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Abstract— In this paper, we present a controller that combines
motion generation and control in one loop, to endow robots
with reactivity and safety. In particular, we propose a control
approach that enables to follow the motion plan of a first
order Dynamical System (DS) with a variable stiffness profile,
in a closed loop configuration where the controller is always
aware of the current robot state. This allows the robot to follow
a desired path with an interactive behavior dictated by the
desired stiffness. We also present two solutions to enable a robot
to follow the desired velocity profile, in a manner similar to
trajectory tracking controllers, while maintaining the closed-
loop configuration. Additionally, we exploit the concept of energy
tanks in order to guarantee the passivity during interactions with
the environment, as well as the asymptotic stability in free motion,
of our closed-loop system. The developed approach is evaluated
extensively in simulation, as well as in real robot experiments,
in terms of performance and safety both in free motion and
during the execution of physical interaction tasks.

Note to Practitioners—The approach presented in this work
allows for safe and reactive robot motions, as well as the capacity
to shape the robot’s physical behavior during interactions. This
becomes crucial for performing contact tasks that might require
adaptability or for interactions with humans as in shared control
or collaborative tasks. Furthermore, the reactive properties of our
controller make it adequate for robots that operate in proximity
to humans or in dynamic environments where potential collisions
are likely to happen.

Index Terms— Variable Impedance Control (VIC), passivity
theory, Dynamical Systems (DSs).

I. INTRODUCTION

ROBOTS nowadays have witnessed a paradigm shift tran-
sitioning from the rigid and often position-controlled
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industrial manipulators to a safer, more compliant version,
which enabled the seamless introduction of robots into domes-
tic environments such as museums and hospitals where they
co-exist in close proximity to humans [1]. This raises the need
for planning and control frameworks capable of ensuring com-
pliant and adaptive robot behaviors that ensure task execution
while safely reacting to uncertainties.

In this regard, Impedance Control [2] is a prominent control
approach capable of fulfilling such requirements. Impedance
Control primarily aims at controlling the interactive robot
behavior essentially regulating the energy exchange between
the robot and its environment at the ports of interaction.
A recent trend within the robotics community has focused
on transitioning from constant to Variable Impedance Con-
trol (VIC) where the impedance parameters are allowed to
vary over time/state [3]. This was inspired by human motor
control theory which showed that humans continuously adapt
their end-point impedance during physical interactions [4],
and further motivated by the increasing demand to explore
more sophisticated interaction control techniques that would
allow robots to adapt to different task contexts and envi-
ronments. The authors in [5] and [6] use VIC in physical
human robot collaboration for table carrying and cyclic sawing
tasks, while in [7] it is exploited to realize incremental
kinesthetic teaching. A framework was proposed in [8] to
learn variable stiffness profiles for carrying out contact tasks
such as valve turning, and later extended in [9] for bilateral
teleoperation. Alternative approaches like [10] and [11] use
reinforcement learning to design variable stiffness profiles to
optimize performance objectives such as energy and tracking
errors.

The requirement for safe and adaptive interaction controllers
should be also complemented with motion generators that can
guarantee flexibility and precision, while being reactive to
possible perturbations or changes in the environment. Unfor-
tunately, the classical way to command desired motions is to
program the impedance controller and motion generator as
two separate loops, where time-indexed trajectory generators
such as splines or dynamic movement primitives [12] feed
the controller with a sequence of desired set-points parame-
terized with time. This is an open-loop configuration, where
the motion generator does not have any feedback on the
current robot state, and therefore clearly lacks robustness to
temporal perturbations [13]. Furthermore, this raises major
safety concerns in unstructured or populated environments
where potential unplanned collisions would lead to very high
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forces or clamping situations that pose serious dangers to
nearby humans, or lead to the damage of the robot or its
environment [14].

To solve this problem, a potential solution is to combine
motion generation and impedance control in the same control
loop. The authors in [15] suggested to encode a task via
closed-loop velocity fields, and use a feedback control strategy
based on virtual flywheels to ensure stability. In [16], the
authors were able to derive from the Gaussian Mixture Model
formulation a closed loop impedance control policy with a
state varying spring and damper, while deriving sufficient
conditions for convergence. These approaches, however, do not
present any learning solution, and therefore expert knowledge
is needed to obtain the desired robot behavior. Along the same
lines, the authors from [17] proposed to shape the robot control
as the gradient of a non-parametric potential function learnt
from user demonstrations. A different idea was presented
in [18], where the authors proposed an approach based on
Gaussian processes to learn a combination of stiffness and
attractors, in an interactive manner via corrective inputs from
the human teacher.

Closely related to these works, first-order Dynamical Sys-
tems (DS) motion generators are becoming increasingly
popular thanks to their stability features in terms of conver-
gence to a global attractor regardless of the initial position.
This is in addition to their flexibility in modeling a myriad of
robotic tasks [19], [20], [21], and their ability to incorporate a
wide range of machine learning algorithms, such as Gaussian
mixtures models [22] and Gaussian Processes [23]. Further-
more, the DS formulation naturally extends to closed-loop
configuration control, allowing to fully exploit their inherent
reactivity and stability properties. This was initially shown
in [13], where a passive controller was developed to track the
velocity of a first order DS by selectively dissipating kinetic
energy in directions perpendicular to the desired motion.
However, the controller in [13] is flow-based and therefore
does not possess the ability to restrict the robot along a
desired path, nor the spring-like attraction behavior charac-
teristic of stiffness. This was remedied in [24], where the
proposed control approach is still flow-based, however with
the spring-like attraction behavior embedded inside the DS.
In our previous work [25], we proposed our Variable Stiffness
Dynamical Systems (VSDS) controller in order to embed
variable stiffness behaviors into a first-order DS controlled
in a closed-loop configuration. The controller requires the
specification of a stiffness profile that can be provided by the
user depending on the application, a first-order DS describing
the motion plan, and consequently outputs a control force that
follows the DS motion with an interactive behavior described
by the stiffness, achieving also a spring-like attraction similar
to [24]. Differently from [24], however, the controller allows
the complete decoupling of the stiffness profile specification
from the desired motion, and can be also used with any first-
order DS. In [26], authors exploit the DS formulation from
[22] for surgical cutting, realizing the impedance variation
by varying the damping. This significantly differs from our
approach since we aim to achieve variable stiffness behaviors.
Compared to works such as [15], [16], and [18], our approach

