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Abstract— Hydrogen is a promising energy vector for achiev-
ing renewable integration into the grid, thus fostering the
decarbonization of the energy sector. This paper presents the
control platform architecture of a real hydrogen-based energy
production, storage, and re-electrification system (HESS) paired
to a wind farm located in north Norway and connected to the
main grid. The HESS consists of an electrolyser, a hydrogen tank,
and a fuel cell. The control platform includes the management
software, the control algorithms, and the automation technologies
operating the HESS in order to address the three use cases
(electricity storage, mini-grid, and fuel production) identified in
the IEA-HIA Task24 final report, that promote the integration
of wind energy into the main grid. The control algorithms have
been already developed by the same authors in other papers
using mixed-logical dynamical modeling, and implemented via a
two-layer model predictive control scheme for each use case,
and are quickly introduced in order to make evident their
integration into the presented architecture. Simulation test runs
with real equipment data, wind generation, load profiles, and
market prices are also reported so as to highlight the control
platform performances.

Note to Practitioners—The paper develops the integration
between the management platform of a HESS, paired to a real
wind farm in northern Norway, and the control algorithms aimed
at scheduling hydrogen production and re-electrification on the
basis of several forecast streams about exogenous conditions and
different possible operating modes of the wind-hydrogen system.
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The control algorithms address the three use cases identified
by the IEA-HIA in the final report of Task 24 about the
integration of wind energy into the grid, namely i) electricity
storage, where the HESS is operated in order to enable the
wind farm to power smoothing; ii) mini-grid, where the wind
farm and the HESS form a mini-grid with a local load (small
town) and the HESS is therefore operated in order to fulfill it
without and with grid support (in this case buying and selling
electricity to the market is also handled); and iii) fuel production,
where the HESS is operated in order to fulfill a hydrogen
demand (e.g., due to fuel cell vehicles). In addition to the specific
objectives of each use case, the developed control algorithms
also optimize the HESS operating costs and typically address
two time-scale behaviors to appropriately handle corresponding
long and short terms dynamics. The management platform of
the HESS is arranged in three layers (physical, control, and
supervision layers), and located in the cloud. The physical layer
targets the physical components, sensors, and actuators. The
automation layer includes all local controllers and modules used
for measurement, and several servers for interactions between
the higher and lower layers of the control architecture and
databases. In the supervision layer, the execution of control
algorithms and clients for remote diagnoses, monitoring, and
top-management activities are located. Since each layer performs
specific functionalities, a multi-tier architecture is implemented
and the communications among the layers occur through services
and microservices.

Index Terms— Energy management systems (EMSs), hydrogen
storage, control architecture, wind energy integration, model
predictive control (MPC), mixed logic dynamic.

NOMENCLATURE
Parameters

cOM
i Operating and maintenance cost of

device i [e/h].
crep

i Replacement cost of device i [e/h].
H/M Prediction horizon for high/low-level

control [h/min].
Hd Hydrogen demand requested by external

consumers [kg].
H max/H min Maximum/minimum hydrogen stored

in storage tank [kg].
M̄ i/m̄i Upper/lower bound of Pi [kW].
NHi Life-cycles of device i [h].
NYi Number of working hour per year of

device i [h].
PCLD

i Cold starts power of device i [kW].
Pmax

i /Pmin
i Maximum/minimum power of device i [kW].
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PSTB
i Standby power of device i [kW].

PWRM
i Warm starts power of device i [kW].

P s
l,ref Electric demand [kW].

P s
g,ref Grid operator reference signal [kW].

Ri Ramp up limits of device i [kW/h].
T h

s /T m
s Sampling time for high/low-level control [h].

ηe Efficiency of electrolyser [kg/kWh].
η f Efficiency of fuel cell [kWh/kg].
ρ Penalty weighting factor.

Decision and logical variables

LOHs Level of hydrogen in the tank [kg].
LOHexc Level of hydrogen dispatched to external

consumers [kg].
P s

avl Available system power [kW].
P s

e Electrolyser input power [kW].
P s

f Fuel cell output power [kW].
P s

g Grid power [kW].
zs

i , zs
sell, zs

pch Auxiliary variables for hiding a non-linearity
in the product of decision variables.

z≥γ

i , z≤γ̄
i Auxiliary variable for linking the discrete

logical states of device i with the correspond-
ing operating powers.

δα
i Logical variable linked to the i-th device’s

state α.
σ

β

α,i State transition from state α to state β

of device i .

Notations
∧ Logical operator AND.
s Particular level control.
α, β Logical states.
γ, γ̄ Power values corresponding to logical states.

I. INTRODUCTION

WIND power has shown a viable option for the decar-
bonization of the energy sector; however, a large-scale

integration into the grid is still challenging due to its vari-
ability and uncertainties, such as wind speed, direction, and
turbulence. This variability results in difficulties in maintain-
ing a stable and reliable supply of electricity to consumers.
The pairing of hydrogen-based energy production storage
systems (HESSs) can mitigate these aspects [1], [2]. Typical
HESSs consist of electrolysers, fuel cells, and storage tanks,
and require the development of control systems to address
multiple constraints, equipment limitations and degradations,
and their economical costs during operations.

In this research study, the control platform architecture of a
real wind farm paired to a HESS and located in north Norway
is presented. The HESS is operated such that the integrated
system (i.e., the wind farm with the HESS) complies with the
three use cases, and corresponding operating modes, identified
by the IEA-HIA Task24 to promote wind energy integration
into the main grid [3]. The use cases are electricity storage,
mini-grid, and fuel production.

The electricity-storage use case considers the integrated
system connected to the main grid and committed to smooth

power injection into the grid so as to preserve stability and
reducing fluctuations [4]. Many power smoothing solutions
have been proposed in the literature over the last decade
to address this issue. For instance, power smoothing in
renewable energy plants has been addressed in [5] where
a combined receding horizon optimization policy for the
wind farm and HESS is proposed. In [6], a cooperative
control solves the problem of power fluctuations by using
a hybrid energy storage system based on predictive and
adaptive smoothing mechanisms. A multi-objective chance-
constrained optimal configuration scheme for battery energy
storage systems (BESSs) has been presented in [7] to maintain
both the uncertain power fluctuations and frequency deviation
within predefined limits. In [8], a BESS has been controlled
to reduce the cycles of battery charge/discharge, and then
increase its lifetime. A comparison between the different ESSs
has been provided in [9] and [10]. In [11], the models for
capturing the degradations due to power fluctuations have been
presented, neglecting the modeling of short-term hydrogen
devices features. The authors in [12] and [13] have proposed a
model predictive control (MPC) strategy of a wind-hydrogen
system in order to provide smooth power to the grid. Apart
from the papers above, to the best of the authors’ knowledge,
the authors seem not to address all (or several) of these aspects
in a unified way. Although the degradation issues have been
addressed, other aspects, such as the limited available working
cycles of the hydrogen devices, are not considered in the
controller. Starting from our previous results [12], [14], in this
paper we propose the integrated hardware (HW) and software
(SW) control architecture we designed for the Raggovidda
(Norway) wind farm, which implements the control algorithms
dealing with the three use cases mentioned before and briefly
detailed in what follows.

