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Abstract— Machine learning and deep learning have been
used extensively to classify physical surfaces through images
and time-series contact data. However, these methods rely on
human expertise and entail the time-consuming processes of
data and parameter tuning. To overcome these challenges,
we propose an easily implemented framework that can directly
handle heterogeneous data sources for classification tasks. Our
data-versus-data approach automatically quantifies distinctive
differences in distributions in a high-dimensional space via kernel
two-sample testing between two sets extracted from multimodal
data (e.g., images, sounds, haptic signals). We demonstrate the
effectiveness of our technique by benchmarking against expertly
engineered classifiers for visual-audio-haptic surface recognition
due to the industrial relevance, difficulty, and competitive base-
lines of this application; ablation studies confirm the utility of key
components of our pipeline. As shown in our open-source code,
we achieve 97.2% accuracy on a standard multi-user dataset with
108 surface classes, outperforming the state-of-the-art machine-
learning algorithm by 6% on a more difficult version of the task.
The fact that our classifier obtains this performance with minimal
data processing in the standard algorithm setting reinforces the
powerful nature of kernel methods for learning to recognize
complex patterns.

Note to Practitioners—We demonstrate how to apply the
kernel two-sample test to a surface-recognition task, discuss
opportunities for improvement, and explain how to use this
framework for other classification problems with similar proper-
ties. Automating surface recognition could benefit both surface
inspection and robot manipulation. Our algorithm quantifies
class similarity and therefore outputs an ordered list of similar
surfaces. This technique is well suited for quality assurance and
documentation of newly received materials or newly manufac-
tured parts. More generally, our automated classification pipeline
can handle heterogeneous data sources including images and
high-frequency time-series measurements of vibrations, forces
and other physical signals. As our approach circumvents the
time-consuming process of feature engineering, both experts and
non-experts can use it to achieve high-accuracy classification. It is
particularly appealing for new problems without existing models
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and heuristics. In addition to strong theoretical properties, the
algorithm is straightforward to use in practice since it requires
only kernel evaluations. Its transparent architecture can provide
fast insights into the given use case under different sensing
combinations without costly optimization. Practitioners can also
use our procedure to obtain the minimum data-acquisition time
for independent time-series data from new sensor recordings.

Index Terms— Automation, classification, multimodal data,
time series, kernel methods, two-sample test, haptic surface
recognition.

I. INTRODUCTION

AUTOMATION expedites the capabilities of industrial
systems by complementing and enhancing the skills

of human workers. An emerging domain for automation is
surface recognition: identifying a surface through physical
interaction is a challenging task that is highly relevant for
manufacturing and construction. An artificial sensing system
can gather and process multimodal data from human-guided
interactions with physical objects to help inspect and identify
their surfaces. To emulate the richness of human perception,
they need to evaluate diverse surface attributes [1].

Multimodal sensor data from surface exploration span a
rich high-dimensional space (Fig. 1). We are interested in
identifying the surface from which unlabeled multimodal data
were collected, recognizing that both the chosen interaction
parameters and ambient factors strongly influence what is
recorded. For the modalities of vision, audio and touch,
interaction parameters can include lighting, sensor location,
scanning speed, applied normal force and the shape and
properties of the sensing tool, while ambient factors might be
temperature or background noise. The major challenge of a
generalizable surface recognition algorithm is to detect causal
content-relevant properties inherent in multimodal information
so that these signatures can be retrieved from unseen data.

How artificial systems can efficiently use multimodal infor-
mation to infer surface properties is elusive. Recent advances
in cross-modal learning algorithms for surface recognition
include inferring images from tactile [2] or tactile-auditory
cues [3] and visual-to-tactile perception [4]. Prior research
demonstrated improved surface recognition when fusing multi-
modal sensor information [5], [6]. However, it is more difficult
to determine what combination of multimodal data is optimal
for surface classification, particularly because performance
depends on the algorithm employed.
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Fig. 1. Our general concept for the task of surface recognition. Data
manifolds that are generated from multimodal visual-audio-haptic information
include both ambient factors (e.g., background noise) and complementary
surface-specific subspaces that are spanned by interaction parameters (e.g.,
tool speed, normal force). A well-performing discriminator retrieves the
signature of an unlabeled inspection trial through comparison with a library
of previously extracted class manifolds.

As detailed in Section II, machine learning and deep learn-
ing have both been used for surface classification. Traditional
machine-learning classifiers rely on problem-dependent fea-
tures to make predictions. Determining suitable features is
cumbersome and requires expert knowledge to search for
content-relevant features, remove dependent features through
correlation analysis, test feature quality to ensure intra- and
inter-class uniqueness, and optimize features iteratively over
the course of training. The ideal outcome of such a pipeline
is an independent descriptive set of features that generalizes
to unseen data. However, the final results with the selected
features strongly depend on subjective decisions, making it
hard to gauge whether the given solution will suffer from
overfitting. Deep-learning algorithms operate without the need
for feature engineering by efficiently learning patterns in the
data that represent correlations within the imposed classes.
For instance, a deep-learning network trained only on images
can achieve a high surface classification accuracy, but it may
make critical misclassifications when applied to images only
slightly outside the training distribution [7], [8]. Multimodal
data sources may facilitate more robust representations [6], [9].
Apart from the ubiquitous issue of overfitting, deep-learning
approaches require large amounts of data for training as well
as significant effort and expertise to handle heterogeneous
data sources and tune hyperparameters. To conclude, there are
many good reasons to automate the time-consuming processes
of past approaches and try to learn directly from multimodal
sensor data.

We implement a purely data-driven approach to multimodal
classification by leveraging the kernel two-sample test of

Gretton et al. [10]. We build upon Solowjow et al.’s founda-
tional use of this test to classify dynamical systems directly
from their time-series outputs without feature engineering [11].
The main contributions of this paper are as follows:
• We improve and augment Solowjow et al.’s kernel-based

classification framework [11] to the task of multimodal
multi-user surface recognition. Our proposed approach
can directly examine heterogeneous data sources such as
images together with low- and high-frequency time series.

• We benchmark our algorithm on the task of surface
recognition with Strese et al.’s multimodal dataset of
108 surfaces [12]. It outperforms the published results
of expertly crafted machine-learning classifiers despite
having a more difficult classification setting, minimal data
processing, and minimal domain knowledge. We publicly
share the code of our surface-recognition pipeline to
facilitate future comparisons.

• Based on the surface-recognition task and backed up
by ablation studies, we provide guidelines for using our
efficient framework for other classification tasks. The
proposed method is readily applicable to various problems
with heterogeneous data sources, spurious effects from
temporal autocorrelations, scarce training data, interaction
parameters, and other ambient factors.

II. RELATED WORK

Many algorithms have been proposed for object and surface
recognition in the past decade. The following summary divides
this surface-classification research into the two common cate-
gories of expertly crafted features and deep-learned features.
This section concludes with a brief summary of prior research
on our chosen tool for this task, the kernel two-sample test.

A. Engineering Features With Machine-Learning Classifiers

Human-subject studies of object and surface recognition
tasks suggest that humans use a wide range of descriptions to
categorize tactile sensations. With regard to touch perception,
four major tactile dimensions (hardness, roughness, warmth,
and friction) have been identified [13], [14]. Further research
resulted in refinement of the major tactile dimensions to
five [15] and fifteen subdimensions [16].