relies on first-order DS and therefore it inherits all the flex-
ibility that DS have, whether in task modeling or learning
algorithms. Therefore, the approach combines the advantages
of first-order DS in terms of flexibility and reactivity, with
the interaction capabilities that can be achieved with variable
stiffness behaviors. We showed the benefits of our controller
in [25] for autonomous task execution and in [27] for shared
control.

In this work, we extend the original VSDS formulation with
two important features. First, we aim to augment our controller
with a trajectory tracking capability, such that the robot is
able to follow both the position (as in the original VSDS)
and the velocity profiles described by the first-order DS. The
ability to accurately track trajectories on a dynamic level is
one of the trademark characteristics of controllers relying on
open-loop generated, time indexed trajectories, e.g., computed
torque controllers [28]. Incorporating such a feature in our
VSDS provides means to accurately follow a motion profile
while still benefiting from the inherit safety characteristic of
the closed-loop configuration.

Our second goal is to propose a solution for guaranteeing
the asymptotic stability (in free motion) and passivity (during
physical interactions) of our VSDS controller. One of the main
attributes that provide DS its appeal in modeling point-to-
point motions is their ability to generate state trajectories with
guaranteed asymptotic convergence to a target location, from
anywhere in the state space. Therefore, it would be desirable
that a controller designed to follow such a DS would also
provide the same convergence proprieties. It is important to
note that, since the controller operates in closed-loop, solely
guaranteeing the asymptotic stability of the motion generation
DS does not necessarily imply the overall stability of the robot
motion. Instead, we additionally consider the controlled robot
dynamics in the analysis, in contrast to several works such as
[22], [24], and [26] which rely on or show only the asymptotic
stability of the first-order DS dynamics. On the other hand,
ensuring passivity is of paramount important for physically
interacting robots, since it guarantees the stable interaction
with arbitrary passive and possibly unknown environments
[29]. To achieve these objectives, we exploit the concept of
energy tanks commonly used to ensure passive behaviors,
which were employed in a number of robotic applications
including bilateral teleoperation [30], hierarchical control [31],
[32], and dynamical systems [13], [33].

To summarize, with respect to our initial work in [25],
we present the following contributions:

• We extend the original VSDS approach with a feedfor-
ward term that allows the tracking of a desired velocity
profile. We propose and compare two different methods
to achieve this objective.

• We design a control strategy to ensure the asymptotic
stability and passivity of our system. Therefore, we guar-
antee that the energy in the system remains bounded,
and in consequence stability during physical interactions
[29], while also ensuring convergence to the equilibrium.
To that end, we exploit the use of energy tanks with a
new formulation of the tank dynamics, and, additionally,
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a control term based on a novel form of a conservative
potential field.

• We validate our developed approach extensively in simu-
lations as well as on real robot experiments in a number
of scenarios, where we also highlight the difference in
performance compared to the original VSDS approach.

The rest of this work is organized as follows. Section II
provides background information and describes the VSDS
formulation. In Sec. III, we present our new formulation
that permits velocity tracking. Passivity and stability of the
proposed controller are analyzed in Sec. IV. Experimental
results are presented in Sec. V, while section VI states the
conclusions and proposes further extensions.

II. PRELIMINARIES

Notation: In the following, we use bold characters to
indicate vectors and matrices. For a vector p, the notation
pi indicates the i-th element of the vector, while for a matrix
P i, j indicates the element at i-th row and j-th column. We use
P i,∗ for i-th row and P∗, j for the j-th column, and { pk}

K
k=1

to indicate vector elements stacked together evaluated over
k = 1 . . . K . Finally, we have || p|| =

√
pT p indicate the

L2 norm, and | p| for the element-wise absolute values.
The considered Cartesian-space gravity compensated

dynamics of the robot can be expressed as

M(x)ẍ + C(x, ẋ)ẋ = F + Fext (1)

where x ∈ Rm is the Cartesian state with m as the number
of DOF, M(x) is the Cartesian-space Inertia matrix, C(x, ẋ)

is the Coriolis matrix, while F and Fext correspond to the
forces applied by controller and the external environment,
respectively.

In our previous work [25], we proposed our Variable Stiff-
ness Dynamical System (VSDS) controller to compute F. The
main idea behind the controller is to follow a path described
by one of the integral curves of a first order DS ẋd = f g(x),
with an interactive behavior described by a desired stiffness
profile K d(x). The first order DS f g(x) is assumed to be
asymptotically stable around a global attractor xg , and can
be obtained e.g via learning with any state-of-art techniques
such as Gaussian Mixture Models [22] or Gaussian Process
Regression [23]. The controller operates in closed-loop, in the
sense that it is always aware of the current robot state, and
also provides an attraction behavior around the reference path
proportional to K d(x). The nominal motion plan represented
by f g(x) represents a velocity field, and is assumed to have
guaranteed asymptotic stability around a global attractor xg .

