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Compensation of Geometric, Backlash, and Thermal
Drift Errors Using a Universal Industrial

Robot Model
Pirmin Sigron , Ivo Aschwanden , and Markus Bambach

Abstract— In order to facilitate the use of articulated robots
for complex industrial applications, methods to improve the
absolute positioning accuracy are needed. This work introduces
a robot-independent calibration procedure that allows to com-
pensate for geometric and backlash errors as well as for thermal
drift. To this end, a unifying robot model is introduced based
on the product of exponentials formula that complies with the
requirements of the calibration process. The model is able to
represent any kind of serial kinematic chain, which guarantees
universal applicability. The full parameter identification is per-
formed simultaneously based on a single data set containing all
modeled effects. The individual modeling approaches have been
verified experimentally using two different industrial robots. The
positioning accuracy could be improved to industrial standards
within the selected workspace. More precisely, the average
position error was reduced from 3.39mm to 0.13mm for a KUKA
KR-16 robot and from 0.36mm to 0.12mm for a KUKA KR-
30 within all operating conditions. The generalizing property of
the thermal expansion model was assessed by compensating the
thermal drift for an unseen and fundamentally different thermal
excitation of the robot structure, limiting the thermally induced
positioning error to 0.1mm.

Note to Practitioners—This paper was motivated by the fact
that modern industrial robots are known to be able to execute the
same movement repeatedly with high precision but are unable
to visit an arbitrary sequence of commanded positions with high
accuracy. In practice, this means that each pose of a given process
must be taught to the robot by moving it to the target position and
storing the robot’s posture. To overcome this limitation, this work
introduces a robot model that is able to express the geometric
properties of the robot, as well as the joint backlash and the
thermal expansion of the robot links. The model parameters must
be evaluated based on a measurement sequence of 300-400 robot
poses during the heating up of the robot structure. Therefore,
depending on the size of the robot, the calibration procedure takes
one to four hours. To use the thermal expansion correction, real-
time measurements based on four low-cost temperature sensors
are used. Since the modeled robot characteristics only change
due to long-term wear, there is no need to repeat the calibration
procedure frequently. The introduced calibration method allows
to move the robot to arbitrary positions or along arbitrary
trajectories within the employed workspace, with a positioning
error of less than 0.2mm. This facilitates non-repetitive pick and
place, assembly, or additive manufacturing tasks.
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I. INTRODUCTION

WITH the continuing automation of wide parts of the
industry, the demand for highly accurate industrial

robots is increasing. Due to their ability to repeatedly follow
the same trajectory or to revisit a pose with high precision
(high repeatability), they are widely used for repetitive tasks
like welding or spray painting. To be able to deploy industrial
robots for more complex tasks, their absolute positioning
accuracy must be increased. To date, there are two main
concepts for improving accuracy: (i) static compensation
or calibration, where the robot’s behavior is studied before
operation and a robot model is then used to compensate
for different types of errors [1], [2], [3], and (ii) dynamic
or online compensation, where real-time measurement data
is used to directly correct for unwanted deviations [4], [5],
[6]. Further, combinations of the two concepts have been
proposed [7]. Dynamic compensation is able to concurrently
deal with diverse types of disturbances and is therefore par-
ticularly interesting for high-load applications or tasks with
varying external forces. However, it comes with a high system
complexity, affecting reliability in harsh environments, and
generally requires expensive measurement systems that must
be available during operation. On the other hand, the perfor-
mance of static compensation approaches generally decreases
for an increasing workspace size, and it is difficult to guarantee
high accuracy for different working conditions [8], [9]. Never-
theless, static compensation approaches are of high relevance
for applications with low loads that lead to small structural
deformations, like pick-and-place tasks, assembly, additive
manufacturing, drilling, 3D-measuring, or laser cutting. To
facilitate the deployment of industrial robots for non-repetitive
and high-accuracy applications, this work aims to develop a
generally applicable error compensation method that avoids
online position measurements during operation.

The most important effects reducing the robot’s accuracy
during operation are geometric errors, thermal deformation,
compliance of the robot structure, and joint transmission inac-
curacies, which in turn include backlash, joint compliance, and
harmonic drive errors. Multiple effects have to be considered
simultaneously to improve the positioning accuracy to meet
industrial standards. Since this renders the modeling of indus-
trial robots more complex, some efforts have been made to use
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parametric models such as neural networks [10], [11], [12],
[13] or combinations of geometric and parametric approaches
[9]. While these models succeed in capturing highly complex
behavior, they do not generalize and thus require a large
amount of measurements to cover the entire workspace and
different operation modes. For the practical application of
any compensation technique, we deem it important to limit
the number of measurements to a feasible amount. Therefore,
a simpler model with a minimal number of parameters that
generalizes to unseen data is needed.

For the calibration procedure to be universally applicable
and the model parameters to be identifiable, the robot model
must meet the following key requirements:

• Generalizing - Capability to represent all kinematic
chains independently of their structural configuration.
This allows to apply the same model to different
serial industrial robots without changing the model
parameters [1].

• Continuous - The kinematic map from the model param-
eters to the end-effector pose is at least free from
singularities (for the parameter identification, differen-
tiability is favorable) within the entire robot parameter
space, meaning that small changes in the robotic structure
always lead to small changes in the model parameters
[1], [14].

• Minimal - The number of independent kinematic param-
eters corresponds to the minimal number of parameters
necessary to describe the full state of the kinematic chain
(6 parameters for an unconstrained body, 4 for a revolute
joint and 2 for a prismatic joint [1], [15]).