Strese et al. [6], [7], [17] conducted extensive research on
feature-engineered surface classification and achieved impres-
sive recognition accuracy for 69 (86%), 108 (91.2%) and 186
(90.2%) surfaces. In the case of 69 and 108 surfaces, classifi-
cation was performed with a training set of one expert and a
testing set of ten other humans, while the training and testing
data for the 184 surfaces were acquired by the same person;
generalizing to surface-interaction data from other humans
is known to be more difficult [6], [17], [18], [19]. Strese
et al. used traditional machine-learning classifiers such as
k-nearest neighbor (k-NN), random forests, or combinations of
multiple classifiers. Their features stem from auditory, visual,
and haptic data as well as data traces outside human sensing
capabilities, e.g., infrared (IR) light reflectance and electrical
conductivity. Based on their most recent material-scanning
systems, they propose 15 perceptual features for multimodal
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data [7]. Another study by Burka et al. [20] boosted the
classification accuracy on the dataset of 69 surfaces up to
87.5% using a multi-class support vector machine (SVM)
classifier with the same hand-engineered features. For new
surface recordings, Burka et al. also demonstrated superior
classification performance of Strese et al.’s features over
simpler scan-dependent features, which change with applied
force and tool tip speed [20]. Liu et al. [19] recently achieved
74% classification accuracy with multi-user auditory-haptic
data for nine texture classes on the 69-surface dataset using
a novel spectral feature; their Naive Bayes classifier used the
data from the ten participants in a 7 vs. 3 train-test split.

Several studies of robotic systems with planar scanning
showed high surface-classification accuracies. For instance,
Sinapov et al. [21] used a k-NN classifier with spectrotem-
poral acceleration features, and Jamali et al. [22] presented
a Naive Bayes classifier with temporal mean as well as dis-
tinctive frequency features from strain gauge readings. Fishel
and Loeb [23] calculated statistical features from multiple
robot-controlled scans by a biomimetic multi-stream tactile
sensor (SynTouch BioTac) and used a Naive Bayes classifier
to achieve 95.4% recognition accuracy among 117 textures.

In the field of robotic interaction with three-dimensional
objects, Chu et al. [24] showed that a robot equipped with
two BioTacs can achieve comparable performance to average
humans at labeling objects with 25 haptic adjectives. They
implemented a multi-kernel SVM classifier that extracted
standard static features and dynamic features given by the
first four statistical moments of spectral vibrations. Kaboli and
Cheng [25] extended this idea with a robotic hand with five
BioTacs and successfully classified 30 in-hand objects (98%)
and 120 surfaces (100%).

B. Learning Features With Deep-Learning Classifiers

An alternative approach for learning surface classes con-
sists of training neural networks that directly learn inherent
features in a latent space. Such neural networks generally
contain input and output layers as well as hidden layers that
can all interact through nonlinear mathematical operations.
Deep-learning architectures are known to be powerful in the
presence of non-stationary textures and varying measurement
conditions [26].

Convolutional neural networks have been successfully
used for image-based recognition of objects [27]. A review
paper [28] summarizes that advanced network structures like
AlexNet, VGGM, VGGVD, and TCNN were able to accu-
rately classify 95 to 98% [29] of the largest existing visual
texture databases (CUReT, KTH-TIPS2, ALOT).

Going beyond purely vision-based approaches, Zheng et al.
[9] fuse tool-contact accelerations and images that were
acquired by one expert in a fully convolutional network
that can classify 69 surfaces with 98% accuracy. Partic-
ularly, their deep-learning classifier extracts time-frequency
information from acceleration signals in order to learn
latent features from the tactile domain. Joolee et al. [30]
addressed the same classification setting with accelera-
tions alone; their multi-model fusion network achieved

98.18% accuracy, outperforming several machine- and deep-
learning methods. Gao et al. [31] applied hybrid convo-
lutional and recurrent networks to new object images and
Chu et al.’s previously recorded haptic data from exploratory
procedures on 53 objects [24]; this learning-focused approach
outperformed machine-learning classifiers based on hand-
designed features. Strese et al. [7] slightly outperformed
(90.7% vs. 90.2%) their own machine-learning classifier,
which incorporated data from auditory, haptic, and visual
modalities, by considering only images with a modified
convolutional network from AlexNet [27]. However, their
superior image-based deep neural network exhibited more
critical misclassifications for the 184 surfaces due to its lack
of information about the contact properties. The reasonable-
ness of mistakes is an important way to judge classification
techniques to be used in real applications. Wei et al. [32]
recently used solely auditory-haptic data to achieve 87.6%
classification accuracy for eight material categories. The
architecture of their multimodal convolutional neural network
efficiently used multi-scale temporal information for classify-
ing new surfaces.

C. Learning With the Kernel Two-Sample Test

Kernel methods that operate in a high-dimensional space
are a powerful and popular tool in machine learning [33].
In addition to mapping single data points, as used for SVMs,
one can also directly map full distributions into reproduc-
ing kernel Hilbert spaces (RKHS). Due to its structure, the
Hilbert space is equipped with a scalar product, and scalar
products can be evaluated through kernel evaluations. The
embedding of probability distributions is called kernel mean
embeddings; a recent review by Muandet et al. [34] provides
an extensive summary of existing work. In particular, ker-
nel mean embeddings yield tractable approximations for the
maximum mean discrepancy (MMD), a metric on the space
of probability distributions. The MMD metric quantifies the
difference between two distributions by taking into account
not only low-order statistical moments (e.g., mean, standard
deviation, skewness, kurtosis) but also higher-order statistical
moments. The MMD can be well suited as a discriminatory
metric for classification tasks, when data distributions between
imposed classes differ. Gretton et al. [10] derived a rigorous
MMD-based statistical test: at its core, it estimates the MMD
between two datasets and tests the null hypothesis that they
were drawn from the same distribution. They developed this
so-called kernel two-sample test for both numerical examples
and real-world applications. Since then, the kernel two-sample
test has emerged as a prominent method in probabilistic
machine learning due to its powerful theoretical guarantees
and versatile applicability [34], [35], [36], [37], [38].

Several extensions of the kernel two-sample test have been
developed [39], [40], [41]. In particular, Lu et al. [42] recently
used the MMD metric to quantify the similarity between
real and synthesized surface signals. Further, satisfying the
assumption of independent and identically distributed (i.i.d.)
data for the kernel two-sample test can be particularly dif-
ficult for certain applications. For the surface-recognition
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task, we will work with non-i.i.d. time-series data. Therefore,
we will leverage recent results from prior work [11] that
extends the kernel two-sample test to dynamical systems
with non-i.i.d. data. In addition to the theoretical foundation,
Solowjow et al. also show the efficiency of their framework on
a gait classification task with two labels using low-frequency
periodic IMU signals. This novel approach of comparing
dynamical systems is relevant in the context of surface inter-
actions, particularly because the MMD can consider multiple
data points from the evolution of a time series.

III. PROBLEM FORMULATION

Our goal is to classify unseen multimodal sensor record-
ings from physical surface interactions. The algorithm for
this task needs to process heterogeneous and potentially
high-dimensional data (Fig. 1). In particular, it needs to
retrieve the surface signature of an unlabeled data mani-
fold from a library of representative classes. Since these
meaningful signatures are hard to obtain by applying first
principles or training models, a more pragmatic approach is
necessary.

Mathematically, we approach the surface-recognition task
purely by comparing data distributions. We model sur-
face interactions as realizations of a stationary stochastic
process or dynamical system, similar to prior work by
Solowjow et al. [11]. We assume that a set of C ∈ N unique
surfaces will induce different distributions P1, . . . , PC , respec-
tively. Our goal is to assign unlabeled surface recordings made
by a new human user to the corresponding surface distribution
to determine the surface class c from which it most likely
came.

IV. PROPOSED METHOD

We propose a recognition framework (Fig. 2(a)) to solve
the aforementioned classification problem. We assume there
are Q ∈ N trials per surface class c, where each trial consists
of data from S ∈ N information sources. Consequently,
we obtain for the q-th surface trial Y q

= {Y q
1 , . . . , Y q

S } a
set of information sources. Information sources can include
data from different sensors and/or different exploration proce-
dures with the same sensor. In our classification setting, the
surface trials Y q and Zq belong to the training and testing
sets, respectively. At the core of our approach (Fig. 2(b)),
we extract two sample sets, [y1, . . . , yn] and [z1, . . . , zm] with
corresponding sample sizes n and m, from two data streams,
Y q

s and Zq
s , with unknown distributions, PY q

s
and PZq

s
. We then

quantify the similarity in distribution of the two sample sets
in the given information source s. A discrepancy score (DS),
i.e., DS[Y q , Zq

], unifies the computed similarity values across
all S information sources. By pairwise comparisons with all
data in a class library, we assign the trial Zq to a distribution
and thus to a surface class c.