In the original formulation, VSDS is designed as the non-
linear weighted sum of linear DS with dynamics f l,i (x) =

Ai (x − xl,i ) centered around a local attractor xl,i sampled
from f g , while Ai is the stiffness of the i-th local computed
via EigenValue Decomposition, as

Ai = − Qi K d,i QT
i (2)

where K d,i = K d(xl,i ) is a diagonal positive definite matrix,
sampled from the desired stiffness profile. We design Qi

similar to [13] by aligning the first eigenvector with f g(x)

|| f g(x)||
,

Fig. 1. Comparison between the symmetric attraction behavior of the original
VSDS (Org), the optimization based approach (QP), the velocity feedback
method with low (VF:LowD) and high (VF:HighD) damping gains.

while the rest of the eigenvector are chosen perpendicular to
the first one. This means that Qi projects the stiffness values
along and perpendicular to the current motion direction.

We combine the linear DS via a Gaussian kernel for the i-th
linear DS as ωi (x) = exp(−

(x−xcen,i )
T(x−xcen,i )

2(ϵi )2 ) where xcen,i =

1
2 (xl,i + xl,i−1) and ϵi as smoothing parameter proportional to
the distance between the local attractors. The weight of how
each linear DS affects the dynamics is defined such that

ω̃i (x) =
ωi (x)∑N
j=1 ω j (x)

(3)

VSDS is then formulated as

f vs,o(x) =

N∑
i=1

ω̃i (x) f i (x). (4)

Finally, the control force sent to the robot is computed with

F = α(x) f vs,o(x) − D(x)ẋ (5)

where α(x) is an optional state-dependent function that avoids
large initial robot accelerations, while D(x)ẋ is a dissipative
field that can be simply designed with a constant positive
definite damping matrix, or as we use in this work, a more
elaborate design in order to assign a specific damping rela-
tionship to each linear DS i.e

D(x) =

N∑
i=1

ω̃i (x)Di , (6)

where Di is a positive definite matrix.
Unfortunately, the current VSDS formulation suffers from

two main drawbacks. First, the robot only practically con-
verges to the global attractor or very close to it, which is also
partially dependent on parameter tuning. In other words, there
is no theoretical guarantee that the robot is asymptotically
stable with respect to the global attractor, which is one of the
main features of first order DS. The second problem is that
the velocity profile of the robot can arbitrary differ from the
velocity field represented by the original DS f g(x). Ideally,
in an open-loop trajectory tracking problem, the velocity of
the robot should be similar to that of the desired time-indexed
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trajectory xd(t), independently from the values of the stiff-
ness and damping.1 These impedance parameters should on
the other hand mainly affect the robot behavior in physical
interaction, in the sense of how it reacts to perturbations or
allows deviation from the desired trajectory.

In the next section, we will show our proposed approach
to solve the two aforementioned problems, namely, tracking
the velocity profile of f g(x), and ensuring the asymptotic
stability/passivity of the closed loop system. Without loss of
generality, we will assume in the following that the global
attractor xg is shifted to the origin, such that the desired
equilibrium of the system is at (x = 0, ẋ = 0).

III. VELOCITY TRACKING VSDS

We start by proposing the following new formulation for
our VSDS controller

f vs(x) = κ(||x||)
(

f vs,o(x) + f f (x)
)
+ 8(x) (7)

F = f vs(x) − D(x)ẋ (8)

where κ(||x||) = 1 − e−α||x|| is a smooth activation function
that outputs a value of 0 at the equilibrium, 8(x) is a conser-
vative force field that also vanishes at the equilibrium, while
f f (x) is another force field that ensures velocity tracking. The
role and design of these controller elements will be further
elaborated in the following.

As stated earlier, in a trajectory-tracking problem, it is
desired that the robot not only follows the geometric path
described by the trajectory, but also follows its timing law,
which is mainly highlighted by the velocity of the robot
being close or identical to that of the desired trajectory.
This should also happen independently of the chosen stiffness
profile. To achieve this objective and follow the velocity of the
trajectory described by f g(x), we design the force field f f (x)

from eqn. (7) accordingly. This force field can be viewed as a
feed forward term, similar to those typically used in computed
torque control methods [28], that rely on the desired trajectory
higher-order derivatives to ensure trajectory tracking. In the
following, we propose two different solutions for the design
of f f (x) to achieve this desiderata.

A. Velocity Feedback Approach

The first possibility we explored in this regard was to simply
augment our formulation with a velocity tracking term. The
solution is inspired by the passivity-based controller proposed
in [13] that follows the integral curves of a first order DS with
a velocity feedback action. The control law can be designed
with the feed-forward term as:

f f (x) = D(x) f g(x) (9)

with D(x) designed according to (6), and where, together with
(8), we are closing the loop around the velocity tracking error
ė = f g(x) − ẋ.

While this solution is simple and straightforward to imple-
ment, we noticed that whereas high damping gains lead to

1Under the assumption of a stiffness high enough to overcome robot friction
and properly tuned damping.

better velocity tracking, they result in slightly altering the
symmetric attraction behavior compared to the original VSDS,
which indicates the robot ability to attract back to the path
when perturbed. Furthermore, as it will be explained in the
experimental validation of section V-B, the formulation also
results in higher contact forces during external interactions.