In the mini-grid use case, the integrated system establishes
a mini-grid with a local load, e.g., a small town, as it
happens in the target wind farm, which can be operated
either in islanded [15] or in connected mode with different
and peculiar objectives. In general, in this use case the
main purpose of hydrogen production is to store temporary
energy surpluses from renewable generation and to provide
demand-side management (DSM) for energy supply. In [16],
the economic scheduling of a network of microgrids for
energy market participation with hybrid-ESSs under fail-
ure conditions using MPC has been presented. An optimal
stochastic day-ahead energy market scheduling for the HESS
considering economic and environmental aspects has been
presented in [17]. An MPC has been developed in [18] to
optimize the economy and stability of islanded microgrids with
photovoltaic (PV). Moreover, an MPC technique for hybrid-
ESSs has been proposed in [19] to promote the autonomy
of the microgrid and achieve a rapid transition response.
In [20], [21] and [22], a coordinated MPC operation of a
grid-connected wind-solar microgrid paired with hybrid-ESSs
has been integrated in order to maximize revenue through
the electricity market and minimize the ESSs operating costs.
In [23], an MPC strategy has been implemented considering
the energy demand, operating costs, system performances,
and devices degradations. In [24], a robust optimal energy
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management system (EMS) of a residential microgrid con-
sidering uncertainties of forecast loads and renewable energy
sources (RESs) has been developed in order to minimize
the expected energy cost. In [25], a novel business model
for ESS capacity planning model under the joint capacity
and two electricity market regulations have been proposed
to minimize the total cost for power consumers based on a
fully parallel algorithm. In order to investigate the dynamic
performance of the EMS, the coordinated control between
two layers for the power-to-gas system-based microgrid has
been proposed in [26]. Another MPC strategy for the optimal
economic schedule and management of microgrids by consid-
ering economic and environmental aspects has been presented
in [5]. In the mentioned papers regarding the mini-grid use
case, neither the degradations are considered, nor the hydrogen
devices’ short-term features, i.e., the cold and warm starts, and
their standby consumptions, are taken into account. This is one
of the key aspects of our research study.

In the fuel production use case, the renewable generation is
directed toward the supply of fuel to vehicles, i.e., the energy
production by wind generation should be used only for hydro-
gen production by operating the electrolyser 100%. Despite
this, the mode would not require any management strategy,
and additional objectives, but with lower priority with respect
to the main one, should be actually addressed. For instance,
the problem of external electricity consumers, optimal electric
demand tracking, and participation to the electricity market via
hydrogen re-electrification can be still kept also in the case of
fuel production [27], [28]. A new supervisory-based model for
the optimal scheduling of distributed HESS fueling stations for
tracking the external consumers of hydrogen and electricity
has been provided in [29]. In [30], an optimal scheduling has
been designed for the energy management of a solar-hydrogen
microgrid which includes solar panels paired with a HESS and
integrated BESSs in order to satisfy electric and hydrogen
demands requested by the industrial hydrogen facility. The
authors in [31] have proposed a coordinated centralized MPC
of a wind-microgrid with electrical vehicle (EV) charging
considering the uncertainties of the wind power in order to
improve the balance between the EV charging load and the
local wind power supply of buildings. Moreover, in [32], a
control strategy is proposed for a grid-connected wind farm
paired to a HESS to both meet electric and contractual loads
and produce hydrogen as a fuel for fuel cell EVs (FCEVs).

Regarding similar control platform architecture, in the lit-
erature it is possible to find an overview of the novel control
strategies implemented for HESSs and BESSs integrated with
RESs. For instance, the authors in [33] have presented an
Internet of Things (IoT) platform-based architecture which
includes four layers (power, data acquisition, communication
network, and application layers) for wind and solar microgrid
comprising a HESS and a BESS, and conventional resources,
e.g., diesel generator to provide accurate information for the
system operator and platform performances. In [34], a stochas-
tic distributed DSM strategy for smart grids considering
uncertainty in wind power forecasting has been developed.
In [35], an IoT energy system architecture, which includes a
fuel cell, a lithium battery, and a supercapacitor technology,

has been proposed to elaborate data on RES harvesting for
low-energy systems. In [36], a new multi-objective solution
for micro-grid and operation cost minimization of ESSs has
been proposed. In [37], a smart hybrid micro-grid with a
fuel cell and EVs has been proposed. Further, the authors
in [38] have integrated a green hydrogen production with
the electricity and the hydrogen market and provided optimal
state-dependent solutions by using the Markov decision pro-
cess theory. A novel stochastic optimal energy management of
the smart grid, which takes into account uncertainties of the
RESs and EVs based on the remote control in IoT, has been
proposed in [39]. However, in none of the above examples, the
specific requirements of the three use cases are addressed in
a unique architecture with three layers (physical, control, and
supervision layers), where the control platform architecture is
in the cloud. Indeed, we simultaneously consider the optimal
operation planning of a wind-hydrogen microgrid comprising
a HESS unit, and the interaction with external consumers of
hydrogen, i.e., FCEVs. Additionally, the system incorporates
multi-time-scales of the energy markets, which is a suitable
option for HESS to maximize the revenue for wind farm
owners. The wind-hydrogen microgrid is modeled by the
mixed logical dynamical (MLD) framework to fully consider
device switching dynamics and degradation costs. Moreover,
the approach proposed in this paper is not specific to a
particular plant and can be applied to similar settings, where
hydrogen storage and re-electrification are paired with an
intermittent renewable plant.

The main contributions of this research paper are the
following:

1) the development of a unified control platform and archi-
tecture (management software, control algorithms, and
automation technologies) that is under deployment in a
real wind farm located in north Norway;

2) the integration in the developed control platform and
architecture of three control algorithms, each one address-
ing a specific use case as per the IEA-HIA Task24 final
report [3] that outlines how it is possible to promote the
integration of wind energy into the grid via pairing wind
farms to HESSs;

3) the development of a unified modeling approach that
enables to address multiple conflicting objectives and dif-
ferent requirements/constraints when wind farms paired
to a HESS are operated in order to address the three use
cases identified by the IEA-HIA.

The research study is further organized as follows: in
Section II, the control and management architecture is
explained in detail; the model of the system is provided in
Section III; the control algorithms are given in Section IV;
in Section V, simulation analysis and validation are shown;
Section VI gives the closing remarks.

II. CONTROL AND MANAGEMENT ARCHITECTURE

The control and management architecture features three
layers, as depicted in Fig. 1. The physical layer targets
the physical components, sensors, and actuators. All local
controllers and modules used for measurement and several
servers for interactions between the higher and lower layers of
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Fig. 1. Control and management architecture.

the control architecture and databases are integrated into the
automation layer to perform primary plant control. This layer
is also used to conduct preliminary monitoring and informa-
tion preprocessing. In the supervision layer, the execution of
MPC algorithms and clients for remote diagnoses, monitoring,
and top-management activities are located. Since each layer
performs specific functionalities, a multi-tier architecture is
implemented and the communications among the layers occur
through services and microservices.

