlying sensor logs, which show identical values over
periods where the gripper arm persists longer at specific points
in the sequence. Here, there are inevitably multiple detections
for the single occurrence of a state. On the other hand, the
distinctness of the states affects the tolerance ranges to identify
them unambiguously.

Taking UC2, where the states are very closely located,
no significant difference was observed between HS and GA.
In contrast, HS provided marginally better results for UC1,
where the states are less similar. This suggests that the
functioning of HS, which is mainly based on locally oriented
and subtle changes, favors the search for functioning tolerance
areas. Conversely, changes in the sense of a more globally
oriented search, as with GA, could be too diverse and thus
rather detrimental to the convergence of the individual sensors
to the proper ranges.

The comparison with RS reveals that efficiently and effec-
tively computing lower and upper offsets can only be achieved
using an intelligent search, such as a meta-heuristic optimizer.

3) Results RQ2: Based on the knowledge gained from RQ1
and the question of the influence of dwell time, we investigate
the influence of a filter for detecting consecutive duplicates in
the detected state sequence.

In UC1, with 14 logical states, Fig. 5b shows the mean
F-measure scores of the different algorithms for the training
set with filter. It indicates that the detection performance can
be significantly improved compared to the approach without
duplicate filters (cf. Fig. 5a). This is also evident from the
statistical comparison of F-measure and precision for all
algorithms. Regarding recall, there is no significant difference
between GA and RS algorithms with and without filters. The
recall of HS is a shade below the values without the filter.
When comparing the algorithm performances with the filter
approach, we find that HS and GA return better F-measure
values than RS (cf. Fig. 5b). Statistical tests also confirm
this result. Furthermore, HS and GA outperform RS in all
metrics. For the training set, the tests also show that HS is
better than GA, while for the test set, this is only marginally
the case for recall, and otherwise, both perform equally
well.

For UC2, performance can be improved with filtering as
well, as can be seen in Fig. 6b. The tests show the same
picture as for UC1—precision and F-measure are significantly
better. For recall, the detection is lower than without using the

TABLE III
EVALUATION METRICS (MEAN AND STANDARD DEVIATION)

ON TRAINING AND TEST SET - WITH FILTERING
DUPLICATE DETECTIONS

filter approach. Comparing the results from the filtered alter-
natives, the picture that emerges in Fig. 6b also materializes
statistically: HS is one step better than GA, and both clearly
outperform RS.

Table III gives a detailed list of the mean values and
standard deviations for F-measure, precision, and recall of
the training and test sets for UC1 and UC2 with the filtered
version. The filter makes it possible to improve significantly
precision, which has a strong overall positive effect on state
detection performance.

4) Interpretation RQ2: The results show that detection
works substantially better when the effects of dwell time
can be mitigated, in this case, by filtering out duplicate
detections. A closer look at the detected and actual states
reveals the reason for the lower precision without filter:
There are several false positives since a single state change
was identified multiple times. This occurs when the gripper
moves slowly or is stationary, and therefore, values from
the streams are within the offsets for multiple sensor ticks.
Therefore, it is clear that the temporal aspect plays an essential
role in the practical reconstruction of the workflow on an
abstract-logical level. However, this is not considered in the
creation of the logs or the retrieval queries. It can be seen
that with the filtering approach as described in Section III-
C, the recurrences in the logs can only be masked out
to a large extent, as the substantially increased precision
demonstrates.

Regarding the comparison of the searches, our experiments
show that the meta-heuristic approaches perform better than
RS and give better results. Moreover, a local search with the
filter seems superior to a global searcher as HS often yields
significantly higher results than GA, especially when sensor
values from different states are similar, as is the case with
UC2.