B. Optimization-Based Design

To alleviate this problem, the second solution we propose
is to optimize the feed-forward force fields based on some
optimal reference behavior. More specifically, our aim is that
a robot driven by a VSDS control law is to follow a reference
path, as well as a desired velocity, in a manner similar to time-
indexed open-loop trajectory tracking. In other words, in free
motion, the simplest form of the optimal target behavior is
equivalent to:

M(x)ẍ = K d(x)(xd(t) − x) − Dd(x)ẋ, (10)

where Dd(x) is a damping profile computed from the stiff-
ness profile in order to maintain a critically damped system
(or to achieve another control objective), while xd(t) is a
time-indexed trajectory generated by the open-loop integration
of f g(xd) starting from the robot initial position. In principle,
we could have included also ẋd(t) in (10); however, we found
that (10) in its current form results in good tracking results.

We aim to design f f (x) based on (10). Assuming that
f g(x) and K d(x) are available, the second-order system (10)
can be simulated offline. This results in a data-set that consists
of {xt }

T
t=0 and {Fs,t }

T
t=0, with t as the time index and T is the

total simulation time. The simulated position response of the
second-order system is xt , while Fs,t = K d(xt )(xd,t − xt ) is
the resulting spring force. We can then optimize f f (x) offline
based on the collected data. We propose the following structure
for f f (x):

f f (x) =

N∑
i=1

ω̃i (x)0i . (11)

which represents a weighted sum of constant forces 0i . The
goal of the optimization can then be formulated as

min
0i, i=1,...,N

|| f vs(xt ) − Fs,t ||
2 (12a)

subject to 0i ≤ 0i ≤ 0i , (12b)
| f vs(x0)| > F, (12c)

which minimizes the norm between the VSDS term f vs(xt )

over the simulated position response and the resulting spring
term Fs,t of the second order system. The constraint (12b) was
added to ensure reasonable upper and lower bounds on the
constant force terms. On the other hand, the constraint (12c)
ensures a high enough initial spring force that can overcome
robot friction, which becomes crucial for the implementation
of the control policy on the real robot.

To solve (12), tools such as fmincon provided by Matlab®

can be used. This however resulted in a high computation time
(around 1 minute) in order to compute the optimal solution,
which also increases as the number of linear DS N in the
VSDS increases. To improve efficiency, in the following we
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show that it is possible to formulate our optimization as a
convex Quadratic Program (QP). First, let us write the problem
(12) as

min
0i, i=1,...,N

∥

N∑
i=1

κ(∥xt∥)ω̃i (xt )0i + f s(xt ) − Fs,t∥
2 (13a)

subject to 0i ≤ 0i ≤ 0i , (13b)

|

N∑
i=1

κ(||x0||)ω̃i (x0)0i + f s(x0)| > F, (13c)

where f s(x) = f vs,o(x) + 8(x). Defining:

2W(x) =

 κ(||x0||)ω̃1(x0) . . . κ(||x0||)ω̃N (x0)
...

. . .
...

κ(||xT ||)ω̃1(xT ) . . . κ(||xT ||)ω̃N (xT ),

 (14a)

Wa =

[
W(x) 0

0 W(x)

]
, Wa,0 =

[
σ1W 1,∗ 0

0 σ2W 1,∗

]
,

(14b)

0sh =

[
F1

− σ1 f 1
s (x0)

F2
− σ2 f 2

s (x0)

]
(14c)

Fsh,t = Fs,t − f s(xt ) (14d)

Fsh =
[
{F1

sh,t }
T
t=1 {F2

sh,t }
T
t=1

]
(14e)

Generally, we have that W ∈ RT ×N , Wa ∈ RmT ×m N , Wa,0 ∈

Rm×m N , 0sh ∈ Rm and Fsh ∈ RmT . For ease of illustration,
we chose to formulate all the above terms with m = 2. The
binary variable σi , i = 1, 2 is defined as

σi =

{
1 f i

s (x0) ≥ 0
−1 f i

s (x0) < 0
. (15)

we can then re-write (13) as

2 min
z

(Wa z − Fsh,t )
T(Wa z − Fsh,t ) (16a)

subject to z ≤ z ≤ z, (16b)
Wa,0 z > 0sh, (16c)

with z =
[
{01

}
N
i=1 {02

}
N
i=1

]
, z =

[
{01

i }
N
i=1 {02

i }
N
i=1

]
and

z =

[
{0

1
i }

N
i=1 {0

2
i }

N
i=1

]
containing the elements of all DOF

concatenated. The introduction of the binary variable (15)
is necessary to realize the constraint (13c) which can be
reformulated as

∑N
i=1 κ(||x0||)ω̃i (x0)0i > F − f s(x0) if

f s(x0) ≥ 0, and
∑N

i=1 −κ(||x0||)ω̃i (x0)0i > F + f s(x0)

otherwise. Since both constraints cannot be active at the same
time, the role of σi is to activate one of these constraints
depending on the sign of the initial force f s(x0), resulting
in the constraint formulated in (16c).

Expanding further, and through some simple manipulations,
we can reformulate (16) as

min
z

1
2

zT H z + cTz (17a)

subject to Az ≥ b, (17b)
z ≤ z ≤ z. (17c)

where H = WT
a Wa , c = −WT

a Fsh , A = Wa,0, b = 0sh ,
which represents the well-known form of a QP program. It is

Fig. 2. Left: Illustration of the conservative potential over 1 DOF for two
values of ζ . Right: The corresponding force field derived as the gradient of
the potential. In both cases, we use κo = 5 and τmin = 5.

worth mentioning that, when expanding (16a), a constant term
that does not depend on z has been omitted, since it does
not affect the optimization. Finally, it is worth noting that
the reformulation of the optimization as a QP-program results
in a substantial reduction of the computation time for the
optimization, which now gets solved in approximately 0.1 s,
for N = 20.