For the surface-recognition task, we consider a pub-
lic tool-surface dataset [12] that consists of images and
time-series data recorded by eleven individuals. Our recogni-
tion pipeline (Fig. 2) relies solely on an offline data library
of measurements by one expert; no feature extraction is

Fig. 2. Proposed surface-recognition pipeline that directly handles data
without feature engineering. Orange highlights the introduced nomenclature
and yellow the dataset-specific information. (a) Our discriminator processes
multimodal data to make a surface-identity prediction. The training set consists
of a surface data library from one user, and the testing set contains data from
ten other users. (b) At the core of our approach, the discriminator compares
two data trials, Y q (c) and Zq , across S information sources. To elucidate the
effectiveness of the recognition pipeline, ablation studies are conducted for
the three dotted function blocks (HSV, DFT and cross-user compensation).

needed during this passive training phase. In the testing phase,
we compare the data distributions of each surface in the library
with unlabeled measurements from the ten other users, i.e., one
expert vs. ten users. Our framework accommodates heteroge-
neous input sources, deals with temporal autocorrelations, and
compensates for user- and session-dependent effects in order to
make a good classification decision. The following subsections
detail the functionality of our recognition paradigm with the
kernel two-sample test. Appendix A provides links to the
dataset and the code.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



KHOJASTEH et al.: MULTIMODAL MULTI-USER SURFACE RECOGNITION WITH THE KERNEL TWO-SAMPLE TEST 5

A. MMD: An Integral Probability Metric

We briefly introduce the technical concepts necessary for
this article; for details we refer to the review paper by
Muandet et al. [34]. We use kernel mean embeddings to
quantify the difference between two data distributions. Kernel
mean embeddings lift distributions into a higher and poten-
tially infinite-dimensional RKHS, where certain tasks become
tractable. Under some mild assumptions on the kernel k,
it can be shown that the embedding is injective, which ensures
that only one object is mapped to zero; this property is the
foundation for meaningful statistical tests [34]. These kernels
are called characteristic. Let H be an RKHS, Y the data input
space, and φ : Y → H its canonical feature map for data
points, yi , zi ∈ Y , so that φ(y), φ(z) ∈ H. As the mapping φ

to the RKHS is usually unknown, the so-called kernel trick
enables the replacement of the inner products by evaluations
of a kernel k, so that

⟨φ(y), φ(z)⟩H =: k(y, z). (1)

The kernel two-sample test [10] is designed to distinguish
between probability distributions, PY and PZ , based on i.i.d.
samples from these distributions. At its heart, the kernel
two-sample test estimates the MMD, which is defined as

MMD(PY , PZ ,H) = sup
∥ f ∥H≤1

EPY [ f (y)] − EPZ [ f (z)]

= ∥µPY − µPZ ∥H (2)

and is a metric that belongs to the class of integral probability
metrics (IPMs). To compare distributions, the MMD considers
functions f in the unit ball of the RKHS H induced by the
kernel k. Equivalently, we can express the MMD in terms
of the kernel mean embeddings µPY and µPZ , which yields
the second equality (see [34] for details). A kernel mean
embedding is a powerful statistical measure as it contains all
statistical moments of a distribution.

In general, it is intractable to compute the MMD in Eq. (2)
directly. However, there are kernel-based estimates that effi-
ciently approximate the MMD. Furthermore, the convergence
speed can be quantified based on concentration results. Thus,
it is possible to construct high confidence intervals and a
significance-level-α statistical test. We use the squared MMD
estimator by Gretton et al. [10],

MMD2
b[PY , PZ ] =

1
n2

n∑
i, j=1

k(yi , y j )+
1

m2

m∑
i, j=1

k(zi , z j )

−
2

nm

n∑
i=1

m∑
j=1

k(yi , z j ), (3)

where [y1, . . . , yn] and [z1, . . . , zm] are i.i.d. random variables.
In our case, these are n and m samples from surface data
streams Y q

s and Zq
s with unknown distributions PY q

s
and PZq

s
.

The two-sample test maximizes over an infinite-dimensional
feature space of possible low- and high-order statistics and
automatically selects the statistical properties with highest
discrepancy. No prior knowledge or parameterization about
PY q

s
and PZq

s
is required to obtain the difference between the

distributions.

In practice, an estimate of the MMD will fluctuate even
for identical distributions due to the finite number of sampled
data points. A threshold κ for the two-sample test ensures
confidence bounds with significance level α for the empirical
MMD under the null hypothesis that the two distributions
are not different. If the empirical squared MMD in Eq. (3)
fulfills

MMD2
b[PY q

s
, PZq

s
] > κ(n, α), (4)

one can conclude that PY ̸= PZ with high probability 1− α.
The choice of the kernel function k can be critical, and

there are many valid choices with potential hyperparameters
that can be optimized. For this paper, we use the prominent
candidate, the squared exponential function,

k(y, z) = exp
(
−
∥y − z∥2

2σ 2

)
, (5)

as the kernel function for all statistical tests. For every choice
of the length scale σ ∈ R+, we obtain a valid kernel function.
However, the performance of the algorithm will generally
depend on the choice of the hyperparameter σ , since we
consider a finite amount of data. Instead of optimizing over σ ,
we choose the well-established median heuristic [10]

σ 2
= 0.5 ·median({∥zi − z j∥

2
}) (6)

over distances between a subset of data points (i, j =
1, . . . , 100).

B. Sampling From Time-Series Data

As the significance test in Eq. (4) requires independent
data, we need to address inherent autocorrelations before
using time-series data for kernel two-sample tests. Autocor-
relations in time series are one type of serial dependence
that represent temporally correlated observations. Coping with
autocorrelations in dynamical systems or stochastic processes
is challenging, but it is critical to preserve theoretical guar-
antees for time-series analysis. High-order pattern recognition
tasks particularly rely on removing spurious autocorrelations
through, e.g., mutual information, as shown in prior work on
cutaneous friction patterns [43].

Mutual information and Pearson’s correlation are common
techniques to measure the dependence between two variables.
Here, we follow the MMD-compatible approach from prior
work [11] and use the Hilbert-Schmidt independence criterion
(HSIC) to quantify dependence. The HSIC between two ran-
dom variables, Y and Z , can be defined [44] as

HSIC(Y, Z) = ∥PY ⊗ PZ − PY,Z∥MMD, (7)

with the tensor product ⊗ of the two marginal distributions,
PY and PZ , and their joint distribution PY,Z under the MMD
metric. It is generally intractable to compute HSIC as defined
in Eq. (7). Thus, we use a kernelized estimate [45, Eq. (4)]

HSICb(Y, Z) =
1
n2 tr(K H L H) (8)
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Algorithm 1 Minimum Distance for Independent Samples
Input: Y 1,...,Q

s , R, t1,max, α

Output: Vanishing autocorrelation time T ∗

1: Initialize t = 0 and C B+ > κ

2: while C B+ > κ do
3: t = t + 1
4: for r ← 1 to R do
5: Randomly initialize t1 from [1, t1,max]

6: Construct Y and Z with t1 and t
7: Compute HSICb(Y, Z)r with Eq. (8)
8: Compute κr by α-bootstrapped HSICb(Y, Z)r

9: end for
10: κ ← Average κ1,...,R

11: C B+ ← (1− α)-quantile of HSICb(Y, Z)1,...,R

12: end while
13: return T ∗ = t

with H, K , L ∈ Rn×n and kernel operators Ki, j = k(yi , y j )

and L i, j = l(zi , z j ). The centering matrix

H = I − n−1ee⊤ (9)

results from the identity matrix I and an all-ones vector e.
In our setting, the time-series measurements represent obser-

vations from a physical interaction with a surface. We assume
that each trial Y q

s with q = 1, . . . , Q of a given time-series
source s generated from interaction with surface c is an
independent process realization of the same dynamical system.
We extract two t-spaced data points, i.e., Y q

s (t1) and Y q
s (t1+t),

from each of the Q realizations and divide the data into
two sets Y := {Y 1

s (t1), . . . , Y Q
s (t1)} and Z := {Y 1

s (t1 +
t), . . . , Y Q

s (t1 + t)} that are, by construction, i.i.d. within
themselves. Thus, n from Eq. (8) equals Q. If we choose
the time gap t between consecutive data points to be large
enough, the empirical estimator HSICb predicts approximately
independent data, which is again consistent with the setting
in Eq. (4).