5) Results RQ3: Comparing the optimization of F-measure
alone and additional optimization of the tolerance margin,
no fundamental pattern can be identified. For UC2, a more
stable development of F-measure is visible for GA concerning
the minimization of Osum considering the confidence interval
(cf. Fig. 6c). Maximizing the tolerance margins, on the other
hand, leads to deterioration and a large dispersion of the
detection performance between experiment runs (cf. Fig. 6d).
With minimization of Osum , for UC2, an improvement can
be observed with determined configurations inspecting the
final F-measure obtained on the training sets (p = .017).
For UC1, on the test set, the tolerance minimization leads

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE IV
DETERMINED OFFSETS FOR THE GRIPPERS’ AXES POSITIONS FOR UC1 WITH/WITHOUT HAVING Osum ENABLED AS SECOND OBJECTIVE.

EACH CONFIGURATION LEADS TO A COMPLETE AND CONSISTENT DETECTION OF ALL STATES IN THE RESPECTIVE TRAINING
SET (F-MEASURE = 1). BP. . . BASE POSITION, MAP. . . MAIN ARM POSITION, SAP. . . SECOND

ARM POSITION, WP. . . WRIST POSITION, GP. . . GRIPPER POSITION

to improvements for HS and GA concerning correctness (HS:
p = .001, GA: p = 1.364e−6) and for GA also in complete-
ness (p = .019) in detected states. Similarly, minimization
leads to better performance on the test sets for UC2, but only
for GA, where there are fewer false positives (p = .001) and
fewer false negatives (p = .044).

Concerning the concrete offset values, which induce for
each state the tolerance range for each sensor property, these
ranges can be set narrow or wider around the designed
values if minimizing/maximizing Osum is enabled as a second
optimization objective while ensuring complete and consistent
detection. For clarification, Table IV shows the tendency in
the differences between the properties’ lower and upper offset
values, albeit all listed configurations provide the same optimal
detection performance (F-measure = 1) on the respective
training set of randomly sampled execution traces for UC1.
For the five investigated axes from the robot (Second Arm
Position (SAP), Wrist Position (WP), BP, MAP, GP), different
offsets lead to an optimal result. Since there is a dependency
between the individual features and their deviations in state
detection, not all ranges are reduced or extended to the same
extent. Remarkably, it is shown that for individual sensor
properties, e.g., SAP, even the maximum possible tolerance
of .7 works.

6) Interpretation RQ3: The explicit optimization of toler-
ance levels can lead to improvements in the training phase
and the recognition performance on the test sets. Accordingly,
the additional minimization is beneficial if the sensor prop-
erties differ only very slightly, requiring narrow ranges for
differentiation. In particular, when the configurations are used
later on the test sets, it becomes apparent that this leads to
offsets that better capture the real deviations that are only
present to a limited extent in the training set and improvements
can be achieved in this respect. Minimization tends to lower
tolerance levels in these cases, which benefits in capturing fine
differences and avoiding false positives.

Examining the distances between the respective offsets
in Table IV, it can be seen that the tolerance level may
well be optimized to take into account the longevity of the
configuration. With additional maximization, one aims for
continued accurate detection despite potentially increasing
inaccuracies in the workflow. With minimization, on the other
hand, increasing inaccuracies in the workflow can be detected
more quickly as they exceed the tolerance ranges, and the
detection performance decreases as a result.

D. Discussion
Based on the provided evaluation results and interpretations

for the stated research questions, we now critically discuss our
approach to characterize further its benefits and limitations as
well as possible mitigations.

The presented approach, by using intelligent search, facili-
tates the reconstruction of realized states from sensor streams
to ensure workflow congruence with the logical design model.
The evaluation shows that the information in the design models
is sufficient for state recognition and, combined with the
intelligent search approach, delivers good results. It has to
be emphasized that the models are reused without adaptation
from the design phase, e.g., already available for synthesiz-
ing controllers. This approach streamlines development and
facilitates the tracking and subsequent analysis of processes.
As a result, it also allows dealing with evolution scenarios
where processes need to be adapted, which would only require
producing a training set of annotated traces. The rest is
automatically derivable from the design models and the usage
of the intelligent searchers.

One additional benefit of the presented approach we realized
during the evaluation concerns the following point. Individ-
ual sensors’ relevance and fine adjustment can vary from
case to case, even though they may not be immediately
recognizable from the design values. Naturally, its tolerance
becomes less critical if an axis position remains at the same
location throughout the workflow or alternates between two
significantly different locations. However, in some cases, a few
axis positions or even a single one may be so distinctive
in the state sequence that the settings at the remaining axes
become negligible. Intelligent searchers, such as GA or HS,
can highlight and consider such nuances in the configuration.