A. Physical Layer

The main components of the physical layer are the HESS
and the wind farm, along with their corresponding local
embedded controllers and, in general, the external environment
with which the integrated system is expected to interact. The
green solid, blue, and red lines in Fig. 1 indicate the energy,
hydrogen, and data flows, respectively.

B. Automation Layer

The automation layer integrates the networking infras-
tructure, the supervisory control and the data acquisition
systems (SCADAs), the local dataloggers, and a server con-
nected through a local network. The networking infrastructure
(SW-Gateway in Fig. 1) enables transfer of data and control
signals between sensors, actuators, controllers, supervisory
components, and data storage. Specifically, the networking
infrastructure carries the information between two levels of
communication: a bottom level for communication on the
lowest layers of control (local controllers and actuators) and an
upper level for communication toward the MPC and the high-
level analytics. As shown in Fig. 1, the SW-Gateway includes
three modules: resource adapter, message broker, and service
adapter. The resource adapter aims to integrate functionalities
and operations through a RESTful interface, to connect the
sensors with the other components, and to monitor the state
of the devices by intercepting data from the physical layer.
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The resource adapter is based on the java message service
(JMS), which supports the publish/subscribe message model.
The message broker allows the transfer of large amounts
of data using a queue system in a publish/subscribe model.
For the system under study, Active MQ as message broker
and STOMP (simple text-oriented messaging protocol) as
text-based protocol are chosen. The third module aims to
filter the inconsistent data and translate data into a common
language such that the components in the supervision layer
can interpret them without ambiguities or errors. The service
adaptor is implemented as web service (RESTful) and data
are passed in the javascript object notation (JSON) format.
Moreover, in order to guarantee the security of the communica-
tion with the supervision layer, the industry-standard protocol
open authorization (Oauth), secure web sockets, and secure
API with HTTP over SSL/TLS (secure sockets layer/transport
layer security) transport protocol are used. As regards transport
layer protocol, UDP is used to achieve faster data transfers,
albeit less reliable.

The SCADA system provides support and functions for
both simple monitoring of wind turbines and smarter decisions
making when any excess of hydrogen storage occurs. The
SCADA architecture is based on two commercial micro PLCs
embedded in both electrolyser and fuel cell, which belong to
the Siemens S7-1500 family and the Siemens S7-300 family,
respectively. The protocol used for the direct communication
between SCADAs and PLCs is the standard-communication-
protocol OPC UA (open platform communications unified
architecture) which allows for moving information to higher
levels using the publisher-subscriber model; the protocol for
the communication between the PLCs and both devices is
Profinet (process field network) which handles data exchange
in real-time (i.e., with a frequency of about 0.1 Hz) with the
devices by implementing local control loops and processing.
The PLCs allow the routing of the information from com-
ponents, such as human-machine interfaces (HMIs), sensors
and devices, to computers equipped with SCADA software.
This software collects, processes, and displays data in order
to control the operation and the data flow of the process.
An HMI is an interface through which operators can monitor,
track, and manage the system’s activities. In the automation
layer, the server stores information in a database to be sent
to the supervision layer with a frequency of 0.1 Hz through
the SCADA systems, which use the OPC UA protocol for the
communication. A local datalogger is used for monitoring and
storing data acquired over time by a sensor. Since high-speed
recording is not required, the data logger is preferable instead
of a data acquisition system. Once archived, the data is
transferred to a computer for analysis.

C. Supervision Layer

The supervision layer includes user-side terminals and a
supervision server, and implements a client-server mechanism
in principle with two configurations: local and remote. In the
local configuration, both the client and the server execute on
the same machine. In contrast, in the remote configuration,
the client and the server are separately executed onto two
different corresponding machines. In the system under study,

the remote configuration is used. The supervision server, which
enables connectivity between the automation layer and clients,
includes GUI, historian, monitoring, and MPC algorithms.
The data storage, monitoring, and visualization functionalities
are provided by the open-source platform Thingsboard, which
offers a user-friendly GUI of the user-side terminals, both on
mobile devices and desktop/laptop computers. The historian
can be described as centralized databases which are used for
model development and calibration, model parameters tracking
and effectiveness analysis of the proposed controller. The use
of an external history, in which real-time data coming from the
SCADA system are stored for reports and analytics, facilitates
data distribution. Thingsboard includes the tools PostgreSQL
and Timescale/Cassandra to set up hybrid databases, i.e.,
which allow both relational and non-relational storages; in par-
ticular, all entities (such as devices, dashboards, users, alarms,
etc.) are stored in the relational database PostgreSQL, while
the time-series data are saved in the NoSQL database Cas-
sandra. Databases are both local and cloud. Local databases
are only accessible to a few users as they reside on a device.
Instead, cloud databases can be accessed remotely by many
users as they use web servers. Therefore, the flexibility of
operation and less tedious setting-up phase of cloud databases
allow us to privilege these databases. The management and
access of the databases take place through monitoring which
consists in data processing by converting data into a more
readable format to be interpreted by other devices. The MPC
algorithms use forecasts fed by other high-level entities outside
the presented architecture (e.g., data providers) and real-time
data from the physical layer which are transmitted to the
supervisory layer through the intermediate layers; a detailed
description of the algorithms is explained in Section IV. The
MPC algorithms used are solved through different numerical
tools, i.e., Python and MATLAB. The Python code is inter-
preted by CPython and compiled into a native binary for its
execution. On the other hand, in MATLAB, a generated shared
library is called by a real-time environment that receives data
using a secure API.

In order to address the plant operations in the three use
cases, corresponding control architectures and algorithms have
been developed. However, the three different architectures fea-
ture the common target of minimizing the devices’ operating
costs. In the energy-storage mode, the controller operates the
devices to provide smooth power injection into the main grid.
In addition, the tracking of a desired power reference provided
by the grid operator is considered. In this case, a single level
architecture is implemented, however featuring a sequential
optimization to prioritize power smoothing above all the other
objectives. This is achieved by firstly computing the optimal
power schedule fulfilling smoothing requirements, and then
using that value as a constraint in the second optimization step,
where the other costs are minimized. In the mini-grid mode,
the controller operates the integrated system for the energy
provision to a local load both in islanded and in connected
modes. In this case, a two level architecture is implemented,
where at high-level (HLC), the mini-grid management is
achieved by considering generation and load demand fore-
casts, in case of disconnected mode, while the additional
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market prices forecasts are also included in case of connected
mode, for market participation. The HLC scheduling is then
implemented by the low-level (LLC) which handles shorter
time-scales. In the fuel production mode, the controller should
totally commit the integrated system to the production of
green hydrogen for other uses than re-electrification. However,
as the IEA itself acknowledges, this would not require any
management strategy since there is no any downstream vari-
able condition to cope with. Therefore, further objectives are
included, however guaranteeing that the hydrogen production
for other purposes has the highest unconditional priority above
them. Thus, the architecture features two levels implementing
a similar rationale as in the mini-grid, and at the HLC a
sequential optimization is set-up, where the hydrogen load
tracking is firstly achieved and then the optimal value is used
as a constraint in the second optimization where the other costs
are minimized. At the LLC, instead, only market participation
and local load tracking are considered, suitably weighting the
references such that the priority is very low.