This work presents an error compensation method for indus-
trial robots that avoids case-specific modeling. It combines the
main disturbing effects that reduce the robot accuracy for static
and low load applications in a single model. Namely, these
are geometric errors, thermal deformation, and backlash. The
presented approach allows to simultaneously identify all model
parameters in a single optimization and on a single data set,
which facilitates the application of the approach in practice.
Besides complying with the key requirements for a calibration
model, the compensation technique is valid within the full
predefined workspace and for different thermal excitations.

A. Contributions

The main contributions of this work are:
• Reformulation of the product of exponentials formula

in an explicit way (the parameters of the standard POE
model do not correspond to explicit geometrical features
of the robot), allowing to merge a thermal expansion
model with kinematic calibration and backlash compen-
sation. This unifying model can be applied to any open
serial kinematic structure, omitting case-specific model-
ing, and complies with the requirements of a calibration
model.

• Simultaneous identification of all model parameters based
on a single data set, comprising all disturbances to be
identified. Thus, facilitating the application in practice
and ensuring optimality of the identified parameters.

• Detailed validation of thermal drift compensation, using
two substantially different thermal excitations for training
and validation, to assess its generalizing property.

• Verification of the full compensation method on two
different industrial robots, proving that the method is
transferable without case-specific adaptations.

• Analysis of the influence of the size of the workspace
(calibration space) on the calibration performance.

B. Related Work

This section first briefly introduces the state of the art of
robot models used for calibration purposes, before focusing on
existing works that compensate for multiple disturbing effects
simultaneously.

To date, the most widely used description technique for
the kinematics of industrial robots is the Denavit-Hartenberg
(D-H) model. It offers an intuitive way of modeling kinematic
chains, but during the parameter identification, it suffers from
singularities for consecutive joints with parallel rotation axes
[1]. This issue can be solved by introducing a modification
to the D-H model [16], which in turn leads to a robot model
that depends on the structure of the kinematic chain. Further
variations of the D-H convention, like the Stone model [17]
and the complete and parametrically continuous (CPC) model
[18], were suggested. In these, two additional parameters are
introduced in order to solve the singularity issues, resulting in
redundant parameters. Another approach to avoid singularities
in the robot model description is the product of exponentials
(POE) formula [14]. It makes use of the screw theory and can,
by design, represent any kind of open kinematic chain, since it
can deal with revolute, prismatic, and even helical joints [15],
[19]. Its math is based on Lie group theory and gives rise to
efficient recursive algorithms to calculate forward and inverse
kinematics [20], but lacks an intuitive and concise geometric
interpretation of the robot [15].

A majority of the work related to calibration presented so far
focuses on identifying a single aspect of the robotic system and
its compensation. Nonetheless, some studies were conducted
where kinematic error compensation was combined with joint
compliance correction or thermal drift compensation. In the
following, a survey of the most relevant publications related
to the present work is provided.

1) Kinematic Calibration and Joint Error Compensation:
One of the first works to combine a kinematic model with
joint compliance estimation was proposed by Nubiola et al.
[21]. They made use of the D-H convention and additionally
identified higher-order transmission errors in joint 6. They
used measurements within the entire joint space to identify
the model parameters and validated the robot model in a
cube with a side length of 0.7m. A similar approach was
proposed by Deng et al. [22], which combined a kinematic and
joint compliance model. They used a two-step method based
on sequential floating forward selection to find the optimal
set of robot configurations for parameter identification. They
experimentally validated their method on a KUKA KR-160
along certain predefined trajectories. Cho et al. [23] adopted
the POE model and augmented it with a joint compliance
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correction. They applied the circular point analysis to identify
the model parameters and validated the method experimentally.
Luo et al. [24] presented a combined model, considering the
geometric errors and joint compliance based on the POE for-
mula. Similarly, Song et al. [25] developed a model combining
geometric and arbitrary deformation errors of the structure.
The results of all these approaches show that the combination
of kinematic and joint error compensation can reduce the
positioning error by a significant amount. However, none of
these methods consider changing temperature fields and the
resulting thermal drift.

2) Kinematic Calibration and Thermal Drift Compensation:
Few works dealing with real-time thermal drift compensation
for industrial robots have been presented so far. Li et al. [26]
proposed an online compensation method where a calibration
procedure is executed as soon as the mean positional error
of 4 reference positions exceeds a certain value. For the com-
pensation, position measurements of 4 different poses are used
to slightly adjust the kinematic parameters. A similar online
compensation method was proposed by Yin et al. [27]. They
used a laser scanner to measure reference spheres to collect
data that is used to correct the robot model parameters. For
both methods, it is necessary to interrupt the robot operation
to keep track of the thermal drift, and a laser measuring
device must be accessible during operation. This we deem
impractical for most applications and therefore aim to avoid
with our method. Vocetka et al. [28] suggested a method to
compensate for thermal drift at specific robot configurations
to ensure high repeatability during operation. The method
uses data from temperature sensors mounted at the joints and
directly learns the thermal drift of the tool center point (TCP)
in each direction, reducing the positioning repeatability at the
predefined pose. However, with this method, the thermal drift
can only be compensated at a few distinct poses and does not
generalize to the full workspace.