Besides these benefits, the following limitations come to
light during our evaluation, potentially constraining its appli-
cability and requiring additional research as mitigation.

The first point concerns our filter approach, namely keep-
ing always the first detected instance of a state, sometimes
incorrectly returning an instance not contained in the reference
set. This can occur when the deviations in the sensor ticks
before the instance declared as correct, i.e., the one in the
reference set, are too marginal and, thus, still retrieved by
the state realization queries. Consequently, the valid instance
appears as a duplicate and is discarded. This in itself does not
restrict the identification of states according to the workflow,
e.g., in a continuous monitoring application. However, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SINT et al.: AUTOMATIC OPTIMIZATION OF TOLERANCE RANGES 11

temporal incorrect assignment can impair analysis purposes,
e.g., investigating latencies during state transitions to optimize
the process. Further cleaning procedures may be investigated
in future research to deal with this issue.

The second point concerns the sample size of the training
traces, mainly the range of deviations they cover and on which
the configurations are tuned. Hence, our experiments are based
on the optimistic assumption that the 10 (randomly selected)
executions cover both the finest and the coarsest deviations
that will occur in the future at runtime or, in our case,
in the 50 remaining test runs. Nevertheless, this assumption
lacks practical viability, and additional techniques may be
necessary to justify the diversity of systems’ execution traces
to guarantee proper coverage of different settings that may
occur.

Potential mitigations for these identified limitations are as
follows. Instead of employing a universal tolerance configura-
tion for the sensor properties, a dedicated configuration may
be determined for each state and used in the state realization
queries. Axis deviations are therefore addressed separately for
each state, which improves query accuracy before filtering and,
thus, mitigates the stated problems and increases the computa-
tional effort. Our approach’s ambition to recognize the states
strictly at the recorded times should also be emphasized here.
Alternatively, if sufficient for the purpose, this requirement
could be relaxed to only check the states’ occurrence according
to the order in the model. Consequently, the instance delivered
by the filter process in the case described no longer leads to
rejection of the correct instance and, thus, to a false positive,
but an instance that simply reflects the correct realized state,
regardless of the reference time of occurrence. This would also
make the creation of the reference set optional. The evaluation
may be carried out merely based on the number of realized
workflow runs in the recorded period. For possible branches in
the workflow, however, the alternative of several states would
have to be considered. Regarding our evaluation strategy, the
split between training and test data inevitably involves the
trade-off between finding the most practicable deviations for
detection and the confidence in estimating the recognition
performance at runtime. However, suppose only the temporal
sequence of the recognized states is checked. The reference
set may be omitted in such cases, and many more training
and test runs can be potentially used. Future studies on the
impact on the accuracy when setting permissible tolerances
and estimating performance at runtime for such scenarios are
of interest.

E. Threats to Validity

In this section, we finally discuss the four types of validity
threats [26] that may affect the presented exploratory study.

1) Conclusion Validity: The conclusion validity is con-
cerned with the ability to draw correct conclusions about the
relationship between treatment and outcome. Furthermore, is it
possible to repeat the calculations with the same results? We
used two different use cases to counteract this threat, where the
respective workflow was executed many times. We ran each
search 30 times independently for the results in each use case.
This gave us a larger result set and prevented us from drawing

conclusions based on outliers. Additionally, we compared the
results of HS, GA, and RS with statistical validation.

2) Construct Validity: The construct validity is concerned
with the extent to which the experimental setting reflects the
theory, i.e., is the study well-constructed by using established
standards and methods? We used established metrics such as
F-measure for our objective function. In this regard, we plan
to investigate additional metrics in future work. Since there
is hardly any research in the field of logical state detection
by meta-heuristics, we compared two different meta-heuristic
approaches with each other and with RS to tackle the construct
threat. Additionally, we validated our hypotheses by statistical
test analysis.

