
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

An OCBA-Based Method for Efficient Sample
Collection in Reinforcement Learning
Kuo Li , Graduate Student Member, IEEE, Xinze Jin , Student Member, IEEE,

Qing-Shan Jia , Senior Member, IEEE, Dongchun Ren , and Huaxia Xia, Member, IEEE

Abstract— This work focuses on the sample collection in
reinforcement learning (RL), where the interaction with the envi-
ronment is typically time-consuming and extravagantly expen-
sive. In order to collect samples in a more valuable way,
we propose a confidence-based sampling strategy based on
the optimal computing budget allocation algorithm (OCBA),
which actively allocates the computing efforts to actions with
different predictive uncertainties. We estimate the uncertainty
with ensembles and generalize them from tabular representations
to function approximations. The OCBA-based sampling strategy
could be easily integrated into various off-policy RL algorithms,
where we take Q-learning, DQN, and SAC as examples to show
the incorporation. Besides, we provide the theoretical analysis
towards convergence and evaluate the algorithms experimentally.
According to the experiments, the incorporated algorithms obtain
remarkable gains compared with modern ensemble-based RL
algorithms.

Note to Practitioners—Reinforcement learning is a powerful
tool for handling sequential decision-making problems, e.g.,
autonomous driving and robotics control, where the behav-
iors typically have a long-term effect on future events. How-
ever, although RL achieves human-level control in some tasks,
it severely suffers from low sample efficiency. Therefore, imple-
menting RL in some practical areas, e.g., healthcare and rescue,
is extremely hard due to the requirement of massive sam-
ples. This work aims to enhance the exploration of RL by
incorporating OCBA, which provides an asymptotically optimal
data-collection strategy for simulation-based optimization. Based
on ensemble-based uncertainty estimation and OCBA-based
action selection, the incorporated RL algorithms show competi-
tive performance on many benchmarks and significantly reduce
the sampling efforts during iterations.

Index Terms— Reinforcement learning, OCBA, ensemble,
uncertainty, exploration.

Manuscript received 14 November 2022; revised 28 February 2023;
accepted 27 May 2023. This article was recommended for publication by
Associate Editor X. Zhong and Editor J. Li upon evaluation of the reviewers’
comments. This work was supported in part by the NSFC under Grant
62125304, Grant 62192751, and Grant 62073182. (Corresponding author:
Qing-Shan Jia.)

Kuo Li, Xinze Jin, and Qing-Shan Jia are with the Center for Intelligent and
Networked Systems (CFINS), Department of Automation, Beijing National
Research Center for Information Science and Technology (BNRist), Tsinghua
University, Beijing 100084, China (e-mail: li-k19@mails.tsinghua.edu.cn;
jxz18@mails.tsinghua.edu.cn; jiaqs@tsinghua.edu.cn).

Dongchun Ren and Huaxia Xia are with the Meituan Group, Beijing
100102, China (e-mail: rendongchun@meituan.com; xiahuaxia@
meituan.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2023.3282257.

Digital Object Identifier 10.1109/TASE.2023.3282257

I. INTRODUCTION

IN THE past decade, reinforcement learning [1] has received
widespread attention for its effective potential on a series

of sequential decision-making problems. Furthermore, the
combination with deep learning makes it possible to achieve
human-level control on some complex tasks, e.g., playing
Go [2], video games [3], [4], and robot control [5], [6],
[7]. However, it usually comes with the tradeoff between
exploration and exploitation. Namely, it might be extravagantly
expensive to reach an expected performance. During the
learning process, the data collection and policy evolution are
strongly correlated, which implies that a well-designed strat-
egy for action selection may benefit the following iterations.

This topic is intensively studied in multi-armed bandits
(MAB) [1] and statistical ranking and selection (R&S) [8].
Both of them study the sampling strategy on finite actions,
whose rewards have unknown distributions. Within limited
sampling budget, MAB focuses on gathering more cumulative
rewards (or equivalently fewer regret), while R&S aims to
identify the best action with higher confidence. Classical
MAB algorithms include optimistic initial values (OIV) [1],
upper confidence bound (UCB) [9], and Thompson sampling
(TS) [10], [11]. These algorithms perform competitively in
minimizing regret but are more conservative in identifying
the best action [12]. In contrast, R&S (or best arm identi-
fication, i.e., BAI, in computer science) performs better in
identifying the best alternative with higher confidence. A rep-
resentative approach is optimal computing budget allocation
(OCBA) [13], [14], [15], which gives a closed-form budget-
allocation strategy to maximize the probability of correct
selection (PCS). The allocation problem could also be for-
mulated as stochastic control, and an approximately optimal
allocation strategy could be derived from the associated Bell-
man equation [16]. There are also approaches designed to
maximize the expected value of information (EVI) [17]. For
example, linear loss (LL) [17] and its variant LL1 [18], [19]
allocate sampling budget to minimize the expected opportu-
nity cost (EOC) [17]. A more comprehensive review can be
found in [20]. These algorithms provide effective sampling
strategies based on the posterior performance distributions,
but expanding them to Markov decision process (MDP) is
not straightforward. On the one hand, the crucial interplay
between states and actions is not under consideration. On the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-4562-3901
https://orcid.org/0009-0003-4648-4127
https://orcid.org/0000-0002-4683-7215
https://orcid.org/0000-0002-0909-5419

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

other hand, the performance distributions in MAB and R&S
are time-invariant, but in MDP, they frequently vary with the
updating of behavior policies.