3) Kinematic Calibration, Joint Error and Thermal Drift
Compensation: The first to introduce a procedure to simulta-
neously correct kinematic errors, joint compliance, and ther-
mal drift were Gong et al. [29]. They presented a model-based
compensation approach where the calibration procedure is
split into two parts. In the first step, the kinematics and joint
compliance are identified at room temperature, assuming con-
stant temperature of the robot structure. The calibrated models
are then used to empirically find the temperature-dependent
changes of the kinematic model parameters based on tem-
perature measurements at several links. For validation, they
uniformly increased the joint speed on all joints from 50%
to 65% of maximum speed. However, this does not rep-
resent a substantially different thermal excitation, such that
only limited conclusions can be made about how well the
method generalizes. Furthermore, they encountered the pre-
viously mentioned issues with singularities when applying the
D-H convention for modeling, and introduced an additional
case-specific parameter to overcome them.

Another approach that combines kinematic and backlash
errors with thermal drift compensation and is based on the
modified D-H model was proposed by Le Reun et al. [30].

Due to the geometric parameters being needed to identify
the thermal ones, the parameter identification is performed
separately for the geometric and thermal models. The backlash
is compensated only for the first joint because the examined
trajectory does not introduce further backlash issues. Since
this method is designed to improve the accuracy for repetitive
tasks, the proposed model was not validated in the full
workspace or for a different thermal excitation. The so far
presented works proved that the combination of kinematic
calibration with joint error and thermal drift compensation
can improve positioning accuracy. Nonetheless, a generally
applicable method for combining the three models (without
the need for case-specific modeling) and identifying the model
parameters simultaneously on a single data set (to ensure
optimality) has yet to be found. Furthermore, it is left to be
shown that the thermal drift compensation can be applied to
different, previously unknown temperature fields.

II. ROBOT MODEL

A. Robot Kinematics

The following section provides a basic introduction to the
POE formula and introduces the nomenclature for later use.
For a detailed mathematical description, the reader is referred
to [14]. The forward kinematics expressed using the POE
formula take the form

Tb,ee(q) = exp (ξ̄ 1q1) exp (ξ̄ 2q2) · · · exp (ξ̄ nqn)Tb,ee(0) (1)

where Tb,ee(q) denotes the homogeneous transformation
matrix of the end-effector (ee) represented in the base (b)
coordinate frame, depending on the vector of joint angles q.
The matrix form of the twist ξ̄ i belongs to the Lie algebra
se(3) and is given by

ξ̄ i =

[
ω̄i vi

0 0

]
, (2)

where vi ∈ R3 can be interpreted as the instantaneous velocity
of the base frame given an angular joint velocity of q̇ i =

1 rad
s [31], and ω̄i is the skew-symmetric matrix of the angular

velocity vector ωi .1 Furthermore, vi can be computed as

vi = pi × ωi + hiωi , (3)

where pi is an arbitrary point on the rotation axis of the joint
i represented in the base coordinate frame, and hi represents
the ratio between the translation and the rotation, frequently
referred to as pitch. The twist in vector form is given by

ξ i =

[
ωi

vi

]
. (4)

Although the POE formula introduces six parameters for each
joint, no redundancy is introduced. For a revolute joint, for
instance, the angular velocity vector ω is constrained to have
unit length and be perpendicular to v, which reduces the
number of independent kinematic parameters to four.

1For a purely revolute joint ωi corresponds to the joint rotation axis.
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Fig. 1. Illustration of joint backlash, with εi denoting the amount of backlash
present in joint i .

B. Backlash

An important source of non-linearity in harmonic drives,
leading to joint positioning errors of around 0.01◦, is backlash
[32], [33]. A simple method to capture the most relevant
effects is to only consider the joint approach direction [34].
Figure 1 illustrates how the dead zone of the backlash, which
leads to the misalignment of the joint, is modeled. The
corresponding formula that describes the corrected joint state
q̂i is given by

q̂i = qi − q̄iεi . (5)

Here, qi is the nominal joint state of joint i , εi denotes the
amount of backlash present and q̄i stands for the joint approach
direction, defined as

q̄ =

{
1, for positive rotation,

−1, for negative rotation.
(6)

C. Thermal Deformation

Due to the complex and operation-specific temperature dis-
tribution over the robot (illustrated in figure 2), exact modeling
of the thermal expansion of the robot structure is difficult. One
of the limiting factors is the availability of temperature data
at a reasonable cost. When aiming at gathering information
about the exact temperature distribution over the entire robot
structure, a large number of temperature sensors or a thermal
camera have to be installed, leading to unfeasible system costs.
Since the gradients of the temperature distribution in the links
are small (as shown in figure 2), a finite number of temperature
sensors suffices to capture the thermal effects. Previous work
showed that the thermally induced change of the link geometry
constitutes the predominant thermal effect reducing the robot
accuracy [29], [30]. In this work, the link elongation along
the main dimension is modeled, since it is expected to play a
substantial role. A single temperature sensor per link is used,
and the model assumes uniform temperature distribution over
each link. It follows the linear thermal expansion formula,
assuming constant linear expansion coefficients, which is rea-
sonable for the temperature variations considered in this work
as supported by [35]. The corresponding formula describing
the temperature-dependent link length is given by

li (τi ) = li,0 · (1 + αi · (τi − τ0)), (7)

with li being the length of link i , li,0 the nominal link length,
αi denoting the linear thermal expansion coefficient of link i ,
and τi the measured temperature of the link. Since the nominal

Fig. 2. Temperature distribution of the KUKA KR-16 after 4 hours of
operation. The white arrows highlight the locations of the temperature sensors
(τ1 to τ4) used in the experiments.

link length li,0 and the thermal expansion coefficient αi are
identified simultaneously, the reference temperature τ0 can be
chosen arbitrarily without loss of generality and was set to
20◦C in the present work.