3) External Validity: The external validity limits the abil-
ity to generalize the results beyond the experiment context.
We used two use cases with different settings and complexity
in the context of our lab-sized five-axis gripper demonstrator.
The scenarios differed in the number of states, structure, and
workflow. However, we cannot guarantee that the results are
generalizable for all possible production use cases and scenar-
ios. Therefore, further empirical studies in other application
domains are necessary to confirm our findings.

4) Internal Validity: The internal validity checks if the
conducted study is measuring what it is supposed to. This
validity threat may affect the independent variables concerning
causality, potentially leading to reported results indicating a
causal relationship that does not exist. The stochastic nature
and the HS and GA parameter settings might be consid-
ered an internal validity threat. To address this obstacle,
we varied the different control parameters of HS and GA
before we performed 30 independent runs for each problem
instance.

V. RELATED WORK

With respect to our approach, we discuss research on exam-
ining system behavior using runtime data and on tolerance
estimation in robotic systems.

A. Examining System Behavior Using Runtime Data

There are several lines of research concerned with providing
an understanding of the behavior of a system during operation
by examining its runtime behavior based on gathered data
at runtime, e.g., Reverse Engineering [27] or Process Min-
ing [14], [28], [29]. However, only a few studies consider the
uncertainty of runtime models, which will be discussed next.

Mayerhofer et al. [30] introduced an approach to capture
data uncertainty in software models. For this purpose, they
present an approach for capturing aspects of physical entities,
such as units, precision, and uncertainties, in software models.
In this context, not only “exact” assigned property values
have to be expressed in models, but also uncertainty occurs
when measuring runtime data. Therefore, extensions of the
UML/OCL type Real, including operations for computing
with uncertain values, are proposed. Vallecillo et al. [31]
present a case study where they annotate a “fixed” uncertainty
at design time similar to our previous work presented in [8].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

They measure and compute different values (including uncer-
tainties) with simulations. In contrast, we consider optimal
tolerance ranges to capture uncertainties during operation.

In [28], the authors discover real software behavior from
runtime data. For this purpose, they deploy Process Mining
(PM) techniques [14] to discover the “real” behavior of
software components out of unstructured execution traces.
Contrary to previous PM algorithms, they consider the hierar-
chical structure of software, represented by multi-level nested
operation calls, by exploiting the call relations among meth-
ods. To identify a specific independent run of a single software
component, they introduce the notion of a case. Such a
case determines the scope of the discovered model. In our
approach, we focus not only on the discrete behavior by
analyzing execution traces but also on the continuous behavior
of systems since we employ time series analysis.

Over the years, PM approaches have evolved to deal with
complex workflows and noisy data. In [32], the authors pro-
pose a genetic PM algorithm for optimization and searching
for a suitable fitness function for parsing event traces to
generate a process model. They focus on mined models that
reflect the behavior of event logs. A challenge the authors are
addressing is coping with the lack of negative examples caused
by errors in logs. In a follow-up publication [33], the authors
employ their GA to deal with noise and incompleteness and
perform fine-tuning based on artificial examples. The goal is to
find an optimal fit between a process model and an event log.
In contrast to our approach, we do not deal with event logs but
raw sensor data, which we raise to the level of logical states.
Our presented algorithm identifies optimal bounds that can
be used to detect logical states correctly. Thus, our produced
outcome may be an input for PM algorithms.

Otto et al. [34] present an approach for parameter esti-
mation as input for reusable software components in the
automation domain. This approach combines mixed integer
nonlinear programming with PM and black-box optimization
techniques. The aim is to calculate optimal timing parameter
configurations for software components with free parameters
for application in discrete manufacturing. By evaluating their
approach, the authors calculate the optimal energy consump-
tion based on runtime data. The parameters are adjusted as
soon as the method returns a better consumption. In contrast,
we compute optimal tolerance ranges to approximate the
parameter values of logical states of design models. We use
this approximation to enable automatic state detection.