III. MODELING

In this section, we introduce notations and standard assump-
tions that will be used throughout the paper. The control
algorithms are developed via an MPC approach over a com-
plex MLD model that integrates logic automata and low level
dynamics (hydrogen tank, fuel cell, and electrolyser) [40].
Being the aim of this paper the proposal of the integrated
HW/SW control architecture developed under the project [41],
we only provide here essential details of the above mentioned
models and we refer the reader on how the models are
developed in depth in our previous works [12], [32], [42], [43].

A. Notation

Some models used by the MPC-based controllers are built
upon automata. The tags OFF, CLD, STB, WRM, and ON are
used to label their states. The sets AHLC

= {OFF, STB, ON}

and ALLC = AHLC
∪{CLD, WRM}, where the superscripts

HLC and LLC indicate the high-level and low-level con-
trols, respectively, are used to define the domain of some
sub/superscripts in case of possible ambiguities; α and β are
two generic indices that can take value in AHLC or ALLC

according to the particular case. If both α and β are used
in conjunction it is agreed that α ̸= β. Logic variables are δα ,
σ β

α , ∈ {0, 1} and zα
= Pδα , with P in R+, are mixed-integer

variables; in some circumstances the further subscripts e and
f are also used and refer to the electrolyser and fuel cell,
respectively. Finally, general bold is used to denote vectors.

The model of the system is applied for two different time-
scales, according to the HLC and the LLC. However, the
reader must be aware that the model formulation presented
in the following employs an abuse of notation in that it
uses the same discrete-time variable k both at the high-level
(so addressing the larger time-scales) and at the low-level
(addressing instead the shorter time-scales).

B. Logic Automata

The advanced features of the hydrogen devices required the
use of MLD modeling to incorporate in the controllers their

Fig. 2. Plant model.

Fig. 3. Automata for the HLC.

different logic states and corresponding working modes. This
enabled to, e.g., minimize switching costs or take into account
the different switching times due to cold and warm starts.
Since the HLC and the LLC address different time-scales, also
different models are correspondingly used.

Fig. 2 shows a representation of the model that describes
the system under investigation. The red block regards the
hydrogen devices, the blue block is related to the HESS and
the corresponding constraints on the hydrogen level dynamics,
and the green block is related to the interaction with the
utility grid, i.e., the buying/selling energy from/to the grid.
In order to guarantee the correct operation, the system is
subject to the constraints represented in the gray block in
Fig. 2. In particular, the ramp-up constraint limits the slew rate
of the electrolyser input power and the fuel cell output power;
the power balance equation is used to obtain a feasible optimal
control setting; the feasibility and physical constraints define
the minimum and maximum limits according to the operating
ranges of the tank, the electrolyser, and the fuel cell.

Regarding the hydrogen devices, Fig. 3 and Fig. 4 show
the automata that model the logical/discrete states of the
electrolyser (i = e) and the fuel cell (i = f ), for the HLC and
the LLC, respectively. The nodes and the edges correspond
to the devices’ states and the state transitions, respectively.
Specifically, the devices’ states are: ON denoting on state
(the unit is producing/consuming hydrogen); OFF denoting off
state (the unit does not produce/consume hydrogen and does
not absorb any power) and STB denoting standby state (the
unit does not produce/consume hydrogen but absorbs power);
CLD denoting cold start; WRM denoting warm start. CLD
and WRM are transient states where the system is forced to
be for a given amount of time when leaving, respectively, the
OFF and STB states. The HLC addresses larger time-scales of
the order of hours where cold and warm starts are irrelevant
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Fig. 4. Automata for the LLC.

and, therefore, are neglected. Indeed, cold and warm starts are
transient, i.e., they are active only for a limited amount of time
of order of minutes. All nodes and edges are instead used for
the LLC which addresses shorter time-scales of the order of
minutes, where, instead, cold and warm starts are relevant and
must be considered.

Each automaton represents graphically the logical behavior
of the corresponding device at the considered control level.
The MLD framework allows to achieve suitable constraints
from logical propositions like, e.g., “if the electrolyser is
in state STB, then its input power is PSTB

e ” or their equiv-
alent formulation via suitable logic variables and standard
logic connectives. For instance, in this case α = STB and
δSTB

e (k) = 1. Then, the link between the state δSTB
e (k) and

the implied power (in this case the power that the electrolyser
consumes to keep its stack warm when in standby) is encoded
via constraints involving such logical variables. This applies in
general to both devices, all the states at each particular control
level, and also to the transitions between the states.

C. HESS Dynamics

The automata described in the previous section are coupled
to the HESS dynamics due to the hydrogen level in the tank
and its production (electrolyser dynamics) and consumption
(fuel cell dynamics). They are given in what follows and apply
similarly at the HLC and the LLC, for we avoid to indicate the
particular control level in order to achieve a lighter notation.

The hydrogen H stored in the tank at each time-step k is
expressed as

H(k + 1) = H(k) − Hexc(k) + ηeze(k)Ts −
z f (k)Ts

η f
, (1)

where Hexc(k) models the use of the stored hydrogen for
supplying demand from commercial road vehicles or other
possible customers only when it is relevant, i.e., when the fuel
production use case is considered (see Sec. IV-C), ηe and η f

are the electrolyser and fuel cell productivities, respectively,
and, in this case, Ts is a generic sampling time that in the actual
algorithms is specified according to the particular control level
considered. The variables zs

e and zs
f are defined as

ze(k) = Pe(k)δON
e (k), (2a)

z f (k) = P f (k)δON
f (k), (2b)

where Pe and P f denote the electrolyser and fuel cell powers,
respectively. The mixed-products between logical and real
variables in (2) lead to nonlinearities, which can be difficult to
be handled by an optimizer. However, according to the MLD
framework, the definition in (2a) is recast as the following set
of linear inequalities

ze(k) ≥ meδ
ON
e (k), (3a)

ze(k) ≤ Meδ
ON
e (k), (3b)

ze(k) ≥ Pe(k) − Me
(
1 − δON

e (k)
)
, (3c)

ze(k) ≤ Pe(k) + me
(
1 − δON

e (k)
)
, (3d)

where Me and me are an upper and lower bounds of P s
e (k).

The variable z f defined in (2b) can be recast in the same way
of (2a). From (1) and (2), it follows that the electrolyser/fuel
cell produces/consumes hydrogen only when they are in the
ON state, by implying a change in the hydrogen level stored
in the tank.

As it is possible to see above, the hydrogen stored in the
tank, as well as the fuel cell and the electrolyser have nonlinear
dynamics. Our model is relatively simple to be run in a
real-time MPC with, at the same time, being able to capture the
main aspects of the hydrogen consumption/production. Possi-
ble model mismatches or parameter drifts in the efficiency as
well as disturbances or modeling simplification are anyway
well handled thanks to the MPC, which re-computes at any
time step an optimization over a prediction horizon from the
current field condition (thus implicitly accounting for previous
prediction mismatches).