D. Combined Robot Model

To be able to compensate for the geometric and back-
lash errors as well as for the thermal drift simultaneously,
a description was developed that combines the aforementioned
models. When applying the traditional POE formulation, the
corresponding twists ξ i for all joints of the robot are defined
using the joint angular velocity vector ωi , the pitch hi , and
a point on the rotation axis represented in the base coordi-
nate frame pi . Since this formulation does not provide an
explicit representation of the robot geometry (link length), the
temperature-dependent relative joint position vector di (τi ) is
introduced. This vector describes the position of joint i relative
to joint i −1 in robot zero position (q = 0⃗), expressed in base
frame coordinates. As the linear thermal expansion relation
introduced in 7 suggests, the temperature dependence of the
joint positions (link lengths) can be expressed as a scaling of
the nominal relative joint positions di,0, yielding

di (τi ) = di,0 · (1 + αi · (τi − τ0)). (8)

The corrected relative joint positions can then be used to find
the temperature-dependent joint position pi (τi ) expressed in
base frame coordinates, leading to

pi (τi ) =

i∑
j=1

di (τi ). (9)

Now, the twist corresponding to joint i can be determined
using

ξ i (τi ) =

[
ωi

pi (τi ) × ωi + hiωi

]
. (10)

Analogously to the joint positions, the end-effector position in
robot zero-position is determined using the corrected relative
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Fig. 3. Illustration of universally applicable robot model combining kinematics, backlash and thermal expansion.

joint positions and the temperature-dependent relative end-
effector position dee(τi ):

pee(τi ) = dee(τee) +

n∑
j=1

di (τi ). (11)

Overall, each joint of the articulated kinematic chain is
parametrized by a joint angular velocity vector ω, the nominal
relative joint position di,0, a thermal expansion coefficient
αi , the pitch hi and the backlash amount ε. Furthermore,
the homogeneous transformation matrix Tb,ee(0) describ-
ing the end-effector pose in zero-position is required. It
is parametrized by the nominal relative end-effector posi-
tion dee,0, the thermal expansion coefficient αee and three
parameters defining the orientation of the end-effector with
respect to the base coordinate frame. The combined model
is obtained by inserting the corrected joint states q̂i , the
temperature-dependent joint twists ξ i (τi ) and the homoge-
neous transformation matrix Tb,ee(0) into (1). Figure 3 illus-
trates the modeling approach for an arbitrary open kinematic
chain.

It is left to check that the introduced model complies
with the requirements of a universally applicable calibration
model. Namely, it must be (i) generalizing, (ii) continuous, and
(iii) minimal.

• (i) Since the POE formula is able to represent any kind
of kinematic chain, the generalizing property is given.

• (ii) Park O. et al. and He R. et al. proved that the POE
formula constitutes a differentiable map [14], [36]. As
continuity is required for a function to be differentiable,
this implies continuity of the POE formula. Furthermore,
the backlash and thermal expansion models represent con-
tinuous maps of their respective parameters. Based on the
following three characteristics of continuous functions,
it can be shown that, indeed, the combined model is a
continuous map: (1) the sum of two continuous functions
is continuous, (2) the product of two continuous functions
is continuous (product rule) and (3) the composition of
two continuous functions is continuous (chain rule).

• (iii) Neither the backlash model nor the thermal expan-
sion model introduces redundant parameters to the POE
formula, leading to a minimal representation.

III. PARAMETER IDENTIFICATION

Generally speaking, parameter identification aims at find-
ing a set of model parameters that minimize the difference
between the output of the robot model and real-world mea-
surement data. Therefore, not only the choice of the model but
also the quality and information content of the measurement
data are decisive for the success of a calibration. Addition-
ally, the parameter identification strategy needs to be chosen,
including a cost function and an optimization algorithm. In
the following, the parameter identification carried out within
the present work is described in detail.

A. Data Capturing Strategy

In the following, the three most important aspects related
to the data capturing strategy are discussed.

First of all, the type, number, and quality of the measure-
ments affect the measurement strategy. For kinematic calibra-
tion purposes, most often position or full-pose measurement
data is used, obtained through laser tracking or photogrammet-
ric sensing. Since full-pose measurement data contains more
information, the number of necessary measurement points can
be reduced compared to pure position measuring techniques.
Nevertheless, since the measurement process is subject to
stochastic uncertainties, a larger amount of measurement data
improves the result of the identification process.

Another important component of the data capturing strategy
is the choice of workspace. While a large spread of measured
poses is favorable for accurate identification of the model
parameters and leads to a better generalization, a larger
workspace typically results in lower accuracy since additional
nonlinearities caused by self-compliance can arise. Generally,
the calibration should be performed within the region of
the working space with the greatest anticipated use and the
smallest volume necessary for the application. Although ISO
9283-1998 [37] suggests a cubic shape to specify the operating
area, this definition is hardly used in literature since cylindrical
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Fig. 4. Illustration of workspace.

TABLE I
MOVING RANGE DURING THERMAL EXCITATION

or spherical operating volumes are better choices for utilizing
the reach of industrial robots, resulting in larger workspaces
compared to the ISO-cube. Figure 4 illustrates the workspace
used in this work. The size can be proportionally adjusted
according to the robot range. It should be noted that in this
text, the term workspace is used to refer to the end-effector
position space.