In practice, the computation of approximately independent
time-series samples takes several steps; see Algorithm 1.
At the core of the procedure, we extract from all Q realiza-
tions t-spaced data points, Y and Z , to compute HSICb and
the threshold κ . The threshold results from a bootstrapping
approach with significance level α. Based on the application,
the parameter α can be modified to control the test error
during statistical testing; for instance, α = 0.05 limits the false
positive error rate to 5%. The bootstrapping procedure (see
Appendix B for implementation details) consists of computing
the HSICb repeatedly with shuffled matrix L and inferring κ

from the (1−α)-quantile. We repeatedly (R times) perform this
core procedure with randomized starting time t1 to increase the
accuracy of the statistical test. By performing the aforemen-
tioned steps with increasing time gap t , we will eventually
obtain approximately independent data. Our algorithm then
outputs an optimal time separation T ∗ that ensures that the
upper 95% confidence interval bound of the HSIC test power
(C B+) falls under the averaged test threshold κ for all R rep-
etitions. Thus, we can reliably guarantee that autocorrelations
vanish in the course of time-series data extraction for the

MMD test. The choice for upper initialization time index
t1,max bounds the start of extracting sub-trajectories, which
is negligible for stationary processes; however, together with
the overall time-series duration Ttotal, the time parameter t1,max
determines the upper search bound for the optimal T ∗ through
T ≤ Ttotal − t1,max.

The vanishing autocorrelation time T ∗ indicates the mixing
speed of temporal dependencies and gives insight into the
complexity of the observed dynamical system. Therefore, these
mixing properties express the predictability of the process
underlying the time series, analogous to entropy-related mutual
information. The speed of mixing is further elaborated and
applied to sample surface signals in Appendix B.

C. Sampling Strategy

The kernel two-sample test benefits from unprocessed data
channels to maximize discrepancy and is also known to
be computationally efficient on high-dimensional data [10].
Therefore, we primarily input raw sensor readings into the
test and refrain from data-processing steps such as filtering or
dimensional reduction (e.g., multichannel signal compression).

In addition to classical time series, one can also input
other data sources into the kernel two-sample test. For
example, spatially distributed pixel values of images and
Fourier-transformed data can be highly expressive and have
been used for decades in signal-processing applications.
Frequency-domain data in particular exhibits stochastic inde-
pendence and therefore is naturally compatible with the MMD
test. Different color representations such as RGB (red, green,
blue) and HSV (hue, saturation, value) have been widely
used in the computer-vision community for the analysis of
images; HSV in particular encapsulates important image prop-
erties such as pure color and its brightness value in separate
channels.

Conceptually, one could input the data streams Y q
s and Zq

s in
both time and frequency domains into the kernel two-sample
test, albeit at a higher computational cost. However, for certain
applications data might be sufficiently expressive in one of
the two domains. We propose to choose the sampling domain
based on whether meaningful surface information is encoded
in the mean value of a data source, i.e., the DC component
of the signal. For instance, the average pixel intensity in an
image may be characteristic of surface identity, whereas the
high-frequency waveform of zero-mean data sources such as
auditory and haptic vibrations is more distinctive. We use
this criterion to propose equidistant and random sampling
strategies (Fig. 3) to extract data points for the MMD test.

The equidistant sampling addresses images and time series
with a non-zero signal mean and occurs in a spatial or temporal
manner (Fig. 3(a) and (b)). We randomly select the first data
point at location (a0, b0) or t0 within an initial image area or
initial time window. For simplicity, the location of the first
sample (y1 and z1) can be the same for the two data streams.
We then equidistantly extract new data points with spatial or
temporal distance, da and db or T , respectively, to cover the
data as broadly as possible. This sampling strategy results in
a grid for images. For time series, the distance between two
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Fig. 3. Illustration of our sampling strategy for the kernel two-sample test in the (a) spatial, (b) temporal and (c) spectral domains. While the sampling
occurs in an equidistant fashion for the image and temporal signal values, a uniformly distributed random, unique sampling scheme finds use in the frequency
domain. We extract spectral magnitudes at the same frequency locations for the two signals being compared. The kernel two-sample test embeds the extracted
sample points with their underlying distribution into a high-dimensional space of inner products, the RKHS. The MMD metric ensures maximization of the
distinguishability of the two distributions in an automated fashion.

sequential data points should be greater than or equal to T ∗

in order to avoid autocorrelations.
For time series with high-frequency characteristics, we per-

form the random sampling scheme in the frequency domain
(Fig. 3(c)). This approach is well-suited for data with
class-specific frequency spectra that will differ quantitatively
in a classification context. For example, accelerometer read-
ings from tool-surface interaction exhibit texture-specific spec-
tral characteristics [17], [46]. We convert the signal streams
into the frequency domain by means of the discrete Fourier
transform (DFT). We then randomly extract a set of absolute
spectral magnitudes at the same, unique frequency locations
for both signal streams. Thus, we obtain a direct comparison
of the presence of these frequencies in both datasets.

The computational complexity of the kernel two-sample
test nonlinearly increases with the number of extracted data
points n and m in Eq. (3). To reduce the computation time
while maintaining a high classification accuracy, we repeatedly
execute the MMD test with a reduced number for n and m.
The input data points across repetitions of the MMD test can
differ in initial sample and/or inter-sample spacing. Due to
the law of large numbers, the average of the individual MMD
estimates converges to the actual MMD. Thus, we can process

data more efficiently, which leads to a higher accuracy for our
use case.

D. Compensation for User Differences

Sensor measurements can vary significantly across different
humans for the same task. This user variability is for instance
observed in tool-surface vibrations [46] and cutaneous sliding
friction forces from simple textured surfaces [47]. Causes of
such cross-user differences can include the scanning speed,
applied touch force, and the orientation of the sensing tool
relative to the surface. It is difficult to mitigate cross-user
effects in signals such as contact forces for user-invariant
pattern analysis even with a controlled measurement protocol,
advanced signal-processing [47], and higher-order nonlinear
techniques [43].

To illustrate that our approach for surface classification
generalizes to many users, we need to mitigate the effect
of the human. We pursue a holistic, statistical approach to
compensate for individual differences; this approach is par-
ticularly advantageous when a dataset lacks relevant causal
interaction parameters to model user differences. In order to
standardize data between different users for the kernel two-
sample test, we shift the mean z of the extracted data points
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z = [z1, . . . , zm] from the unlabeled data stream Zq
s

z∗ = z + (y − z) · e (10)

to the mean y of [y1, . . . , yn] from data stream Y q
s in the

library using an all-ones vector e. The idea behind this
cross-user compensation trick is that the effect of certain
interaction parameters and ambient factors are essentially
concentrated in the distribution mean and not in high-order
moments, which ideally also contain information about surface
properties.