Figure 1 shows the resulting attraction behavior of a sim-
ulated mass slightly perturbed from the reference path, and
driven by a control law designed based on i) the original
VSDS formulation (eq. (4)), ii) the QP-based optimization
(eq. (11)) and Velocity feedback (eq. (9)) methods for the
design of f f (x), with the eigenvalues of D(x) where set once
to iii) low and once to iv) high. While the behavior with the
original approach and the QP methods are similar, for the
velocity feedback method, increasing the damping gain delays
the contact point between the mass and the reference path.
This can be attributed to f g(x) which naturally points towards
the global attractor. Increasing D(x) magnifies this behavior
and neutralizes the effect of f vs,o(x) which aims to pull the
mass back to the reference path in a spring-like manner, and
therefore interferes to some extent with the original VSDS
dynamics.

IV. ENERGY TANK-BASED CONTROL

The VSDS formulation developed in Sec. III is exploited
to drive the robot in closed-loop, i.e., we need to explicitly
take into account the robot dynamics to derive stability results.
In general, the closed-loop implementation of VSDS is not
guaranteed to drive the robot towards a desired equilibrium
neither to ensure a safe interaction with a passive environment.
In this section, we analyze the stability and passivity properties
of VSDS and exploit the energy tanks formalism to ensure i)
asymptotic stability in free motion and ii) a passive interaction
behavior.

A. Passivity Analysis

We analyze the passivity of the system under the VSDS
control law (7). The closed-loop dynamics obtained by sub-
stituting (8) and (7) into the robot dynamics (1) is

M(x)ẍ = −C(x, ẋ)ẋ + Fext + f vs − D(x)ẋ, (18)

where D(x) is positive definite if each Di is a positive definite
matrix.
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We consider the storage function

W(x, ẋ) =
1
2

ẋT M(x)ẋ + ϕ(x), (19)

where the first term on the right site is the kinetic energy and
ϕ(x) is the potential function that generates the conservative
field 8(x), i.e., 8(x) = −∇ϕ(x), and where we have ϕ(0) =

0 and ϕ(x) > 0 ∀x ̸= 0. We design ϕ(x) as

ϕ(x) = ko(1 − e−
xT x
2ζ ) + τmin xTx (20)

where τmin , ko and ζ are positive constants. In principle,
we could have used a simple potential with a constant spring
K c such that ϕ =

1
2 xT K c x. This design however would

interfere with the VSDS dynamics and the desired stiffness
behavior specified by K d . On the other hand, the choice in
(20) allows us to selectively tune the effect of the conservative
potential. For example, we can choose to have a weak influ-
ence for the potential in regions far away from the equilibrium
by choosing a low τmin , while smoothly transitioning to
have stronger influence in a small neighborhood around the
attractor to ensure convergence. The width and strength of
this neighborhood are controlled by the parameters ζ and ko,
as depicted in Fig. 2.

Taking the time derivative ofW and considering the expres-
sion of M(x)ẍ in (18) we obtain (omitting the arguments for
simplicity)

Ẇ = ẋT Mẍ + ∇ϕT ẋ
= −ẋT D(x)ẋ + ẋT Fext + κ ẋT(

f vs,o + f f
)
, (21)

where we used the property that Ṁ − 2C is skew-symmetric.
The sign of κ ẋT

(
f vs,o + f f

)
is undefined and does not allow

to conclude the passivity of the system.

B. Energy Tank-Based Passification

We resort to the concept of energy tanks [13], [34], [35]
to render to closed-loop dynamics (18) passive. The idea of
energy tanks is to recover the energy dissipated by the system
and use it to execute locally non-passive actions without
violating the overall passivity. To this end, we consider an
energy storing element with storage function s(x, ẋ). The
dynamics of s is defined as

ṡ = α(s)ẋT D(x)ẋ − β(z, s)z − (η − κ(∥x∥))s, (22)

where z = κ(∥x∥)ẋT
(

f vs,o + f f
)

is the term with undefined
sign in (21). The novelty in our formulation lies in the term
−(η − κ(∥x∥))s with η > 1 which ensures that s → 0 for
ẋ = 0. This property is exploited in Sec. IV-C to show the
stability of the closed-loop system. Assuming that η ≈ 1 also
reduces the effects of −(η − κ(∥x∥))s on tank dynamics far
from the position equilibrium (e.g., x = 0) while ensuring a
rapid convergence of s approaching the desired state (κ(0) =

0). The variables α(s) and β(z, s) satisfy{
0 ≤ α(s) < 1 s < s
α(s) = 0 otherwise

, (23)

and 
β(z, s) = 0 s ≥ s and z < 0
β(z, s) = 0 s ≤ 0 and z ≥ 0
0 ≤ β(z, s) ≤ 1 otherwise

, (24)

where s is the maximum allowed energy This definition of
α(s) and β(z, s) ensures that s ≥ 0 everywhere if the initial
energy s0 ≥ 0. Therefore, we can add s to the storage function
in (19) as

W(x, ẋ, s) =
1
2

ẋT M(x)ẋ + ϕ(x) + s. (25)

By construction, the storage function in (25) is positive
definite, radially unbounded, and vanishes at the equilibrium
(x, ẋ, s) = (0, 0, 0). To passify the closed loop dynamics,
we rewrite the control law (7) as

f vs(x) = 8(x) + γ (z, s)κ(||x||)
(

f vs,o(x) + f f (x)
)

(26)

where {
γ (z, s) = β(z, s) z ≥ 0
γ (z, s) ≥ β(z, s) otherwise

. (27)

By taking the time derivative of (25), it holds that

Ẇ = ẋT Mẍ + ∇ϕT ẋ + ṡ

= −ẋT D(x)ẋ + ẋT Fext + γ (z, s)z + ṡ (28)

By substituting (22) in (28), we obtain

Ẇ = ẋT Fext + (α − 1)ẋT D(x)ẋ + (γ − β)z

− (η − κ(∥x∥))s ≤ ẋT Fext , (29)

where owing to the definitions of α, γ and β in (23), (27) and
(24), respectively, we always have s ≥ 0, and in consequence
the sign of the last three terms in Ẇ is negative semi-definite.
This results in Ẇ ≤ Fext , and we can therefore conclude the
passivity of the closed-loop system with respect to the port
(ẋ, Fext ) through which the robot interacts with the external
environment.