For the calibration to be successful, it is crucial to adapt the
pose sampling strategy such that the effects to be identified
are represented within the measured data set. For instance,
to identify the thermal characteristics, the thermal excitation of
the robot structure must be large enough. The heat emitted by
the motors and the joints correlates with the speed and range
of the movement on the respective axis (energy introduced
by the motors). This can be used to induce different thermal
excitations to the system, comparable to different industrial
applications. In this work, two different heating procedures
are used where either all or only three joints are simulta-
neously moved within a predefined range given in table I.
The joint ranges are chosen, such that each motor heats up
to approximately the same temperature. Furthermore, for the
calibration to be representative of industrial applications, the
measured poses are randomly sampled with uniform distri-
bution within the chosen workspace, and the orientation is
rotated towards the tracking device, with a permitted deviation
of 15◦, to ensure visibility of the tracking target. It should
be noted that this procedure limits the domain of inspected
orientations. The random sampling of the measurement poses
ensures arbitrary approach direction on joint state level and
therefore allows to identify the backlash in the respective
joints.

B. Objective Function

The objective function is defined as the average of residuals.
It combines the position and orientation deviation from the

modeled forward kinematics to the measured data. The cost is
given by

F(x) =
1
n

n∑
i=1

(
∥∥pee(x, qi ) − pmi

∥∥ + w · 1θ(x, qi )), (12)

where
∥∥·

∥∥ denotes the euclidean norm, x is a vector containing
the model parameters, pee(x, qi ) and pmi denote the estimated
and measured position of the end-effector at the i-th pose,
w is a weighting parameter used to tune the weight of the
orientation error and 1θ(x, qi ) describes the orientation error.
The latter can be understood as the magnitude of the shortest
possible rotation between the estimated and measured end-
effector orientation. It can be computed according to

1R(x, qi) = Ree(x, qi)
T

· Ree,mi =

r11 r12 r13
r21 r22 r23
r31 r32 r33

, (13)

where the rotation matrices Ree(x, qi) and Ree,mi represent the
orientation of the estimated and measured pose respectively.
The orientation error is then given by

1θ(x, qi ) = arccos
(

r11 + r22 + r33 − 1
2

)
. (14)

The weighting factor w is determined based on the relative
importance of the orientation compared to the position in a
specific application. In this work, the weighting parameter was
set such that the cost of 0.5◦ orientation error is roughly the
same as the cost of 1mm position error. Since pee(x, qi ) and
pmi are given in m and 1θ(x, qi ) is given in rad, the weighting
factor is determined by

w = 0.1m ≈ 0.115m =
0.001m · 180◦

0.5◦ · π
. (15)

Intuitively, the weighting factor can be understood as the
length of a tool which, when mounted at the end-effector,
leads to 1mm misalignment for 0.5◦ orientation error.

C. Model Parameter Identification

A variety of nonlinear algorithms are readily available today.
Therefore, it is unnecessary to develop a specific identification
algorithm for the given problem. After testing a variety of
optimization algorithms, sequential least squares programming
(SLSQP) was chosen for the present work because of its
favorable convergence behavior. In order to avoid constrained
optimization and ensure convergence of the optimization
algorithm, the model parameters were reparameterized and
scaled before optimization.

1) Reparameterization of Model Parameters: As described
in section II-D, the introduced robot model is able to represent
arbitrary types of joints. To account for the fact, that the
industrial robots used within this work only include revolute
joints, the number of independent model parameters needs to
be reduced. One way of doing so is to impose constraints on
the kinematic robot parameters. Although there exist a num-
ber of sophisticated algorithms for constrained optimization,
they do not guarantee to stay inside the constraints during
optimization, which for the given problem causes numerical
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TABLE II
PROPERTIES OF THE DEPLOYED INDUSTRIAL ROBOTS

problems. Moreover, constrained optimization is generally
computationally expensive, leading to increased computing
time. Besides setting the joint pitch h to zero, a reformulation
of the joint angular velocity vector ω is introduced for the sub-
sequent parameter identification. Since for revolute joints ω is
restricted to have unit length, an intuitive way of parametrizing
an arbitrary direction without introducing discontinuities is to
think of it as a unit vector rotated around two perpendicular
axes. For instance, by using intrinsic Euler rotations about the
z- and y′-axis, a unit vector pointing in x-direction can be
rotated to point to an arbitrary direction. Mathematically, this
reads

ω = Rzy′x ′′(φ, θ, 0) · ex , (16)

where φ and θ denote the rotation angles about the z- and
y′-axis and ex refers to the unit vector in x-direction.

2) Parameter Scaling: Recent research showed that the
combination of various robot characteristics in a single model
can lead to an ill-conditioned optimization problem [38],
which can cause bad or no convergence even when applying
sophisticated optimization algorithms. This issue was tackled
by applying appropriate scaling to the optimization parameters,
following the procedure introduced in [39]. The scaling aims
at obtaining optimization parameters of similar magnitude and
of unity order in the region of interest.

IV. EXPERIMENTAL SETUP

A. Industrial Robots

To validate the generalizing property of the system iden-
tification procedure, the calibration was carried out using
two different industrial robots, namely a KUKA KR-16-2
(KR-16) and a KUKA KR-30-3 (KR-30). They represent
the low and medium payload categories of industrial robots,
which are most often used for high-accuracy applications like
assembly, measuring, welding, or laser cutting (figure 5 shows
the experimental setup with the KR-30). While the KR-30
was refurbished recently, the KR-16 has been deployed in the
automotive industry and in research for several years and is
expected to suffer from noticeable performance loss due to
wear. Table II provides an overview of the most important
properties of the robots used in this work. According to ISO
9283-1998, the position repeatability is defined as

R PP = ±(P̄ + 3σP), (17)

where P̄ denotes the mean position error and σPi means the
standard deviation of the position error.