As the user greatly influences contact-based measurements
through their motion and other dynamical factors, we apply
the cross-user compensation to all information sources that are
sensitive to these dynamical user effects. For instance, changes
in interaction parameters such as applied force or scanning
speed between users might cause different friction force levels
or vibrational spectral energy. Depending on the sampling
domain, this shift operation standardizes the temporal signal
mean or its spectral energy between data distributions from
two users. As a result of the mean-aligned distributions, the
data stream comparison focuses only on the higher-order
statistical moments.

E. Multi-Source Classification

Accommodating data from heterogeneous information
sources for a collective classification decision is not straight-
forward and can be tedious to implement. Due to the transla-
tion invariance of the kernel and our median heuristic choice of
the hyperparameter σ , the MMD test automatically deals with
many preprocessing steps that would otherwise be required.
However, the MMD can deviate across information sources
due to varying magnitudes in different dimensions and data
streams. Therefore, the method of unifying MMD scores
from individual information sources to an overall classification
decision is critical.

In addition to averaging MMDs from repeated tests for the
same comparison, we separately compute the MMD within
each information source and combine the source-specific val-
ues into a global score. Based on the MMD estimator in
Eq. (3), we define the global discrepancy score

DS[Y q , Zq
] =

S∏
s=1

(
MMD2

b[PY q
s
, PZq

s
]
)ws (11)

between two trials, Y q and Zq . This formulation is analo-
gous to a weighted geometric mean or the arithmetic mean
of individual logarithm-transformed values. This log-average
operator fosters MMD scale-invariance across information
sources. All individual MMD scores within each information
source can have a weight ws ∈ R+ for the overall classification
decision of an unlabeled surface. While the weights ws allow
one to consider some information sources more strongly than
others, one may also choose unit weights for all MMD scores,
as we show in the experiments.

F. k-Nearest-Neighbor Classification Decision

The discriminator of our recognition framework makes the
classification prediction based on the concept of k-nearest

neighbors (k-NN) from global DS scores in Eq. (11). We are
able to predict the identity of the unlabeled surface by means
of the highest probabilistic agreement with a surface in the
library. The unlabeled surface trial Zq will be classified to the
class c in the library with C surfaces according to

min
c∈C

DS[Y q(c), Zq
]; (12)

it matches to the trial pair for which the global DS is smallest,
i.e., the nearest neighbor (1-NN). In general, the classification
decision could also be inferred from more nearest neighbors,
which would require k to be chosen during training.

V. EXPERIMENTS

To show the efficiency of our recognition framework,
we benchmark our algorithm against state-of-the-art classifiers
on the open surface dataset by Strese et al. [12] from the
Lehrstuhl für Medientechnik (LMT) of TU Munich, Germany.
We demonstrate that our statistical approach automatically
captures the most salient surface properties in the data without
the need to learn surface classes, outperforming other classi-
fiers with expertly crafted features.

A. Multimodal Surface Dataset

The LMT108 dataset includes multimodal measurements
from 108 surface textures (Fig. 4), which were acquired with
a handheld sensorized stylus that has a stainless steel tool-
tip [12]. Each of the 108 surfaces belongs to one of the
nine material categories: (M) meshes, (S) stones, (G) met-
als/glasses/ceramics, (W) woods, (R) rubbers, (C) carpets, (F)
foams, (P) plastics/papers, and (T) textiles/fabrics. The number
of surfaces in each category varies from five to seventeen. Each
recorded surface trial consists of nine information sources:
two images (with and without flash); sound and acceleration
from tapping action; sound, acceleration, frictional forces,
IR surface reflectance, and metal detection during dragging
of the tool. These information sources stem from six sensors:
a camera (ca), a microphone (mi), accelerometer (ac), two
force-sensing resistors (fr), an IR surface reflectance sensor
(ir), and a metal detection sensor (me). All data streams apart
from the images are a function of time. For each trial, the
information sources from tool dragging cover 4.8 seconds
of data without abrupt transient movements. The accelera-
tions and images each have three channels (axes and colors,
respectively), and the forces have two channels. The remaining
information sources are all one-dimensional. Both expert and
user sets include ten trials per surface (2160 in total), but they
differ in the number of humans (one expert vs. ten users) who
acquired the data. The expert considered different motions,
scan velocities, and forces to ensure intra-class variance for
each surface. The ten other users moved the stylus freely
without any prescribed motion.

We note that we could not consider the acceleration taps
from the LMT108 dataset because they are not available for the
ten users; the online archive contains repeated data from the
expert, and the original trials are lost. Thus, we use only eight
instead of the nine original information sources; see the sample
data in Fig. 5. Acceleration transients from tapping convey

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



KHOJASTEH et al.: MULTIMODAL MULTI-USER SURFACE RECOGNITION WITH THE KERNEL TWO-SAMPLE TEST 9

Fig. 4. The online LMT108 dataset [12] covers 108 surfaces from nine material categories: (M) thirteen meshes, (S) nine stones, (G) nine glossy materials,
(W) thirteen wooden materials, (R) five rubbers, (C) fifteen carpets, (F) twelve foams, (P) fifteen plastics and papers, and (T) seventeen textiles and fabrics.

Fig. 5. The eight information sources of a user trial (testing phase)
for a leather surface from the LMT108 dataset [12]. The measurements
originate from a camera (ca), a microphone (mi), an accelerometer (ac), two
force-sensing resistors (fr), an IR reflectance sensor (ir), and a metal detection
sensor (me).

rich and descriptive information about the surface and would
likely help the classification. Qualitative comparisons are still
possible despite this mismatch in the number of considered
information sources.

B. Data Preprocessing

Our recognition framework (Fig. 2) uses all sensor channels
of the eight information sources for each LMT108 surface.
We represent the three-channel images in hue, saturation and
value (HSV) color code. The equidistant sampling scheme
is used for data streams with a meaningful DC compo-
nent, i.e., the images, forces, IR reflectance, and metal
scans. The remaining three information sources (mi1, mi2,
ac) represent contact vibrations with distinct AC waveforms,
and thus we perform sampling randomly in the frequency
domain. For these spectral auditory and haptic vibrations,

we adopt the same frequency ranges (up to 7500 Hz and
1000 Hz respectively) in our algorithm as the authors of the
LMT108 dataset [6], [12]. Our criterion-based choice of the
sampling domain (time vs. frequency) for time-series data
matches the domains of the expertly crafted features in the
original work [6], [12]. Further, the cross-user compensa-
tion in Eq. (10) is applied to all information sources that
are significantly affected by one or more of the following:
scanning speed, applied force, tool dynamics, or session-
dependent effects such as ambient noise. For the LMT108
dataset, we apply the cross-user trick to five information
sources: mi1, mi2, ac, fr, ir.

C. MMD Test Setting

The number of data stream points varies across the eight
information sources due to measurement duration, sampling
rate, data dimensionality and time- or frequency-domain rep-
resentation. Regardless of the different sizes, we sample n =
m = 400 points from every data channel in each information
source in the course of an individual MMD computation. This
extracted portion of data corresponds to approximately 0.3%
of each image, 0.8% of the temporal force/reflectance/metal
signals, 0.9% of the dragging sound and 14.4% of the tapping
sound (44.1 kHz), and 6.1% of the dragging acceleration
(10 kHz). We also repeatedly (R = 10) perform the kernel
two-sample test for all surface trial comparisons for each
information source and average the R MMD scores. For the
five information sources with the equidistant sampling scheme,
the data points from the initial image area or time window (for
the randomly selected first data point) do not exceed 1.15%
of the total number of corresponding data stream points.