C. Stability Analysis of the Passification Control

The storage function (25) is radially unbounded, positive
definite, and vanishes at the equilibrium. Hence, it can be
used as candidate Lyapunov function to verify the asymptotic
stability of the system in the absence of external forces (i.e.,
Fext = 0). It is worth mentioning that the passivity of the
system is sufficient to ensure stability. Indeed, Ẇ in (29) is
negative semi-definite as it vanishes for (ẋ, s) = (0, 0) irre-
spective of the value of x, i.e., Fext = 0 → Ẇ ≤ 0, ∀(x, 0, 0).
Here, we show that the system asymptotically converges to the
desired goal (assumed to be (x, ẋ, s) = (0, 0, 0) without loss
of generality).

Let’s assume that Fext = 0, ẋ = 0, and s = 0. This also
implies that z = 0. The closed-loop dynamics (18) becomes

ẍ = M(x)−1(8(x) + γ κ
(

f vs,o(x) + f f (x)
))

, (30)

From the definition of γ in (27), we have that γ = β if z = 0.
Moreover, being s = 0, we have from (24) that γ = β =

0 and that (30) vanishes if and only if M(x)−18(x) = 0 ↔

x = 0. The LaSalle’s invariance principle [36] can be used to
conclude the asymptotic stability.
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Fig. 3. Simulation results for the VSDS controller applied on a simulated mass. The first row shows the comparison results of the original VSDS controller
(Org in the legend), to the velocity feedback formulation for computing the feed forward terms (VF), applied on a curve motion. The second row shows
the comparison between the orignal formulation and the QP-optimization approach (QP), applied on an angle shaped motion. The streamlines of the VSDS
dynamics are shown in the last column, with red dots depicting the local attractors, and the rhombus the global equilbruim. The last row shows the comparison
results between the QP controller (blue), and the controller from [13] (green). The plots (g) and (h) show state space plots of the velocity vs position in the
y and x directions, and where the red dotted line depicts the reference state trajectory, the pink circle is the initial state, while the black dot is the final state.

D. Simulation Results

To verify the validity of the above theoretical con-
cepts, we conduct a series of simulations, where we tested
the developed controllers on a simulated mass. In par-
ticular, we constructed our VSDS controller with a first
order DS learnt based on two different types of motions.
For the angle shaped motion of the LASA HandWriting
dataset [22], we compare the performance of the original
VSDS approach (4), with the new VSDS formulation (26)
where the feedforward term was designed via the QP optimiza-
tion (11). On the other hand, we compare the original VSDS
with the feedforward terms designed based on the velocity
feedback approach (9) for the curve shape. As shown in
Fig. 3, the new formulation results in asymptotic convergence
of the mass to the global attractor regardless of the method
used for computing the feed-forward terms, in comparison
to a very low steady state error in the original formulation.
Figures 3(e) and 3(b) show the tank state s, where it could be
noted that the tank is slowly depleted in the beginning of the
motion, followed by a more rapid convergence when the linear
dynamics become more dominant close to the equilibrium.

In the second simulation study, we compare the performance
of our VSDS QP approach to the controller proposed in [13].
In particular, we showcase the benefit of the encoded spring

attraction in following a nominal path and velocity profile. The
controller in [13] guarantees a passive interaction behavior,
and can be also used to follow any first-order DS, with a
control law formulated as F = DP I (x)( f g(x) − ẋ). The
damping matrix DP I is designed to have the first eigenvector
aligned with the direction of motion, while the remaining
eigenvectors are perpendicular to each other. We construct a
first-order DS using the demonstrations of a W-shape, and
compare the performance of both controllers when subjected
to perturbations. We tune both controllers to have a good
tracking performance of the desired path and velocity in the
free motion case, as well as a similar disturbance response
(i.e., maximum deviation from path when subjected to a
disturbance). To simulate the disturbance, we apply a constant
force of 25 N for 2 s, pointing in the direction perpendicular
to the current motion direction. As shown in Fig. 3(i), the
mass driven by the controller in [13] does not return back to
the reference path after the disturbance vanishes, and instead
follows a shortcut path to the goal. This is also reflected
at the velocity level, as shown in Fig. 3(h) and 3(g). These
problems are remedied in the proposed QP controller, where
the mass is pushed back to the reference, and also correctly
tracks the desired velocity after recovering from the applied
disturbance. To obtain quantitative results, we use Dynamic
Time Warping [37] to compute the errors between the actual
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Fig. 4. Experimental results for the controllers comparisons for motion execution. The first row shows the spatial position of the executed motions for the
constant stiffness case, with the streamlines of the VSDS dynamics in the background. The lower row shows the corresponding velocity profile with solid
lines as the actual velocity and dotted as the desired, for the y- and z- directions.

Fig. 5. Left: Mean RMS velocity error over all executed motions for each
controller. Right: comparison of the tank states from the three controllers, for
the same executed motion type and stiffness condition.

and nominal positions and velocities for our VSDS QP and the
controller in [13]. For VSDS QP approach, the position and
velocity errors were 2.25 and 15.06, respectively, compared to
14.59 and 29.45 for [13].