Zou et al. [35] propose an approach to optimize design
parameters for automated production systems. They point out
that finding efficient control parameters is still common via
trial & error. Therefore, they employ simulation optimization
techniques to search for optimal control parameters under
uncertainty. Our approach does not optimize control parame-
ters but configures tolerance ranges based on execution traces
for automatically detecting states in runtime data.

B. Tolerance Estimation for Robotic Systems

Several papers discuss tolerance estimation methodologies
for the design of robotic systems to optimize their accuracy

and reliability. Zhao et al. [4] present a near-optimal method
to estimate joint tolerances for robot arms, e.g., for collision
avoidance. They consider safety constraints to provide a lower
bound of the maximum permissible deviation from the arm’s
reference position. In [5], Tipary and Erdős focus on deviations
emerging in robotic work cells. Their tolerance modeling
approach encompasses various sources of deviations, including
workpiece, environment, manipulation, and metrology pro-
cesses, to assist developers in assessing operation feasibility.
Huang et al. [6] propose an optimization model to improve
the positioning accuracy reliability of robot manipulators. For
this purpose, the latter’s kinematic parameters are determined
using a custom GA. Their method allows robot designers
to evaluate the effects of different parameter tolerances on
position accuracy and manufacturing costs. Also, to support
runtime monitoring, Narayanan and Bobba [36] propose an
anomaly detection framework for robotic arms. At its core,
a support vector machine is trained on regular and anomalous
workflow executions, whereby for the latter, the workflow is
carried out under (task-specific) deviations outside a so-called
“tolerance envelope”.

The works above mainly focus on aiding in the specification
of robotic environments, while our approach aims at runtime
behavior observation and analysis for state-based monitoring
purposes. Although statistical methods can estimate deviations
in sensor data [10], they lack particular support for the state
detection task. This includes the significance of individual
sensors in distinguishing the workflow states and the poten-
tial insignificance of their tolerance ranges in the overall
circumstance. In contrast, our search-based method finds an
optimal detection rule configuration while considering tenden-
cies toward broader or narrower tolerance ranges. Unlike the
approach taken in [36], where measurements are employed for
training a model to detect exceptional deviations in a black-
box manner, our method employs them to establish a specific
configuration for identifying the intended states.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach that allows
reusing logical design models—as they are available from
the engineering phases—in combination with a meta-heuristic
approach to tackle the challenge of configuring appropriate
tolerance ranges for detecting logical system states based on
execution traces collected from sensor value streams. The
approach lifts pure sensor data streams to state-based traces
of the IT layer and, thus, enables a state-based process
view for monitoring and analysis, which can then be further
examined with the help of process mining, for example. The
evaluation showed that meta-heuristics such as HS or GA are
necessary to find meaningful ranges and clearly outperform
RS. The degree of differentiation of system states is crucial to
whether the identification works well. Thus, if the assigned
values of the logical states are too similar, this challenges
the search process for optimal tolerance ranges. However,
one major lesson learned is that HS can still separate close
states better than GA. Furthermore, the dwell time impact
could be mitigated by employing a dedicated filter option,
although it does not necessarily provide the exact realization

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SINT et al.: AUTOMATIC OPTIMIZATION OF TOLERANCE RANGES 13

times. Finally, minimizing or maximizing tolerance ranges as
an additional objective can support different scenarios that
benefit from smaller or higher tolerance range configurations.

To give a brief outlook, we foresee the following steps. First,
we plan to expand our study to larger settings by considering
more sensor value streams and extensive workflows. Second,
we have defined tolerance ranges per property across all
logical states. An additional improvement may be achieved if
tolerance ranges of system properties were explicitly defined
for every state. Finally, based on our findings and produced
data sets, additional techniques such as machine learning may
be utilized to meet further challenges, e.g., finding the optimal
detection time of a state realization.

REFERENCES

[1] Q. Qi et al., “Enabling technologies and tools for digital twin,” J. Manuf.
Syst., vol. 58, pp. 3–21, Jan. 2021.

[2] T. Wang, J. Cheng, Y. Yang, C. Esposito, H. Snoussi, and F. Tao,
“Adaptive optimization method in digital twin conveyor systems via
range-inspection control,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 2,
pp. 1296–1304, Apr. 2022.