To cover the data broadly with the prescribed number of
data points n and m for each MMD test, the equidistant
sampling strategy results in distances T = 11.8 ms for the
three time-series sources (fr, ir, me) and da = 17 pixels
and db = 18 pixels for both images (480 × 320 pixels).
However, the sample time distance T does not fulfill the
mixing requirements for all force and IR reflectance surface
signals; the metal signals mostly have one signal value and
therefore are not suitable for calculating HSIC. To fulfill the
theoretical guarantees for vanishing autocorrelation times for
all surfaces in both of these information sources, either a
drastic increase in T (decrease in the number of samples
taken) or a measurement duration much longer than 4.8 sec-
onds would be required. Longer time-series measurements
would help to reduce inherent autocorrelations and most likely
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increase classification accuracy. Here, we nonetheless stick
to 400 samples per channel to treat all information sources
equivalently. Despite the mismatch of theoretically optimal
and practically chosen T , the empirical results will show the
efficacy of our approach.

The temporal metal detector reading is binary, i.e., instan-
taneous detection of conductive material in the surface. The
LMT108 dataset contains twelve metallic surfaces. We would
generally refrain from the use of the MMD test for binary data
streams and simply focus on low-order statistical moments,
e.g., the signal mean, as previously considered as a classi-
fication feature [12]. However, in order to treat all informa-
tion sources equally for a consistent algorithm architecture,
we apply the kernel two-sample test to the metal detection
readings as well. Therefore, we set the kernel length scale
σ = 1 whenever identical-value data would cause σ = 0 with
the heuristic in Eq. (6). We further add a constant value of one
to all MMD scores of the metal information source, so that
MMDme

̸= 0 ensures no information losses with geometric
means in Eq. (11). We refrain from applying the cross-user
compensation on the metal detection measurements because
aligning the distribution mean would remove the information
about material conductivity.

As mentioned before, the weighted geometric mean frame-
work in Eq. (11) enables different influence strengths to be
assigned to information sources in a single MMD score for the
overall classification decision. However, here we do not tune a
model in training, and we thus simply weight all information
sources equally, i.e., ws = w = 1.

D. Ablation Studies

To demonstrate the functionality our proposed pipeline,
we evaluate key aspects of our classifier through ablation stud-
ies. We separately remove the following three components of
our recognition pipeline (Fig. 2): the RGB-to-HSV conversion
for images, the DFT time-to-frequency-domain conversion for
high-frequency vibrations, and the cross-user compensation
for the five selected time-series sources. Therefore, standard
RGB images are considered in the HSV ablation study, and
the vibration signals (mi1, mi2, ac) undergo an equidistant
temporal instead of a spectral sampling procedure in the DFT
ablation study. Our reproducible code ensures sampling of the
same data points with and without a given functionality, so that
its pure effect can be observed. For deeper insight, we assess
the classifier performance with full multimodal information as
well as with individual information sources in the presence
or absence of a functionality. In addition, we perform another
train-test split by conducting surface recognition based on only
the expert trials (1 expert vs. 1 expert) to primarily elucidate
the effectiveness of the cross-user compensation. For more
insight, we report the performance in this only-expert-trials
classification scenario for the other two ablation studies as
well. The 1 vs. 1 data partition results in a simpler classifica-
tion task due to smaller signal variance from only one human
and therefore (near-)perfect recognition rates with multimodal
information. Thus, we report the classifier performance only
with single information sources.

E. Comparison Methods
The following briefly describes the six previously published

classifiers to which we compare our approach. These all use
expertly crafted features and are widely used for surface
classification; see [48] and [49] for details.

Naive Bayes classifiers are a set of probabilistic classifiers
that assume strong independence between features. If the
independence assumption holds, this algorithm performs well
with less training data compared to other machine-learning
models. This classifier will choose the class with highest
probability of joint likelihood between the given observa-
tion and the class occurrence. Gaussian Naive Bayes models
further assume that the joint likelihood follows a normal
distribution.

The SVM classifier is a discriminative model that learns a
decision function from a training set to assign inputs to classes.
The training phase can include a map to a higher-dimensional
space, for instance through the kernel trick in Eq. (1),
to maximize the gap between two classes and accommodate a
non-linear decision boundary. A multiclass SVM uses multiple
binary classifications to make an overall class prediction. The
main difference to our approach is that single data points
instead of whole distributions are mapped into RKHS.

Given a data point in the test set, the non-parametric
k-NN algorithm considers the feature distance to the k-nearest
neighbors in the training set for a plurality vote to output
a prediction. k-NN classifiers can differ in the metric used
(e.g., Euclidean or Mahalanobis distance) and in the weighting
scheme for the nearest neighbors. The classical k-NN and our
approach both make a prediction based on the nearest-neighbor
concept between training and testing sets; however, k-NN
considers distances between explicit features in contrast to our
approach of quantifying distribution differences directly from
the input data.

Ensemble classifiers adopt the basic concept of decision
trees and combine multiple classifiers for the overall pre-
diction, i.e., differing classifiers or the same classifier with
different configurations. This algorithm category considers
a set of features and instances from the feature space and
duplicates or weights the instances for the final majority voting
of individual classifiers. This operation of altering the input
feature space before training, also called bootstrap aggregating,
fosters classifier robustness.

Random Forests fall into the category of ensemble methods
and use bootstrapped feature spaces. In this process, a reduced
set of features is randomly selected for training each decision
tree. For a test instance, a majority voting scheme of all tree
predictions determines the final decision. As such classifiers
require rigorous training, they are computationally expensive
for large datasets.

Another popular ensemble classifier is adaptive boosting or
AdaBoost; it uses many decision trees that split on a single
feature. In training, each new tree is constructed by taking the
errors of the previous tree into account to reduce remaining
misclassified observations. In contrast to unit tree weights for
random forests, AdaBoost trees with fewer errors will receive
a higher final voting power, so that multiple weak classifiers
can result in a better overall classifier.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



KHOJASTEH et al.: MULTIMODAL MULTI-USER SURFACE RECOGNITION WITH THE KERNEL TWO-SAMPLE TEST 11

F. Performance Metrics

Strese et al. [6], [12] used 10-fold cross validation (each
fold: 1 expert + 9 users vs. 1 user) with the aforementioned
baseline classifiers on the LMT108 dataset. In contrast, our
recognition pipeline considers only the expert trials (half
of the LMT108 data) for the library in the training phase,
and thus addresses a substantially more difficult classifica-
tion setting (1 expert vs. 10 users). The latest publication
of Strese et al. [6] evaluated LMT108 classifier performance
through the mean and standard deviation of the 10-fold clas-
sification accuracy. In the previous publication [12] also by
Strese et al., a Euclidean-based k-NN classifier was evaluated
by means of the classification precision. We adopt the same
two performance metrics for the LMT108 surface-recognition
task to allow direct comparisons.

The classification accuracy for class c is

Accuracy(c) =
TP(c)+ TN(c)

TP(c)+ TN(c)+ FP(c)+ FN(c)
, (13)

with true positives and negatives, TP(c) and TN(c), and false
positives and negatives, FP(c) and FN(c). We compute the
classification accuracy of ten user-specific folds (each test set
has 108 trials) and calculate their mean and standard deviation
for the overall accuracy. Further, the classification precision of
a surface class c is given by

Precision(c) =
TP(c)

TP(c)+ FP(c)
. (14)

The class precision represents the ratio of correct predictions
out of all predictions for class c. We obtain the overall
precision by averaging all class-specific values.

G. Results and Discussion

As shown in Table I, we achieve an accuracy of 97.2% for
108 surface classes with our full classifier, outperforming the
next best model (Random Forests) by 6% despite using one
less information source. We also achieve a mean classification
precision of 98% for all 108 surfaces, which is 12% higher
than the Euclidean-based k-NN classifier [12]. Thus, our clas-
sifier has very high positive predictive power. These two key
results demonstrate that surface classification is more efficient
with our automated approach of detecting maximal distribution
differences than all previously developed classifiers that use
features based on expert knowledge.