IV. CONTROL ALGORITHMS

In this section, the optimization problems for each of the
three targeted use cases are presented. As the MPC framework
prescribes, at each time instant a constrained optimization
problem is solved across a prediction horizon of fixed size.
The output is the sequence of the optimal decision variables
across the horizon; however, only the first sample is applied,
while the others are discarded. Then, new measurements
from the plant are achieved, the time-step is increased and
a new iteration starts. In a multi-level architecture, at each
time-step, two constrained optimization problems are solved.
Two different sample times (and two different time-steps)
characterize such problems. In what follows, h and m will
denote the time instant according to the control layer, i.e., the
HLC and the LLC, respectively, and T h

s and T m
s will refer to

the two corresponding sampling times, respectively. For the
specific application presented in this paper, T h

s = 1 h and
T m

s = 10 min. Also, the prediction horizons used by the HLC
and the LLC are different and, therefore, are correspondingly
indicated by H and M , respectively. These assumptions hold
across all the use cases.

The possibility of considering a longer time-scale (which in
our case is set to 1 h, but this value can be selected differently)
on top of the shorter time-scale allows to increase the control
horizon. Indeed, a high number of decision/optimization vari-
ables are considered for the current time up to 10 min ahead,
while less variables are considered for an entire day ahead,
where less precision (and higher uncertainty) is required by
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Fig. 5. Multi-level cascaded MPC control block diagram.

the controller. In view of this, the two time-scales allow to
have good performances on both short and long control periods
without unnecessary decision variable increase, which could
harm the real-time resolution or the convergence of the opti-
mization routines (whose complexity grows in a combinatorial
fashion with the number of variables). It is worth highlighting
that the control input is, in any case, provided on the shorter
sampling time considered (i.e., 10 min).

The diagram of the architecture of the MPC algorithms is
shown in Fig. 5. For the electricity storage, only the LLC
is actually developed, while for the mini-grid and the fuel
production use cases a multi-level optimization is developed.
It is worth noticing that this paper aims at presenting the
control architecture for the considered HESS plant servicing
the wind farm.

A. Electricity Storage Use Case

The use of an HESS allows the management of the uncer-
tainty of the wind generation and enables additional services to
the grid, such as the injection of smooth power. With this aim,
only the LLC is implemented, however featuring a sequential
execution of two optimization problems: ES.1 to minimize a
function of the previous output power variations, such that the
new decided value does not lie too far from previous output
power values; ES.2 to minimize the operating costs of the
hydrogen devices and to track the grid operator reference
signal. With the sequential optimization arrangement, the
optimal value of the problem ES.1 is used as a constraint in
the problem ES.2 such that power smoothing has the highest
unconditional priority above the other objectives addressed in
the second step. The two stages are solved against the decision
variables collected in the set

Cm+ j =
{

Pe(m + j), P f (m + j), Pg,avl(m + j),

δe(m + j), σ e(m + j), ze(m + j),

δ f (m + j), σ f (m + j), z f (m + j)
}
, (4)

at the time-instant m + j , with m the current control time-step
and where δe(m + j) and δ f (m + j) are the vectors of all the
logical variables linked to the states of the hydrogen devices
automata, respectively. All the other vectors (in bold) are
similarly defined.

Then, the problem ES.1 is recast as

wAVG∗
= arg min

Cm|M

M−1∑
j=0

wAVG(m + j) (5a)

s.t. MLD models (5 states), (5b)
Power balance, (5c)
Hydrogen dynamics, (5d)
Operating ranges, (5e)
Constraints for mixed products, (5f)
Constraints for δi and σ i , (5g)

where Cm|M = Cm, . . . , Cm+M−1, wAVG(m + j) is a function
that depends on a weighted average of the previous variations
of Pg,avl and additional parameters for tuning.

Following, the problem ES.2 is solved via

min
Cm|M

M−1∑
j=0

JES(m + j) (6a)

s.t (5b) − (5g), (6b)
M−1∑
j=0

wAVG(m + j)≤ wAVG∗, (6c)

where the cost function

JES(m + j) = weOpe(m + j) + w f Op f (m + j)

+ wgCg(m + j) (7)

includes the operating costs Opi , with i ∈ {e, f }, of both
devices, the tracking cost Cg of the grid injected power with
respect to the grid operator, and we, w f and wg are suitable
weights given to the corresponding cost functions. More in
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detail, they are defined as a function of the decision variables
and system parameters as

Ope(m + j) = Ope

(
δe(m + j), σ e(m + j);

NHe, crep
e , cOM

e , cσ
e

)
, (8a)

Op f (m + j) = Op f

(
δ f (m + j), σ f (m + j);

NH f , crep
f , cOM

f , cσ
f

)
, (8b)

Cg(m + j) = Cg
(
Pg,avl(m + j), Pg,ref(m + j)

)
, (8c)

with abuses of notation, where cOM
i is the operating and

maintenance cost of the i-th device, NHi is the device cycle
lifespan, crep

i is the device stack replacement cost, and the
vector cσ

i collects the switching costs of the device. Again,
we refer the reader to [12] for a thorough mathematical
modeling of the plant.

B. Mini-Grid Use Case

In this case, the MPC architecture addresses both the
islanded and the grid-connected mode. In islanded mode,
the main purpose is maintaining the power balance between
generation and demand without grid support, while, in grid-
connected mode, the additional participation to the electricity
market is used with the main target to supply the load and,
whenever possible, to generate profits.

In this operating mode, the architecture implements a multi-
level control, as shown in Fig. 5. The HLC deals with
forecasts 24 h ahead in time with 1 h sampling, and relies
on measurements with the same rate. The subsequent 1 h
scheduling is then passed to the LLC that works on shorter
time-scales and, based on measurements at a higher frequency
rate, handles the implementation of the high-level planning.
The operating costs of both the devices are always considered
irrespective of the control level and operating mode. On the
contrary, the HLC and the LLC use two different automata
for the electrolyser and the fuel cell. Further, the control
architecture distinguishes between islanded and connected
modes, where in the second case, being the HLC or the
LLC, an additional cost is used in order to consider market
operations both for buying and selling energy. Indeed, buying
energy is meant to take advantage of the grid support in
case of a possible load demand that cannot be matched
with the renewable resource and the hydrogen in the tank,
while selling energy enables an additional degree of freedom
for generating revenues whenever possible. Summarizing, the
following optimization problems are solved: MG.1 to track the
load demand with the renewable resource and the hydrogen
stored in the tank only, and to minimize the operating costs
of the electrolyser and the fuel cell, in case of islanded
operations; MG.2 to track the load demand with the wind gen-
eration, the hydrogen stored in the tank, and energy purchase,
to minimize the operating costs of the devices and possibly
to generate profits via energy selling, in case of connected
operations.