Fig. 5. Experimental setup with the KUKA KR-30.

B. Photogrammetric Sensor

For the pose measurements, a Creaform C-Track was used,
which is a photogrammetric sensor that allows for highly
accurate full-pose measurements. It is able to track reflectors
within a volume of 16.6m3 with a rated repeatability of
0.02mm and a volumetric accuracy of 0.1mm [40]. It allows
a measurement rate of 80H z.

C. Temperature Sensors

In accordance with the previously introduced model, a sin-
gle digital temperature sensor was mounted onto each link.
For the uniform temperature assumption to work best, the
temperature sensors were attached approximately halfway
between consecutive joints, using thermal paste to ensure
a proper heat transfer between the robot structure and the
temperature sensors. The digital temperature sensors attached
to the robot are of type DS18B20+ and support a temperature
range of −55 to 125◦C with an accuracy of ±0.5◦C and a
resolution of ±0.1◦C . To reduce the complexity of the model
and the cost of the setup, only the dominant structures of
the robot which expand to a relevant amount were equipped
with a sensor and considered for thermal correction. For both
of the experimentally exploited robots, the structure suggests
that the base link, as well as links 1-3, predominantly influence
the total thermal drift of the TCP. This presumption was
verified experimentally (see section VI-C). The exact locations
of the temperature sensors are marked in figure 2.

D. Software Architecture

In order to be able to apply the error compensation robot-
independently, the communication with the robot is performed
using the Robotic Operating System (ROS). This widely used
robotics middleware allows to deploy a variety of well-proven
functionalities like collision-aware path planning, trajectory
controls, or sensor drivers. Figure 6 illustrates the software
architecture that is used for error compensation. In addition
to the error correction, the high-level joint state trajectory is
optimized using the Python library TOPPRA [41] to ensure
smooth accelerations on joint level.
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Fig. 6. Robot-independent software architecture for error compensation.

V. DESIGN OF EXPERIMENTS

A. Data Sets

To verify that the proposed modeling approaches are able to
compensate for the respective aspects, multiple data sets were
recorded comprising different disturbing effects. To facilitate
the explanations in the subsequent analysis, the following
identifiers are used:

• UniDir: 300-400 randomly selected poses were mea-
sured, approaching from negative joint rotation direction
at steady-state link temperature.

• MultiDir: 300-400 randomly selected poses were mea-
sured, approaching from random joint rotation direction
at steady-state link temperature.

• ThermTrain: Thermal training set comprising 300-400
randomly selected poses, approached from random joint
rotation direction. A heat-up trajectory is performed repet-
itively where all motors are thermally excited.

• ThermVal: Thermal validation set comprising 300-400
randomly selected poses, approached from random joint
rotation direction. A heat-up trajectory is performed
repetitively where the motors of joints 1, 2 and 5 are
thermally excited. This data set represents a separate set
of randomized sample points, to expose potential effects
of overfitting.

These data sets have then been used to identify a subset
of the model parameters and validate the results. For the
identification process, five cases were distinguished, where
(i) only the location of the base and end-effector frame (see
nominal pose accuracy described in V-D), (ii) the kinematic
model parameters, (iii) the kinematic and backlash parameters,
(iv) the kinematic and thermal parameters, and (v) the full
model, i.e., kinematic, backlash, and thermal parameters, are
identified. This procedure allows to separately test the indi-
vidual models that have been fused in the proposed work.

B. Measuring Technique

To reduce measurement noise, the median of 240 mea-
surement points (corresponding to 3 seconds of continuous
measurement) is taken for each data point. Since the time
constant of thermally induced variations of the structure is by
magnitudes larger and no other time constraint is present for
the calibration, this procedure does not influence the results.
Furthermore, to ensure small and reproducible deceleration,

the last 0.15 deg of joint revolution is covered within a second.
That way, arbitrary misalignment within the dead zone of the
joint backlash is reduced to a minimum.

C. Evaluation Metrics

To assess the positioning accuracy, the average of the
positioning error defined by

P̄ =
1
n

n∑
j=1

∥∥p j − p∗

j

∥∥ (18)

was used, where
∥∥·

∥∥ describes the Euclidean norm, p j denotes
the measured end-effector position at pose j , p∗

j refers to the
commanded position and n is the number of measurements
taken in the given experiment. Furthermore, the corrected
standard deviation given by

σP =

√∑n
j=1(Pj − P̄)2

n − 1
(19)

and the maximal positioning error, denoted Pmax , were evalu-
ated. The use of the most commonly used evaluation metrics
simplifies the comparison with literature and allows for an
intuitive interpretation.

For the results presented below, all stated errors are statis-
tical means over a large sample size. We therefore chose to
faithfully represent the results as they were computed, with a
precision that exceeds the expected accuracy of the measuring
device (which is 0.1mm volumetric accuracy).