V. RESULTS

In this section, we conduct a series of experiments in order
to validate our approach in terms of accurate motion execution,
safety and a physical interaction tasks. The validation is
performed on a 7-DOF Kuka LWR, controlled via a Desktop
PC with a Core i7. The robot is commanded via the Fast
Research interface library, in Cartesian Impedance control
mode where the computed control law F is sent to the robot as
a feed-forward force. Unless otherwise stated, in the following
evaluations we used N = 20 linear DS. For the potential 8(x),
we set ζ = 0.006, τmin = 1, while ko needed slight tuning
depending on the VSDS approach used, but was typically set

in the range of 0.3 to 0.5. Similarly, the damping gains Di

used in (9) for the Velocity Feedback Method were set in
the range 200 − 300 N/m2, depending on the motion type to
be executed. For the tank, we used s0 = 30 and η = 1.05.
Based on practical experience, we set the values of F in the
optimization problem (17) to 10N, which represents a high
enough initial force to allow a Kuka LWR to move.

A. Motion Execution

In the first part of the validation, we test the ability of our
controller to execute motions following a desired path and a
reference velocity profile, while also asymptotically converg-
ing to the global attractor. We use (26) to compute the VSDS
force component f vs(x), subsequently used for commanding
F as in (8). We compare with f f (x) designed based on Veloc-
ity Feedback (VF) (eqn. (9)), the optimization-based design
(QP) (eqn. (11)) and the original VSDS approach (Org) with
f f (x) = 0. As stated earlier, the specification of the stiffness
should be independent from the velocity profile of the robot.
Therefore, we compare the motion execution for two stiffness
profiles: a constant stiffness with K d = diag(1200, 1500)

and a state-varying stiffness with diagonal elements set to
950 + 150sin(15x1

+ 0.8) and 1200 + 200sin(15x1
+ 0.8).

Finally, we test three motions from the LASA Handwriting
Data Set with increasing levels of complexity [22]: a straight
line, a trapezoidal motion and a Khamesh Shape. The motion
data was first appropriately scaled and shifted to make it
feasible for robot execution, then we used the approach from
[38] to learn the first-order asymptotically stable DS f g(x),
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Fig. 6. Experimental comparison between VSDS QP and the controller in [13]. Blue solid lines indicate VSDS QP, while the green solid lines denote the
controller in [13], and finally red dotted lines represent the nominal motion.

required for computing VSDS. To conclude, we conducted a
total of 3 × 3×2 experiments on the robot.

The results of the experiments are shown in Fig. 4 and
5. The first row in Fig. 4 shows the spatial motion in
the constant stiffness case2 overlaid on the streamlines of
the original VSDS. The second row shows the actual robot
velocity compared to the desired one computed by f g(x) for
the constant stiffness case. In Fig. 6(c), we show the mean and
standard deviation of the Root Mean Square (RMS) velocity
error (ė) for the three controllers over all the executed motions
(6 for each controller). Finally, Fig. 6(b) shows an example of
the tank state from the same condition for the three control
formulations.

For the original VSDS, the actual robot velocity is clearly
different from the desired velocity profile f g(x). This gets
resolved by adding the feed-forward term f f (x), which
improves the tracking accuracy of the reference velocity, and
where the VF approach yields best tracking results, reflected
by the lowest mean for the RMS error. On the other hand,
all three controllers are able to guide the robot to the global
attractor, with the tank rapidly converging to zero close to
the equilibrium, which is also consistent with the simulation
results of IV.D.

Next, We conduct a comparison on the real robot between
the controller in [13] and our VSDS controller based on QP
optimization. For this comparison, we use the Trapezoidal
shape motion. We use the same disturbance settings of Sec. IV-
D, and follow also the same guidelines in tuning the controller
parameters, to have a similar tracking performance and distur-
bance response for both controllers.

The results of this comparison are shown in Fig. 6. Con-
sistently with the simulation results, the robot driven by
VSDS QP returns back to the nominal reference motion after
the perturbation. Quantitatively, we also use Dynamic Time
Warping to compute the errors between the actual position,
velocity and the nominal ones for both VSDS QP and the
controller in [13]. On path level, the error for our approach is
16.3, compared to 34.5 for [13]. On velocity level, the errors
are 46.8 and 68.9 for VSDS QP and [13], respectively.

2The spatial motion in the varying stiffness case looks exactly the same,
and therefore we omit it for brevity.

B. Safety

In the second experiment, we validate the safety of the
presented approaches in unexpected collisions, by placing a
carton box in the path of the planned robot motion, as shown
in Fig. 7(a). We learned a first-order DS based on a straight
line minimum jerk trajectory in the y- direction, and use it to
construct our VSDS, where we also compare the same three
VSDS variations from the previous subsection. The results of
this experiment are shown in Fig. 7. Clearly, as can be also
shown in the video, the interaction is safe for the original
VSDS and the QP cases, highlighted by the relatively low
external force (Fig. 7(f)), with a slightly higher force for the
QP case. Note also the fact that the robot does not “push” the
carton box, which can be verified by the steady state robot
position (Fig. 7(e)) for these two cases is right at the collision
point with the box (Fig. 7(b), 7(c)). On the contrary, the robot
keeps on moving against the box (Fig. 7(d)) for the VF case,
which results in a much higher collision force. This effect can
be mainly attributed to the feed-forward term in equation (9),
where increasing damping gains to a certain extent improves
the velocity tracking, however at the expense of a higher steady
state control force, which eventually increases the collision
force. We would like to note however that while the magnitude
steady state external force in the VF case was close to the
external force we noticed in our previous work [25] in the case
of a time-indexed trajectory, the VF controller is still safer in
the sense the control force does not increase over time, which
typically results in aggressive robot motions once the obstacle
blocking the robot is removed.