The decision variables for the HLC related to prob-
lem MG.1, i.e., in islanded mode, are collected in the set

IHLC
h+ j =

{
PHLC

e (h + j), PHLC
f (h + j), PHLC

l,avl (h + j),

δHLC
e (h + j), σ HLC

e (h + j), zHLC
e (h + j),

δHLC
f (h + j), σ HLC

f (h + j), zHLC
f (h + j)

}
, (9)

while those for the LLC are collected in the similarly defined
set ILLC

m+ j . The two sets differ in that, e.g., δHLC
e refers to the

three-state automaton of the electrolyser, while the analogous
δLLC

e refers to the five-state. In conclusion, the MPC problem
is recast as

min
IHLC

h|H

H−1∑
j=0

J HLC
MG (h + j) (10a)

s.t. MLD models of devices (3 states), (10b)
Similar to (5c) − (5g), (10c)

and then

min
ILLC

m|M

M−1∑
j=0

J LLC
MG (m + j) (11a)

s.t MLD models of devices (5 states), (11b)
Similar to (5c) − (5g), (11c)

where at each sampled hour h, the optimal outcomes(
PHLC

e (h)
)∗

,
(
PHLC

f (h)
)∗

,
(
PHLC

l,avl (h)
)∗ and

(
LOHHLC(h)

)∗ of
problem (10) are provided as references to problem (11),
such that at the end of the LLC execution

(
ILLC

m

)∗ holds the
optimal commands that are provided to the devices for the
continuous-time interval h T h

+ [m, m + 1) T m . Then, m is
increased by one unit step and the LLC is triggered again.
The last iteration of the LLC is at m = 5 (having considered,
as said before, 10 min sampling of the LLC every hour of
the HLC), then m is reset to zero, h is increased by one unit
step and the HLC executes again. Finally, the last iteration of
the HLC before a reset of h is at h = 23.

The cost function in (10a) is

J HLC
MG (h + j) = kHLC

e OpHLC
e (h + j) + kHLC

f OpHLC
f (h + j)

+ kHLC
d CHLC

d (h + j), (12)

where kHLC
e , kHLC

f , and kHLC
d are weights, OpHLC

e and OpHLC
f

are similar to Opi , with the exceptions that now they refer to
the HLC time-scale and related controller, the logical variables
refer to the three-states automata, and where, with slight abuse
of notation,

CHLC
d (h + j) = CHLC

d

(
PHLC

l,avl (h + j), Pl,ref(h + j)
)

(13)

is the load demand tracking cost.
Following, the cost function in (11a) for the LLC is

J LLC
MG (m + j) = kLLC

e OpLLC
e (m + j) + kLLC

f OpLLC
f (m + j)

+ kLLC
d CLLC

d (m + j) + kLLC
LOHCLLC

LOH(m + j)

+ kLLC
Pe

CLLC
Pe

(m + j) + kLLC
P f

CLLC
P f

(m + j),
(14)
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where kLLC
e , kLLC

f , kLLC
d , kLLC

LOH, kLLC
Pe

, and kLLC
P f

are weights,
OpLLC

i are similar to the HLC’s, and, again with abuses of
notation,

CLLC
d (m + j) = CLLC

d

(
PLLC

l,avl (m + j),
(
PHLC

l,avl (h)
)∗

)
, (15a)

CLLC
LOH(m + j) = CLLC

LOH

(
LOHLLC(m + j),

(
LOHHLC(h)

)∗
)
,

(15b)

CLLC
Pe

(m + j) = CLLC
Pe

(
PLLC

e (m + j),
(
PHLC

e (h)
)∗

)
, (15c)

CLLC
P f

(m + j) = CLLC
P f

(
PLLC

f (m + j),
(
PHLC

f (h)
)∗

)
, (15d)

where, despite the fact that the LLC costs depend also on h,
the double indexing is dropped for keeping the notation lighter.

Regarding problem MG.2, i.e., connected operations, the
optimization is recast similarly to what described above for
problem MG.1, i.e., in islanded operations. The differences
lie in the decision variables and the cost functions, that now
incorporate energy selling and purchasing, in an additional
term in the power balance constraint, that now has to account
for the grid connection, and in additional MLD constraints
following the modeling of buying and selling operations.

In connected mode, the decision variables for the HLC are
collected in the set

CHLC
h+ j = IHLC

h+ j ∪ {PHLC
g (h + j), δHLC

g (h + j), zHLC
g (h + j)},

(16)

where PHLC
g (h + j) :=

(
PHLC

g,sell(h + j) PHLC
g,pch(h + j)

)⊤
is

the vector of the power sold/purchased to/from the grid,
δHLC

g (h + j) :=
(
δHLC

g,sell(h + j) δHLC
g,pch(h + j)

)⊤
is the vector

of the mutually exclusive logical variables identifying the
corresponding selling/purchasing events and zHLC

g (h + j) is
the vector of the slack variables required for the modeling.
In practice, PHLC

g,avl (h + j) := PHLC
g (h + j)⊤δHLC

g (h + j) (see
Fig. 5). Instead, the set CLLC

m+ j , which is defined similarly to
CHLC

h+ j , collects the decision variables used by the LLC.
Thus, the optimization problems for the HLC and the LLC

can be recast along the lines of (10) and (11), respectively,
by considering CHLC

h|H in place of IHLC
h|H , CLLC

m|M in place of ILLC
m|M ,

the “augmented” costs

K HLC
MG (h + j) = J HLC

MG (h + j) + kHLC
g GHLC(h + j), (17a)

K LLC
MG (m + j) = J LLC

MG (m + j) + kLLC
g GLLC(m + j), (17b)

in place of J HLC
MG (h + j) and J LLC

MG (m + j), respectively, where
kHLC

g and kLLC
g are weights. The function of the grid exchanges

at the HLC, with abuse of notation, is given by

GHLC(h + j) = GHLC(
PHLC

g (h + j), δHLC
g (h + j),

πHLC
g (h + j)

)
, (18)

and the function of the grid exchanges at the LLC GLLC(m+ j)
either is similarly defined in case real-time prices πLLC

g (m+ j)
are available or tracks the HLC schedule

(
PHLC

g (h)
)∗ and(

δHLC
g (h)

)∗ on the contrary, and by considering constraints
similar to those in the above mentioned problems. In case
GLLC(m + j) is chosen to use real-time prices, assuming that
those used at the HLC were good estimates, the real-time
adjustment is feasible.

C. Fuel Production Use Case

In the fuel production operating mode, the MPC archi-
tecture exploits similar concepts used in the two previous
control schemas. A two-level architecture is still implemented,
as Fig. 5 shows, because forecasts and real-time measurements
are available. The HLC, however, also features a sequential
optimization similar to that used in the energy-storage mode,
that aims at giving the highest unconditional priority to hydro-
gen production, at least across the larger time-scales. In the
second optimization, since the main objective is not to generate
hydrogen by purchasing energy from the grid nor to supply
local loads, the local load demand and the market participation
are addressed by only energy selling. The LLC is in charge of
implementing real-time the planned schedule, while both the
HLC and the LLC minimize also the devices operating costs.
In conclusion, the following optimization problems are solved:
FP.1 to track the hydrogen demand; FP.2 to sell energy to
the main grid which gives the opportunity to maximize the
economic benefits and to supply the load demand in case some
hydrogen is left. The HLC addresses sequentially FP.1 and
then FP.2 while the LLC addresses FP.2.