D. Nominal Pose Accuracy

This metric allows to benchmark the pose accuracy of the
uncalibrated robot. To make sure that no additional errors are
introduced by a potential misalignment of the measurement
coordinate systems, two homogeneous transformation matrices
describing the transformations from the world frame to the
robot base Tw,b and from the robot end-effector to the tracking
target Tee,t are introduced. These transformation matrices can
be used to correct the estimated pose of the tracking target
and are given by

Tw,t = Tw,b · Tb,ee(xnom, q) · Tee,t , (20)

where the nominal model parameters xnom can be found in
the datasheets provided by the manufacturer of the robot. This
corrected forward kinematics can then be used to identify the
parameters of Tw,b and Tee,t while holding the robot parameters
constant. This can be done using the objective function given
in 12 by replacing the estimated pose pee(x, qi ) with the
corrected one pw,t (x, qi ). The described procedure ensures a
precise evaluation of the nominal robot model.

VI. EXPERIMENTAL RESULTS

The main goal of the experiments conducted in this work
is to validate the novel combined robot model and assess
the positioning performance when applying it. However,
to establish the significance of the individually studied effects
and provide benchmarks for this validation, in the first step
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TABLE III
SUMMARY OF EXPERIMENTAL RESULTS OF THE MULTIDIR DATA SET

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS OF THE MULTIDIR DATA SET

experiments are presented that use only the kinematic and
backlash models. Furthermore, an analysis of the influence
of the size and shape of the workspace is conducted to help
interpreting the resulting positioning errors and researching the
origin of the remaining positioning errors.

A. Kinematic Model

In the first experiment, the pure kinematic calibration is
assessed. To this end, the kinematic error compensation is
applied to the UniDir data set, and the resulting positioning
errors are compared to the nominal positioning accuracy. The
attained positioning errors are summarized in table III.

The results show that both the average positioning error
and the variability are reduced significantly after applying the
kinematic calibration for both robots. For the KR-16, the mean
position error reduces by 97% (σP by 97%) and for the KR-30
it reduces by 69% (σP by 78%).

B. Backlash Model

To determine the performance of the backlash compensa-
tion, the MultiDir data set is used. Compared to the previous
one, this set includes movements with different joint rotation
directions and thus introduces backlash errors. Two versions
of the compensation model were applied: the first, as before,
compensating for kinematics only; the second compensating
for backlash as well. The results of this analysis are given
in table IV. A comparison of the errors obtained with just
kinematic calibration (column 4) to the respective values of the
previous experiment (table III, column 4) reveals the amount
of positioning error due to backlash. A significant effect can be
observed mainly for the KR-16, with an increase in the mean
error of 0.03mm. After applying the combined kinematic and
backlash compensation (table IV, column 5), the respective
error is reduced by about the same amount, leading to an
accuracy virtually identical to the results obtained on the
backlash-free UniDir data set.

Fig. 7. Temperature distribution of the KUKA KR-30 after different thermal
excitations.

C. Thermal Drift Compensation

For the thermal experiments, all model parameters are iden-
tified using the ThermTrain data set. The calibrated models are
then applied to the ThermVal data set. These sets differ most
notably through the pattern of thermal excitation, as outlined in
section V-A. Figure 7 shows the temperature distribution over
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TABLE V
SUMMARY OF EXPERIMENTAL RESULTS OF THE THERMVAL DATA SET

TABLE VI
SUMMARY OF EXPERIMENTAL RESULTS OF THE THERMVAL DATA SET

Fig. 8. Thermal drift in xy- and xz-plane at pre f captured with the KUKA
KR-30.

the KR-30 captured with the FLIR 50 camera, after executing
the substantially different thermal excitation procedures of
ThermTrain and ThermVal.

The performance of the thermal expansion model is assessed
by measuring the drift of the end-effector positions at a refer-
ence position (pre f = [1.00, 0.37, 0.77]m, depicted in figure 4)
as the robot undergoes the thermal excitation procedures for
the ThermTrain and ThermVal data sets. For this experiment,
the KR-30 was used, as its bigger structure suggests larger
thermal expansion, which is considered more challenging to
compensate for. Figure 8 shows the comparison between the
uncompensated and compensated thermal drift of the reference
pose. The maximal thermal drift could be reduced from
0.38mm to 0.10mm (or by 74%) for the thermal excitation of
the ThermTrain data set, and from 0.38mm to 0.10mm (or by
70%) for the ThermVal set.

D. Combined Model

All model parameters are again identified on the ThermTrain
data set and the trained models are then applied to the
ThermVal data set to investigate their ability to compen-
sate for thermal drift on a previously unknown tempera-
ture field. The results of the experiments are summarized
in tables V and VI.

A comparison of the attained positioning errors after apply-
ing the full model calibration to the ThermTrain data set
(table V, column 7) with the previous results in section VI-B
(table IV, column 5) shows only very small differences,
suggesting that the thermal drift has been corrected by the
compensation model for this particular excitation pattern.

An assessment of how these results generalize to a different
temperature distribution is then provided through the measured
accuracy on the ThermVal data set, using the fully compen-
sated model (table VI, column 7). While the positioning errors
are somewhat higher in this case, the compensation model still
reduces the thermally induced errors by about two-thirds in
this experiment. Namely, due to thermal excitation, we observe
an increase in the mean error of 0.10mm and 0.12mm for
the KR-16 and KR-30, respectively (comparing column 5 of
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Fig. 9. Illustration of the different subspaces used for analyzing the influence
of the size of workspace.

TABLE VII
INFLUENCE OF SIZE OF WORKSPACE ON THE POSITIONING ACCURACY

table VI, against table IV). The compensation model reduces
these to 0.03mm and 0.04mm.