1) Efficient Surface Classification With Images: With regard
to the unimodal surface-classification performance shown
in Table I, the visual modality (two three-channel images,
ca1+ca2) is very efficient. With only two images, we almost
reach the classification accuracy of the multimodal Gaussian
Naive Bayes classifier with all data streams. Considering
RGB instead of HSV images for the color ablation study
results in slightly lower recognition accuracy (95.8%± 2.7%)
compared to our full classifier, showing that our approach is
only slightly harmed by this change. However, HSV images
perform significantly better in single-image classification than
their RBG representation in both train-test splits and with and
without cross-user compensation (Table II, conditions from
our main results typeset in italics, improvements highlighted

TABLE I
ACCURACY (MEAN ± STANDARD DEVIATION) AND PRECISION FOR
EXPERTLY CRAFTED CLASSIFIERS COMPARED TO VARIATIONS OF

OUR APPROACH WITH S INFORMATION SOURCES
ON THE LMT108 DATASET

by transition from red to green). We believe HSV matters more
for single-modality classification because this color space
encapsulates meaningful surface information in separate data
channels. The decreased sensitivity to image lighting variations
that HSV affords enables more robust image classification.
We further observe a superior performance of the standard
images (ca1) over the flash images (ca2) in both color spaces,
both train-test splits, and with and without user compensation
(Table II). In general, the flash of the camera can reveal useful
information regarding surface reflectivity. However, because
they contain both under- and over-exposed regions, the flash
images are more similar to one another than the surface images
taken without flash, complicating surface recognition. More-
over, single-channel recognition with regular HSV images
(ca1) shows that image hue (42.2%) and saturation (34.2%) are
more informative than brightness value (26.8%). This effect is
no longer significant with flash images (H: 18.8%, S: 18.2%,
V: 16.9%) as this lighting condition balances the descriptive
information across the three image channels.

2) Temporal and Spectral Time-Series Sampling: The DFT
ablation study shows that our full classifier performs only
slightly worse (95.2%±3.3%) when using temporal sampling
for the high-frequency vibration sources (Table I). The abla-
tion studies with individual sources reveal that our preferred
criterion-based domain for sampling tends to perform better
for most information sources in both train-test splits and both
user compensation settings (Table II). The results from the
spectral-domain sampling are based on the adopted frequency
ranges, i.e., 0 − 7500 Hz for the auditory signals (mi1, mi2)
and 0− 1000 Hz for the remaining time series (ac, fr, ir, me).
A systematic sensitivity analysis for the considered frequency
range of each time series may further improve the current
recognition results. If we perform MMD tests on data from
both the time- and frequency-domains for the same training
data, we obtain a slightly higher recognition accuracy of
98.2%±1.7%. Then, we have twelve instead of six time-series
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TABLE II
CLASSIFICATION ACCURACY OF ABLATION STUDIES FOR

INDIVIDUAL INFORMATION SOURCES FOR TWO
TRAIN-TEST SPLITS WITH IMPROVEMENTS

HIGHLIGHTED BY TRANSITIONS
FROM RED TO GREEN

sources and perform the cross-user trick for the same five
information sources in both the temporal and spectral domains.
As this performance improvement entails twice as many kernel
evaluations for the time series, we conclude that a single
criterion-based domain for sampling is already very efficient.

3) Sources of Cross-User Fluctuations: With regard to the
effect of the user on classification accuracy, our algorithm
has a larger variability of user-specific mean accuracies than
the previously published machine-learning classifiers. In our
optimal setting (S = 8), the accuracy of the testing set of
each user ranges from 92% to 99% (for seven users ≥ 97%).
This larger variance stems from our choice to include only
the expert data instead of additional data from the other nine
users for the library in cross-validation. These fluctuations
originate from session-dependent (e.g, ambient noise) and
user-dependent (e.g., motion and tapping strength) effects
that diversify the surface data, so that prediction is more
difficult for unseen data from training with fewer humans.
The haptic and auditory modalities exhibit particularly high
user variance. The larger variance of auditory over hap-
tic information sources may arise from the fact that audio

signals are more prone to ambient noise than haptic data,
which can also have characteristic low-frequency components.
We confirm our hypothesis about the source of fluctuations
by adopting the same train-test split (1 expert + 9 users vs.
1 user) as the baseline with their cross-validation approach (no
cross-user trick). This simpler classification problem results
in a very high accuracy (99.1% ± 0.9%) with similar user
variance compared to the baselines. This remains a cross-user
train-test setting, and adding our cross-user compensation to
the same five information sources increases the performance
(99.4% ± 0.8%). In summary, classification performance and
robustness can benefit from a larger library with data from
more users, albeit at a higher computational cost. Nevertheless,
these results also confirm that our cross-user compensation
strategy is very efficient with a data library gathered by only
one expert.

4) Efficient Cross-User Compensation: The cross-user-
compensation ablation study (Table I) shows that removing our
cross-user trick reduces the mean accuracy of our proposed
full classifier by almost 9% (to 88.8%) and also increases
the standard deviation across users by 4.6% (to 6.6%).
In general, kernel two-sample testing benefits from using
all statistical moments of the two distributions to compare.
However, aligning the mean of the distributions significantly
boosts surface-recognition performance and make it more
robust across users. We believe this cross-user trick works
well because session- and user-dependent effects are concen-
trated in the mean of the extracted distributions, whereas the
higher-order statistical moments mainly convey discriminative
surface information. From the ablation studies with individual
information sources (Table II), we report better performance
outcomes for all vibrations when incorporating the cross-user
trick with spectral sampling in the 1 vs. 10 setting. The effect
of the cross-user trick in combination with temporal sampling
for the vibrations (mi1, mi2, ac) and infrared reflectivity sig-
nals (ir) is less striking. In contrast, classification performance
with temporal sampling of frictional forces (fr) benefits by 6%
when the cross-user trick is applied.

For the two images, applying the cross-user trick does
not greatly degrade recognition performance. This might
be because the smartphone camera system used to cap-
ture these images automatically reduces certain user- and
session-dependent image effects in hardware and software.
Nevertheless, we obtain a high classification accuracy of
96.9% ± 2.5% when we apply the cross-user trick to the
two images as well as the five time-series sources. While
the proposed compensation trick is mainly intended for cross-
user classification, using the trick in expert-trial classification
(1 vs. 1) drastically reduces the recognition rate for the three
information sources of ac (spectral), fr, and ir (Table II). Here,
the MMD test considers one statistical moment less to quantify
distribution differences in the data. Therefore, missing infor-
mation about surface identity in the course of the alignment of
these distribution means outweighs surface-confusing effects
for the expert trials. In contrast, we observe an improvement
in the expert-trial classification for two information sources of
mi1 and ac (temporal) when applying the cross-user trick. The
tapping sound (mi1) is the only source for which expert-trial
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Fig. 6. Prediction results of our approach: (a) Relative and absolute statistics of the classification accuracy and (b) corresponding confusion matrix with all
eight information sources (S = 8) for 108 surface classes (C = 108). For better illustration of similar texture types, we present the results of the 108 surfaces
grouped by the previously used material taxonomy. (c) Classification accuracy for individual information sources and for their pairwise combinations. The
surface image and contact-elicited dragging acceleration (boxed) provide complementary and robust sources for surface recognition.

classification has a much lower recognition rate than the 1 vs.
10 train-test split. This suggests that the ten tapping trials
of the expert greatly differ, which confuses our single-source
classifier in the 1 vs. 1 setting. At the same time, this diverse
tapping set significantly helps other information sources in
cross-user recognition, as shown in Fig. 6(c).

5) Missing Acceleration Tap Data: We could not consider
the missing acceleration taps for our classifier, which prevents
a perfect comparison with the performance of previously
published methods. Tapping is an exploratory procedure that
greatly aids surface identification for humans [50]. In dual-
source classification, the tapping sounds, with the aforemen-
tioned diverse expert trials, lift the recognition accuracy of
the other source by 21% to 50% (Fig. 6(c)). As all the
tapping sounds and accelerations are from the same training or
testing interactions, our classifier would likely benefit from the
missing acceleration source in the testing phase. This benefit
is expected because the additional acceleration data represents
new transient information of the tool-surface interaction and
because the MMD efficiently discriminates (new) data dif-
ferences. Even if the lost acceleration taps would degrade
the performance of our multimodal classifier, its transparent
architecture would effortlessly reveal this trend; in contrast to
several machine- and deep-learning models, no retraining with
another set of information sources would be necessary.