C. Interaction Task

In this experiment, we tested our approach in a simplified
drilling-like task which requires the robot to penetrate a foam
surface with a needle-like tool mounted on its end-effector
(Fig. 8(a)). For such a task, the robot starts from an initial
position above the surface, approaches the drilling point with
an arbitrary velocity and ideally maintains a constant low
velocity during the insertion phase and therefore, following a
specific velocity profile would be desirable. A human provides
demonstrations to the robot in gravity compensation mode,
while recording the end-effector position, and obtaining the
velocities via finite differences, which serve as training data
to learn a first-order DS with SEDS [22]. This is then used to
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Fig. 7. Results from the collision experiments. Top row shows a snapshot from the setup at the beginning of the experiment, as well as a snapshot from the
final configuration for each of the compared approaches. The bottom row shows the position and the norm of the external force for the three approaches.

Fig. 8. Experimental results of our drilling-like task, with the first figure showing the experimental setup of the robot, while the last three figures show the
results of the task execution for the QP (red) and the Org.(blue) VSDS approaches.

Fig. 9. Experimental results of the drilling task for the QP approach where the robot is subjected to perturbations applied by a human. The first figure shows
a snapshot where a human physically interacts with the robot, while the remaining figures show the spatial position, velocity and external forces from two
different HRI experiments, depicted in orange and blue.

construct our VSDS, where we use a state-varying stiffness
profile that starts with a constant stiffness of 1000 N/m,
and increases smoothly to 1800 N/m with a minimum jerk
trajectory slightly before approaching the insertion location to
compensate for the physical interaction.

We compare the performance of our original VSDS
approach, with the QP approach for the design of the f f (x).
As can be shown in Fig. 8 and in the attached video, the
task can be completed with both approaches. Note for the QP
approach, the actual robot velocity follows well the desired
velocity f g(x) (Fig. 8(c)),3 which also reflects the human

3For clarity, we show only the velocity results in the main direction of
motion which is the z− axis.

strategy used during the demonstrations to maintain a constant
low velocity during the insertion phase. This results in a
smooth task execution, as compared to the original VSDS
approach, where the robot has a velocity profile that correlates
with the stiffness, increasing during the insertion phase. This
leads to a larger impact and in a consequence a higher
overshoot in the external force sensed at the robot end-effector
can be observed, as compared to the QP approach (Fig. 8(d)).
In the second set of experiments (Fig. 9), we compare
the robustness of our QP control approach to perturbations,
applied by a human physically interacting with the robot
during task execution. As shown in the video, the robot reacts
in a safe and compliant manner to the applied disturbances,
and is able to resume smoothly the task execution, while still
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maintaining the desired velocity profile during the insertion
phase (Fig. 9(c)).

VI. DISCUSSION AND CONCLUSION

In this work, we advanced the potential of our VSDS
controller in two main directions. First, we guarantee the
stability of our controller by exploiting energy tanks to enforce
passivity, thereby ensuring stable interactions with passive
environments. We further extended our proof to include
asymptotic stability with respect to a global attractor in free
motion. Our second goal was to make our controller more
suited for tasks that require trajectory tracking, while still
benefiting from the inherit safety properties of the closed-
loop configuration, as shown in our collision experiments.
To achieve these goals, we proposed two formulations based
on velocity error feedback and QP optimization of the feed-
forward terms. The proposed formulations were validated in
simulations and real robot experiments. The stability feature
was highlighted in the simulation results (Fig. 3(a) and 3(d)),
where the proposed VSDS yielded exact convergence to the
goal attractor, compared to a small steady state error for the
original VSDS. On the other hand, the trajectory tracking
capability was highlighted in Fig. 6(c) where the new VSDS
formulation yielded lower velocity tracking errors compared
to the original VSDS. The velocity tracking capability also
proved to be beneficial in the chosen interaction task, resulting
in a safer task execution, as shown by the lower interaction
forces in Fig. 8(d).

Generally, the QP approach seems to be safer in terms
of external collisions, however, with respect to tracking, the
approach resulted in higher velocity errors. Clearly, the choice
between the QP and VF approaches is application dependent,
and represents a safety/performance trade-off.

Since the QP approach is based on a simulated model,
unmodelled robot dynamics such as friction seem to affect
the velocity tracking performance and the steady state conver-
gence, and therefore proper identification and compensation
of these terms would be one way to improve performance.
Another potential solution would be to obtain the training data
for the QP optimization problem based on an actual robot
execution of the open-loop integrated trajectory, instead of
a simulated model. It is worth mentioning also that our QP
optimization shares some similarities from regression based
approaches for stiffness estimation [5], [8]. Similar to our
case, these works also assume a second-order model to fit
the observed robot dynamics. We also exploit a second order
model, however the goal for these approaches is to extract the
stiffness profiles used during demonstrations via regression,
while in our case, we assume the stiffness is already provided
by the user, and instead aim to extract the spring force driving
the simulated robot.

In the future, we aim to extend our VSDS formulation to
include orientation tasks. In particular, we will consider the
use of DS based on unit Quaternions to represent a motion
plan and subsequently derive our VSDS controller. To this
end, we will explore Riemannian manfolds [39], [40] and their
associated operations such as exponetional maps and parallel
transports in order to find the right formulation for sampling

the via points, constructing, and combining the linear springs
around each local equilibrium.
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