At the HLC, the set of decision variables for problem FP.1
is

HHLC
h+ j =

{
PHLC

e (h + j), PHLC
f (h + j),

δHLC
e (h + j), σ HLC

e (h + j), zHLC
e (h + j),

δHLC
f (h + j), σ HLC

f (h + j), zHLC
f (h + j)

}
, (19)

while for problem FP.2 it is

CHLC
h+ j = HHLC

h+ j ∪ {PHLC
g,sell(h + j), δHLC

g,sell(h + j), PHLC
l,avl (h + j)},

(20)

where PHLC
g,avl = PHLC

g,sell(h + j)δHLC
g,sell(h + j), and then the

optimization is firstly

(CHLC
LOH)∗ = min

HHLC
h|H

H−1∑
j=0

CHLC
LOH(h + j) (21a)

s.t Similar to (10b) − (10c), (21b)

and then

min
CHLC

h|H

H−1∑
j=0

J HLC
FP (h + j) (22a)

s.t. Similar to (21b), (22b)
H−1∑
j=0

CHLC
LOH(h + j) ≤ (CHLC

LOH)∗, (22c)

where, with abuse of notation,

CHLC
LOH(h + j) = CHLC

LOH

(
LOH(h + j), Hd(h + j)

)
(23)

is the hydrogen demand tracking cost, Hd(h + j) is the
hydrogen demand, and

J HLC
FP (h + j) = ρHLC

g GHLC(h + j) + ρHLC
d CHLC

d (h + j),
(24)
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where ρHLC
g and ρHLC

d are weights, and, again with abuses of
notation,

GHLC(h + j) = GHLC
(

PHLC
g,sell(h + j), δHLC

g,sell(h + j);

πHLC
g,sell(h + j)

)
, (25a)

CHLC
d (h + j) = CHLC

d

(
PHLC

l,avl (h + j), Pl,ref(h + j)
)
. (25b)

Regarding the LLC, the set of decision variable is CLLC
m|M which

is similar to CHLC
h|H mutatis mutandis, and thus optimization is

achieved via

min
CLLC

m|M

M−1∑
j=0

J LLC
FP (m + j) (26a)

s.t. MLD models of devices (5 states), (26b)
Similar to (11c), (26c)

where

J LLC
FP (m + j) = ρLLC

g GLLC(m + j) + ρLLC
d CLLC

d (m + j)

+ ρLLC
LOHCLLC

LOH(m + j), (27)

with ρLLC
g , ρLLC

d , and ρLLC
LOH are weights, and GLLC(m + j)

follows the same rationale as in the mini-grid use cases, i.e.,
either it is similarly defined to GHLC(m + j) (of the fuel
production use case) in case real-time prices are available
or it tracks the HLC schedule

(
PHLC

g,sell(h)
)∗ and

(
δHLC

g,sell(h)
)∗

on the contrary. CLLC
d (m + j) and CLLC

LOH(m + j) track the
corresponding HLC schedules

(
PHLC

l,avl (h)
)∗ and

(
CHLC

LOH(h)
)∗,

respectively.

V. SIMULATIONS RESULTS

In this section, we validate the control algorithms inte-
grated into the control platform presented in this paper.
The overall control scheme is under implementation in the
Raggovidda (Norway) wind farm, according to the European
Union Fuel Cells and Hydrogen 2 Joint Undertaking funded
project HAEOLUS (Hydrogen-Aeolic Energy with Optimized
Electrolysers Upstream of Substation) [41]. In order to show
the effectiveness of the controller, different power production
and consumption profiles are taken into account. The results
validation are preliminary to the deployment of the control
strategy on the plant site, which is currently under construction
in parallel to this research study. Our control strategy allows
to deal simultaneously with several use cases (electricity
storage, mini-grid, and fuel production) as identified within
the IEA-HIA Task 24 final report [3]. As it will be clear in
what follows, the numerical results show that the proposed
controllers are able to correctly satisfy the overall system
constraints and achieve the set control objectives proposed.

A. Simulation Setup

In order to satisfy the validation of the proposed control in
this research study, the control horizon, simulation horizon,
sampling time, and the main characteristics of the device
parameters have to be defined. Consequently, for the day-ahead
market, simulations have been conducted over a T = 24 h

TABLE I
ELECTROLYSER DATA

TABLE II
FUEL CELL DATA

TABLE III
WIND FARM DATA

horizon with Ts = 1 h sampling time, instead, for addressing
the real-time market, the LLC has been implemented on a
shorter time horizon of T = 1 h with Ts = 10 min sampling
time. Table I and Table II summarize the main characteristics
of the electrolyser and the fuel cell, both provided by Hydro-
genics (now Cummins), and those of the wind farm owned by
Varanger Kraft [44]. It is important to highlight that since the
HAEOLUS project is not finished, data from the literature are
adopted for the parameters not yet defined. In order to balance
the tracking goal satisfaction and the operational costs, the cost
functions include suitable weights (determined by appropriate
simulations test runs). The development and the simulation
analysis of the proposed controllers have been carried out in
MATLAB with the YALMIP tool and GUROBI optimizer on
a computer with an Intel Xeon (R) R − 3265 HQ 3.2 GHz
with 32 GB RAM. The time interval needed to solve the
optimization problem on this computer is 60 s.

B. Case Studies

The proposed controllers are analyzed to show the correct
management of the energy system under the three different use
cases, namely, ES, MG and FP. The interaction with the main
grid implies that the energy prices for energy selling/buying

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 6. Wind, operator power, and hydrogen profiles.

Fig. 7. Smoothed available power profiles for electricity storage.

in the daily and real markets are considered. Figure. 6 shows
the power produced by the renewable resource, the electric
demand and the hydrogen demand, respectively.

1) Analysis of Electricity Storage Use Case: The control
goal in the electricity storage is to smooth the output power
of the wind farm, and achieve a gentle tracking of the local
and the contractual loads. As described in Section IV-A, a two-
stage optimization problem is formalized where the controller
firstly computes the optimal bounds that the available power
has to fulfill to meet the smoothing requirements. Then, such
optimal bounds are used in the second stage as a constraint
to the possible variation for the system’s available power in
the load tracking optimization. In Fig. 7, it is possible to see
that the available power is adequately filtered when tracking
the reference in both fluctuating wind profiles. Indeed, the
controller tracks the reference smoothly in both scenarios and
considers both surplus and deficit power corresponding to
power flow towards or from the HESS. In this configuration
with the HESS, PLLC

f and PLLC
e always take non-negative

values and are complementary variables, i.e., they cannot be
nonzero at the same instant. For simplicity, their effect can
be condensed into only one variable PLLC

H2
= PLLC

e − PLLC
f ,

which is the net hydrogen storage power.
Moreover, Figure 8 presents the power of the devices.

In practice, the production of hydrogen is ON during high
RESs hours, while the consumption of hydrogen is ON during
low or nearly zero RESs hours. Figure 9 reports the hydrogen
levels corresponding to the two wind profiles. The storage
constraints are fulfilled for all time-instants since the hydro-
gen level is always between H max and H min. The fuel cell
switches from OFF to ON by providing backup power for
re-electrification when the RES production is less than the

Fig. 8. Net hydrogen storage power PLLC
H2

= PLLC
e − PLLC

f over time.

Fig. 9. Hydrogen levels over time.

Fig. 10. Load tracking in multi-level MPC for mini-grid.

requested load. Instead, the opposite situation occurs for the
electrolyser due to not enough power to store. Then, it can be
deduced that the transitions between the ON, OFF and STB
states are scheduled in consistency with the cost minimization
objectives.