6) Binary Metal Signals: We apply the kernel two-sample
test to the binary metal recordings to have a uniform simple
algorithm architecture for all information sources. Considering
only one of two subgroups (conductive material or not) in the
data library based on the given metal detection reading would
facilitate the recognition task and reduce the computational
cost of our algorithm. Further, we shifted all MMD scores of
this information source to avoid MMD = 0 in the geometric
mean framework. Shifting all MMD scores to have positive
values also matters when not all decision power should be
given to a single information source, for examples in safety-
critical applications.

7) Texture-Specific Insights: We can further investigate the
performance of our optimal classification setting (S = 8).
We classify all 360 test instances of the four harder sur-
face categories (meshes, stones, glossy materials and rubbers)

correctly, and only (2/130) intra-category confusions occur
for wooden materials (Fig. 6(a) and (b)). Such hard surface
textures amplify contact-elicited signals and therefore convey
richer, more distinctive information. Of our few critical mis-
classifications (30/1080), ten surface interactions are mistaken
as a carpet or foam material. The correct surface was among
the top candidates in most of these misclassifications, hinting
that one could also consider the k > 1 nearest neighbors.
Glitter paper is a frequent false positive candidate (8 times);
the abrupt stick-slip motions on such a texture may cause
atypical irregularly spread contact signals that confuse the
classifier.

8) Complementary Surface Information: The classification
performance of pairwise information sources (Fig. 6(c)) illus-
trates the superior classification accuracy (87.9%) of an image
together with dragging acceleration signals. Intuitively, contact
and non-contact sensors may provide complementary infor-
mation about the surface. If these two sources (ca1+ac) turn
out to be expressive in a recognition pipeline in the long
run, the source weighting for the overall decision can be
adjusted easily. For instance, we can reach the mean accuracy
of 98.6% ± 1.2% for the LMT108 surface set by increasing
the weights (wca1 = wac = 3) of only these two information
sources through Eq. (11).

9) Difficulty of Multi-User Surface Classification: To the
best of our knowledge, there exists no deep-learning algorithm
trained for surface classification on the whole LMT108 dataset
or any other multi-user surface dataset. The existing refer-
ences [6], [9], and [30] all consider data from only one
human, and therefore they cannot be compared with our
multi-user surface-recognition task, which we believe is more
relevant for practical use. In this context, we show through our
ablation studies how a simple shift of a distribution mean can
effectively compensate for spurious effects in time-series data
and increase performance in a setting with limited training
data captured by one human.

To get a sense of how our classifier performs compared to
the most similar deep-learning references, we can see that our
image plus tactile (ca1+ac) classifier achieves very high per-
formance (97.1%±1.2%) in the 1 vs. 1 setting on the LMT108
dataset; this performance is comparable to a deep-learning
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classifier [9] with image and acceleration input from 69 sur-
faces captured by one expert (part of the LMT69 dataset).
Note that we did not apply cross-user compensation to obtain
these results given the findings of the relevant ablation study.
Reporting multimodal surface-recognition performance with
an extensive training set (e.g., through standard cross valida-
tion) may also facilitate future comparisons with deep-learning
networks. Thus, we report an accuracy of 88.9%± 3.7% with
only standard images and 96.5%±1.4% with image plus tactile
(ca1+ac) input for the 10 vs. 1 setting of the LMT108 dataset.
In this multi-user setting, we applied the cross-user trick only
to the dragging acceleration signals. Overall, our approach
requires less data and exhibits higher interpretability as well
as much simpler training efforts compared to deep-learning
classifiers.

10) Kernel Choice: The squared exponential kernel is a
popular choice with well-established hyperparameter heuristics
that beneficially do not require further kernel tuning. This
kernel function performs well on the LMT108 surface images
and time series. We did not systematically investigate other
kernels but tried a few other choices early in our investigations.
For instance, the Laplace kernel together with the median
heuristics seemed to result in similar recognition performance
for several information sources. However, some other kernels
require non-trivial hyperparameter optimization, which we
want to avoid here, so we adopted the standard implementation
of Gretton et al. [10].

VI. CONCLUSION

Automated solutions are gaining popularity in big-data
initiatives and are particularly relevant for emerging fields such
as surface and object recognition. Machine learning and deep
learning have been extensively used for classification tasks, but
they require expert knowledge, heuristics, and/or feature engi-
neering. To circumvent these processes, we have developed
an automated classification framework that examines images
together with time series using the kernel two-sample test.
This easily implementable approach is based on the principle
of comparing data in the space of probability distributions
and automatically quantifying descriptive differences. Our
comprehensible, coherent algorithm architecture unlocks an
elegant way to identify what sensor information improves
classification performance. We demonstrate for the task of sur-
face recognition with 108 classes that our approach achieves
6% higher accuracy than competitive multimodal baseline
classifiers with expertly engineered features. We achieve this
performance with fewer sensor measurements, less training
data, and little data processing in our standard algorithm
setting.We also discuss how to further boost the recognition
performance of our multimodal classifier, which practitioners
can adopt and tune (e.g., kernel, source weights) for their use
case. New surface-interaction data captured with a more pre-
cise sensing system or with additional measurements (e.g., tool
speed, tool angle) could provide additional insights for surface
classification. Compact, representative intra-class sets in the
training library would leverage scalability. Future work could
also include applying modified versions of the MMD metric
to improve test power and computational cost. In addition,
it would be of great interest to obtain comparable performance

Fig. 7. HSIC (R = 500, α = 0.05, t1,max = 1 s) as a function of time for
measured IR light reflectance on (a) an aluminum mesh and (b) EPDM foam
(from LMT108 training data [12]). The mixing of IR sensor samples occurs
roughly 15 times faster for the metal mesh compared to the flat absorbing
foam surface.

with fewer information sources and sparse training data to
contrast with the requirements of existing deep-learning net-
works; this goal may necessitate more effort in the training
phase. We also envision using this approach for other learning
tasks such as clustering.

APPENDIX A
SOFTWARE IMPLEMENTATIONS

We test the LMT108 surface dataset (1) with our
open-source classification pipeline (4), using unmodified
implementations of the standard kernel two-sample test
(2) and HSIC (3). For the reproducibility of our results, our
open-source code includes a default setting for the random
number generator. The links to the original sources are as
follows:
(1): https://zeus.lmt.ei.tum.de/downloads/texture
(2): http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm
(3): http://people.kyb.tuebingen.mpg.de/arthur/indep.htm
(4): https://doi.org/10.5281/zenodo.8077639

APPENDIX B
MIXING PROPERTIES OF SURFACE SIGNALS

The vanishing autocorrelation time T ∗ ensures almost inde-
pendent time-series samples for the kernel two-sample test.
Additionally, it also has a physical interpretation and yields
insight into certain system properties.

In the case of surface signals, these mixing properties
express how rich different trials from interactions with a
particular surface c are for a given information source s. For
example, time-series measurements from an IR reflectance
sensor provide interesting HSIC results on two different sur-
faces (Fig. 7). While the aluminum mesh surface requires only
about 5 ms between samples for new uncorrelated information,
the mixing for the foam surface is roughly 15 times slower.
The three-dimensional porous mesh surface yields a rich
signal, while the flat black foam surface greatly absorbs the
IR signal and exhibits low signal richness.

On a broader scale, these surface-specific mixing properties
provide a time-efficient guideline for acquiring new mea-
surements for a given information source. The measurement
time can be individually adjusted for each surface to avoid
autocorrelations and obtain rich independent data.
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