[3] M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, unde-
sirable emergent behavior in complex systems,” in Transdisciplinary
Perspectives on Complex Systems: New Findings and Approaches.
Cham, Switzerland: Springer, 2017, pp. 85–113.

[4] W. Zhao, S. He, and C. Liu, “Provably safe tolerance estimation for
robot arms via sum-of-squares programming,” IEEE Control Syst. Lett.,
vol. 6, pp. 3439–3444, 2022.

[5] B. Tipary and G. Erdös, “Tolerance analysis for robotic pick-and-
place operations,” Int. J. Adv. Manuf. Technol., vol. 117, nos. 5–6,
pp. 1405–1426, Nov. 2021.

[6] P. Huang, Y. Gu, H. Li, M. Yazdi, and G. Qiu, “An optimal tolerance
design approach of robot manipulators for positioning accuracy reliabil-
ity,” Rel. Eng. Syst. Saf., vol. 237, Sep. 2023, Art. no. 109347.

[7] A. Mazak, M. Wimmer, and P. Patsuk-Bösch, “Execution-based model
profiling,” in SIMPDA. Cham, Switzerland: Springer, 2016, pp. 37–52.

[8] S. Wolny, A. Mazak, M. Wimmer, and C. Huemer, Model-driven Run-
time State Identification. Bogota, Colombia, EMISA, 2019, pp. 29–44.

[9] M. Tlija, B. Louhichi, and A. BenAmara, “Evaluating the effect of
tolerances on the functional requirements of assemblies,” Mech. Ind.,
vol. 14, no. 3, pp. 191–206, 2013.

[10] H. Wen, Z. Xiao, A. Markham, and N. Trigoni, “Accuracy estimation
for sensor systems,” IEEE Trans. Mobile Comput., vol. 14, no. 7,
pp. 1330–1343, Jul. 2015.

[11] Z. Woo Geem, J. Hoon Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: Harmony search,” Simulation, vol. 76, no. 2,
pp. 60–68, Feb. 2001.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications To Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[13] S. A. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML.
Burlington, MA, USA: Morgan Kaufmann, 2012.

[14] W. Van Der Aalst, “Process mining,” Commun. ACM, vol. 55, no. 8,
pp. 76–83, Aug. 2012, doi: 10.1145/2240236.2240257.

[15] F. Qin, A. M. Zain, and K.-Q. Zhou, “Harmony search algorithm and
related variants: A systematic review,” Swarm Evol. Comput., vol. 74,
Oct. 2022, Art. no. 101126.

[16] X.-S. Yang, “Harmony search as a metaheuristic algorithm,” in Music-
Inspired Harmony Search Algorithm. Cham, Switzerland: Springer,
2009, pp. 1–14.

[17] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
2nd ed. Cham, Switzerland: Springer, 2015.

[18] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
Past, present, and future,” Multimedia Tools Appl., vol. 80, no. 5,
pp. 8091–8126, Feb. 2021.

[19] C. C. Aggarwal, Managing and Mining Sensor Data. Cham, Switzer-
land: Springer, 2013.

[20] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[21] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[22] W. N. Venables and B. D. Ripley, Modern Applied Statistics With S,
4th ed. Cham, Switzerland: Springer, 2002.

[23] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

[24] Z. W. Geem, “Improved harmony search from ensemble of music
players,” in Lecture Notes in Computer Science. Cham, Switzerland:
Springer, 2006, pp. 86–93.

[25] M. Ravber, S.-H. Liu, M. Mernik, and M. Črepinsek, “Maximum number
of generations as a stopping criterion considered harmful,” Appl. Soft
Comput., vol. 128, Oct. 2022, Art. no. 109478.

[26] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Cham, Switzerland: Springer,
2012.

[27] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering
of UML sequence diagrams for distributed Java software,” IEEE Trans.
Softw. Eng., vol. 32, no. 9, pp. 642–663, Sep. 2006.