2) Analysis of Mini-Grid Use Case: The control goal in
mini-grid is to manage two different electricity markets at
corresponding time-scales via a multi-level MPC scheme along
with the provision of electric power which meets the power
quality standard required by the grid operator. In Figs. 10–13,
the response of the proposed controllers is detailed. If a surplus
of energy occurs, the system tries to sell energy to the grid.
On the contrary, in an energy deficit event, the system tries
to operate the HESS, while minimizing the device switching
states and number of hours of use. In order to protect the tank
from high levels of charge or discharge, the stored hydrogen
is also constrained.

It is observed from Fig. 10 that the LLC meets the refer-
ences which are scheduled by the HLC and correctly meets
the load demand for all instants. As the LLC follows whenever
possible, the references are scheduled by the HLC, but it
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Fig. 11. Devices working operations in multi-level MPC for mini-grid.

Fig. 12. Day-ahead and real-time market participation for mini-grid.

Fig. 13. Hydrogen level in multi-level MPC controller over time.

maintains the ability to manage the system autonomously as
well. In Fig. 11, both hydrogen devices’ references scheduled
by the HLC and their tracking in the LLC are detailed.
According to the grid-connected mode, Fig. 12 reports the
electricity buying/selling events with the utility grid. In the
same way, the sale of energy to the grid happens at the
maximum price periods. In particular, the LLC may try to
reach the references set by the HLC where possible. However,
the sold power revenues are maximized depending on the
energy price profile and the available power. In particular,
during the 24 h simulations, except for hours 13–16, and 20,
the controller tends to sell as much as possible.

3) Analysis of Fuel Production Use Case: The control goal
in fuel production is the production of hydrogen as a fuel
simultaneously with meeting electric and contractual loads.
As explained in Section IV-C, the hydrogen production has
the highest priority. Then, the achieved optimal (CHLC

LOH)∗ in
the hydrogen storage unit is used as a hard constraint in the
second stage problem which addresses the participation in the
electricity market and the load tracking demand. Regarding

Fig. 14. Hydrogen demand tracking for fuel production.

Fig. 15. Control response of the hydrogen storage for cascaded MPC.

Fig. 16. Control response of the load tracking for cascaded MPC.

the main objective of HLC, over the control horizon H ,
the exchange of energy and hydrogen correctly meets the
requested demand by the external agents, as shown in Fig. 14.

In order to maintain the ability to manage the system
autonomously, simulations under stressing plant scenario of
multi-level MPC have been provided in Figs. 15–17, where
the control response over time of the hydrogen storage, the
load tracking, and the electricity buying/selling events with
the utility grid are illustrated. It is worth pointing out that
the LLC meets the references that are set by the HLC, and
successfully maximizes revenues. However, being autonomous
it can correct the energy scenario in case deviation exists in
real-time due to the intermittent nature of the wind generations
when compared to the forecast generation.

C. Comparison With Relevant Strategies

In order to show the effectiveness of this research,
this section performs a comprehensive comparative analysis
between the technique proposed in this study and the related
methodologies in [45] and [46]. In view of this, an MPC
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TABLE IV

COMPARISON BETWEEN THE FEATURED CONTROLLERS (∗) VS. [45] AND [46]

Fig. 17. Control response of the utility grid for cascaded MPC.

strategy of a wind farm and PV panels connected to the grid
and equipped with hybrid-ESSs has been developed in [45].
Then, the microgrid includes wind and solar energy as RESs.
Their methodology aims at optimizing the revenues of the
wind-solar microgrid by allowing the exchange of electricity
in the energy market. It is important to highlight that the
degradation issues have been addressed, while other aspects,
such as the limited available working cycles of the hydrogen
devices, the integrated HW and SW control architecture, and
the islanded mode are not considered in their controller, which
is, conversely, an integral part of this paper. The authors
in [46], instead, have developed a lab-scale microgrid at the
University of Seville in Spain in order to verify an MPC-
based methodology for the interaction with external agents.
The strategy considers the best time period in which to refuel
the FCEVs based on lower prices, but the authors seem not
to address all (or several) of these above mentioned aspects
in a unified way, as in our proposed control platform. Starting
from our previous results [12], [32], [42], in this paper we
propose the integrated HW and SW control architecture we
designed for the Raggovidda (Norway) wind farm, which
features the control algorithms dealing with the three use cases
mentioned before. The comparison of our controllers with the
two other mentioned approaches in the literature ( [45], [46])
is summarized in Table IV. It is possible to see that our
approach introduces more logical variables since it details the
models of the electrolyser and the fuel cell considering not
only the ON and OFF states, but also the STB (standby) and
related transitions. For the short time scale of the lower level,
the further state transitions of warm and cold start are also
included. This allows not only to better model the equipment
behaviour, but also to mitigate its degradation. Indeed, it is
worth noting that the costs due to the OFF-STB/ON-STB
transitions are lower than the ON-OFF/OFF-ON transitions.
Consequently, the proposed strategy extends the equipment
lifespan. Despite a greater number of logical variables, 120 in

our case, when considering the numerical test, our strategy
results to be solved with less computational time than those
in [45] and [46]. This is due to the fact that of these logical
variables, only 37 at most are Boolean (as per Table IV) while
the others are continuous in the interval [0, 1] but, according to
the considered formulation, assume values only at the extreme
points of this interval.

VI. CONCLUSION

In this paper, we presented the architecture of the con-
trol platform of a HESS integrated with a wind farm,
and connected to the main grid, however, with a strongly
limited powerlink. The control platform includes the man-
agement software, the control algorithms, and the automation
technologies operating the wind farm according to the
three use cases identified by the IEA. Different control
objectives/multi-objective optimizations have been taken into
account. Specifically, a control algorithm based on switching
functions implements multiple control strategies, one for each
of the three use cases. For each of them, dedicated strategies
are developed, optimizing operation bringing into account
uncertain weather and power-price forecasts and considering
the constraints for the specific operating mode. The paper
proposes the description of the ICT architecture of the control
systems implemented in the EU project plant, which includes
an algorithm whose goals are the following: 1) to find the
optimal value for the power smoothing for electricity storage;
2) to store the hydrogen production surpluses by wind gen-
eration and use them to provide a DSM solution for energy
supply to the local load, both in grid islanded and connected
modes, according to the goals indicated in mini-grid; 3) to
provide hydrogen to consumers as per fuel production; 4) to
compute the optimal scheduling of the unit based on a plant
supervisory data flow. When regarding the scalability, our
approach can definitely be adopted to bigger plants (big-
ger wind farm, hydrogen electrolysation/consumption). When
such increase in the plant dimension is reached with an
increase of the equipment (and if such equipment are inde-
pendently handled) numerical convergence problems of the
controller might arise due to the increase in the decision
variables. Nevertheless, this problem can be worked around
if aggregated values of hydrogen production, consumption,
and storage are considered. Lower level controllers might then
be devoted to the managing and allocation of the control
requests on the single units (for example, a dedicated con-
troller for hydrogen production could then handle the different
electrolysers it manages in order to satisfy the hydrogen pro-
duction requests computed by the controller proposed in this
paper).
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