Furthermore, comparing the errors after applying the full
model (column 7) to those after kinematic and backlash com-
pensation (column 5) and the ones with kinematic and thermal
correction in place (column 6) suggests that the backlash errors
are less significant than the ones originating in thermal drift.
Namely, the backlash model reduces the average positioning
error by 0.01-0.02mm while the thermal compensation reduces
it by 0.06-0.08mm.

E. Influence of Size of Workspace

For the subsequent analysis, the nominal workspace is
divided into 16 subspaces of equal volume, which are then
assembled into four representative workspaces of different size
(illustrated in figure 9). To assess the influence of the size and
shape of the working envelope on the positioning accuracy, the
kinematic and backlash model is trained on the MultiDir data
set for each workspace. The KR-16 is used for this analysis
because the previous results revealed an inferior positioning
accuracy.

The results of the experiments are summarized in table VII.
Generally, increasing the workspace negatively impacts the
positioning accuracy. The main increase in positioning error
was found when adding subspaces in the radial direction (from
v2 to v3), almost doubling the positioning error.

VII. DISCUSSION

The following detailed discussion of the above results is
structured according to the experiments:

A. Kinematic Model

The comparison between the results after applying the pure
kinematic calibration to the UniDir data set (table III) and
the nominal robot accuracy show that the mean positioning
error can be reduced by 69-97%. This major improvement was
expected because of the limited performance of the nominal
model. These results of the calibration represent the lower limit
of errors attainable with the introduced compensation proce-
dure since none of the subsequently examined disturbances
are present in the UniDir data set. To further improve the
positioning accuracy, a joint and link compliance correction
should be introduced as suggested by Klimchik & Pashkevich
in [42]. Since the link compliance acts in the same direction
as the joint compliance, both effects can be compensated by
modeling each joint as a torsion spring.

B. Backlash Model

The experiments show that the backlash effects are signif-
icant mainly for the KR-16, increasing the mean positioning
error by 0.03mm. The results after applying the backlash
compensation for both robots suggest that the method is
capable of compensating for the full backlash error, to the
extent the measuring accuracy allows to observe.

C. Thermal Drift Compensation

The results of the thermal drift experiments show that the
TCP deflection can be reduced by at least 70% for both the
ThermTrain and the ThermVal excitations, at the reference
position. The experiment suggests that the introduced sim-
plified thermal model successfully captures the main thermal
effects and can be applied to a random pose within the
workspace. Furthermore, this result reveals that the model
adequately generalizes to a different unknown temperature
field. The thermal drift compensation could presumably be
further improved by using more temperature sensors and
increasing the complexity of the mapping function between
the measured temperature and the thermal expansion of the
links.

D. Combined Model

The experimental data reveals that the thermally induced
positioning errors are slightly larger for the KR-30. This
suggests that the impact of thermal expansion increases for
bigger robotic structures and is therefore harder to correct for.
Most importantly, the analysis shows that the thermal position-
ing errors can be fully compensated on the ThermTrain data
set, and are reduced by two-thirds for the ThermVal data set.
Although this demonstrates that the model generalizes to an
unknown thermal excitation to a large extent, the generalizing
property of the thermal model is still limited. To improve
the generalization, a more involved thermal model could be
adopted and its parameters could be identified using multiple
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data sets with different thermal excitations to reduce the effect
of overfitting. At this point, it must be kept in mind, that
the thermal excitation of the ThermVal data set substantially
differs from the one within the training set. Therefore, the
performance on the validation set can be considered a worst-
case scenario.

E. Influence of Size of Workspace

Finally, the size and shape of the workspace were inves-
tigated regarding its influence on the achieved positioning
accuracy. By systematically increasing the workspace, it could
be shown that the positional error strongly depends on the
radial width of the operation space. This points to the fact that
a major part of the remaining positioning error is caused by
pose-dependent compliance induced by the weight of the robot
structure. The presented analysis shows that these compliance
effects can be eliminated by applying the calibration to smaller
workspaces. This finding can be exploited to increase the
positioning performance by choosing the workspace in a ben-
eficial way according to a given application, or by introducing
subspace-dependent robot parameters. Preferably, the subspace
division should be performed in configuration space. Note
that for the experiment conducted in this work, the number
of measured poses increases with the size of the workspace,
influencing the statistical confidence of the stated numbers.

The experimental results show that the presented compen-
sation procedure indeed manages to combine various models
to compensate for geometric errors, backlash, and thermal
drift in a generic way that can be applied to any kind of
serial industrial robot. The introduced technique can be used
to improve the accuracy within the full workspace and for
different thermal excitations or operating conditions. It could
be shown that for the given workspace, the mean positioning
error, its standard deviation and the maximal positioning error
can be significantly reduced for both robots (P̄max

= 0.13mm,
σ max

P = 0.07mm, Pmax
max = 0.35mm).

VIII. CONCLUSION

The presented work proposes a robot-independent error
compensation procedure that is capable of reducing the most
dominant disturbances affecting the positional accuracy of
articulated robots. The most important findings are:

• The proposed calibration technique successfully com-
bines the compensation of geometrical errors, backlash,
and thermal drift.

• All modeled robot properties can be identified simultane-
ously within a single experiment containing all effects
to be identified. This fact ensures optimality of the
model parameters and facilitates the application of the
compensation method.

• The learned thermal robot characteristics can be applied
to different previously unknown temperature fields or
operating conditions.

• By assessing the influence of the size of the workspace
it could be shown that the compliance caused by the
robotic structure itself can be reduced by downsizing the
workspace.

• The universal applicability as well as the time-saving and
simple calibration method renders the proposed procedure
particularly interesting for industrial application.
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