[28] C. Liu, B. van Dongen, N. Assy, and W. M. P. van der Aalst,
“Component behavior discovery from software execution data,” in Proc.
IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2016, pp. 1–8.

[29] V. Rubin, C. W. Günther, W. M. P. Van Der Aalst, E. Kindler, B. F. Van
Dongen, and W. Schäfer, “Process mining framework for software
processes,” in Proc. Int. Conf. Softw. Process, 2007, pp. 169–181.

[30] T. Mayerhofer, M. Wimmer, and A. Vallecillo, “Adding uncertainty and
units to quantity types in software models,” in Proc. ACM SIGPLAN
Int. Conf. Softw. Lang. Eng., Oct. 2016, pp. 169–181.

[31] A. Vallecillo, C. Morcillo, and P. Orue, “Expressing measurement
uncertainty in software models,” in Proc. 10th Int. Conf. Quality Inf.
Commun. Technol. (QUATIC), Sep. 2016, pp. 15–24.

[32] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst,
“Genetic process mining: A basic approach and its challenges,” BPM
Workshops, pp. 203–215, 2005.

[33] W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Weijters,
“Genetic process mining,” in Proc. ICATPN, 2005, pp. 48–69.

[34] J. Otto, B. Vogel-Heuser, and O. Niggemann, “Online parameter esti-
mation for cyber-physical production systems based on mixed integer
nonlinear programming, process mining and black-box optimization
techniques,” At-Automatisierungstechnik, vol. 66, no. 4, pp. 331–343,
Apr. 2018.

[35] M. Zou, F. Ocker, E. Huang, B. Vogel-Heuser, and C.-H. Chen, “Design
parameter optimization of automated production systems,” in Proc. IEEE
14th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2018, pp. 359–364.

[36] V. Narayanan and R. B. Bobba, “Learning based anomaly detection for
industrial arm applications,” in Proc. Workshop Cyber-Phys. Syst. Secur.
PrivaCy, 2018, pp. 13–23.

Sabine Sint (Student Member, IEEE) is cur-
rently pursuing the Ph.D. degree with the Christian
Doppler Laboratory for Model-Integrated Smart Pro-
duction (CDL-MINT), JKU Linz, with a focus on
module reactive model repositories. In addition, she
works as a Project Assistant with the Research Unit
of Building Physics, TU Wien. Her research interests
include model-driven engineering, reverse engineer-
ing, and data integration. For more information,
please visit https://www.se.jku.at/sabine-sint/.

Alexandra Mazak-Huemer (Member, IEEE)
received the Habilitation degree in business
informatics. She is working as a PD associated
with the Department of Business Informatics -
Software Engineering, JKU Linz. She is the
Deputy Managing Director of the Research,
Science, Innovation and Technology Council. Her
research interests include model-driven engineering,
information integration, and sustainability in
software engineering. For more information, please
visit https://se.jku.at/alexandra-mazak-huemer/.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1145/2240236.2240257

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Martin Eisenberg (Student Member, IEEE)
received the B.Sc. degree in business informatics
and the M.Sc. degree in computer science from JKU
Linz. Since joining the CDL-MINT in 2019, he has
been involved in research around AI-powered and
model-driven technologies. His research interests
include data-driven systems, AI applications, and
applied machine learning. For more information,
please visit https://se.jku.at/martin-eisenberg/.

Daniel Waghubinger is a Student Researcher
with the Department of Business Informatics and
Software Engineering, JKU Linz. He wrote his
bachelor thesis in the research project CDL-MINT.
His research interests include web technologies
and security. For more information, please visit
https://se.jku.at/daniel-waghubinger/.

Manuel Wimmer (Member, IEEE) is a Full
Professor with the Department of Business Infor-
matics - Software Engineering, JKU Linz. He is
also the Head of the Christian Doppler Lab-
oratory for Model-Integrated Smart Production
(CDL-MINT). His research interests include the
foundations of model engineering techniques and
their application in domains, such as tool inter-
operability, legacy modeling tool modernization,
model versioning and evolution, and industrial
engineering. For more information, please visit

https://www.se.jku.at/manuel-wimmer/.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