The most widely used sampling strategy for interacting with
MDP is ϵ-greedy, which selects the empirically best action
with probability 1 − ϵ or a random one with probability ϵ.
It is widely applied in Q-learning [21] and Deep Q-networks
(DQN) type algorithms [3], [22], [23], [24]. However, the
ϵ-greedy strategy allocates sampling efforts based on the
estimated discounted cumulative reward without considering
the predictive uncertainty. The predictive uncertainty gives a
measurement of the risk of false selection, without which a
low training efficiency with exponentially many steps to learn
might be caused [25]. Besides this, Bayesian Q-learning [26]
selects the action with maximal posterior probability to be the
best, where the probability is calculated by the approximated
distribution of the remaining rewards. Similarly, the predictive
uncertainty can also serve as a bonus during policy evaluation,
which also improves efficiency [25]. However, these methods
can only be applied to MDPs with discrete states and actions,
where the action values (expected cumulative rewards starting
from the given state-action pair) have tabular representations.
These tabular-based algorithms are hard to expand to more
complex tasks, especially those with continuous states or
actions.

In practice, many real-world tasks can be characterized as
MDPs with continuous states and actions, where typically RL
algorithms with function approximations are adopted. These
algorithms can be categorized into deterministic-policy-based
algorithms and stochastic-policy-based algorithms. Similar
to ϵ-greedy, the sampling strategies of deterministic-policy-
based algorithms, e.g., deep deterministic policy gradient
(DDPG) [27] and twin delayed deep deterministic policy
gradient (TD3) [28], take the adjacent area of the evaluated
best action into account, without considering the predictive
uncertainty. For stochastic-policy-based algorithms, e.g., trust
region policy optimization (TRPO) [29], proximal policy opti-
mization (PPO) [30], and soft actor-critic (SAC) [31], [32],
[33], the policies are trained with the estimated action values,
without considering the predictive uncertainty neither. These
may derive the accumulation of estimation errors along with
the sequential states and lead to sub-optimal policies or even
divergence [28].

A potential approach to address above issues is incorporat-
ing predictive uncertainties into the sampling process, as afore-
mentioned MAB and R&S literature. However, for continuous
MDPs, the efficient sampling strategies with counting-based
uncertainty estimation are hard to be applied, since storing the
statistics for infinite state-action pairs is impractical. Besides,
the correlation between adjacent state-action pairs is not well
utilized. Nevertheless, learning from this, it is feasible to
incorporate confidence-based action selection with ensemble-
based predictive-uncertainty estimation, which is realized by
measuring the diversity of multiple function approximations.
For example, Chen et al. [34] use Q-ensembles to estimate
the predictive uncertainty and design an UCB-based sampling
strategy for discrete actions. A similar idea arises in [35],
where the UCB-based sampling strategy is further generalized

to handle continuous actions by incorporating policy ensem-
bles. As shown in [36], by incorporating some techniques to
enforce diversity, the predictive uncertainty can be effectively
estimated. This makes it possible to further improve the perfor-
mance of modern off-policy RL algorithms by incorporating
confidence-based sampling strategies, e.g., UCB and TS [35].
However, such MAB algorithms are a little conservative in
identifying the best action, since exploitation is slightly over-
weighted [12].

Since RL algorithms are designed to accumulate more long-
term rewards, a better sampling-effort allocation strategy has
great potential to accelerate training. Namely, the tradeoff
between exploration and exploitation should be adequately
considered. On the one hand, if the action is selected with
high confidence, we tend to exploit it and focus on the
remaining trajectories. On the other hand, if the confidence
is low, enhancing exploration has a more important long-term
effect. A similar idea of efficiently accumulating evidence for
decision-making arises in the aforementioned OCBA, which
provides an asymptotically optimal strategy to maximize PCS
for R&S problems. Motivated by this, we design an efficient
sampling strategy by expanding the results of OCBA to the
sampling process of RL. In the proposed algorithms, both
the confidence evaluation and sampling-effort allocation are
well considered. We firstly estimate the predictive uncertainty
with ensembles. Then, under the tabular setting, we propose a
confidence-based sampling strategy by relating the sampling
process of RL to computing effort allocation in OCBA.
We theoretically build the convergence property and further
generalize it to continuous MDPs. The proposed OCBA-based
sampling strategy can be incorporated into various off-policy
algorithms. In this work, we take Q-learning, DQN, and SAC
as instances to show the incorporation. Finally, we eval-
uate the proposed algorithms with experiments, where the
OCBA-based RL algorithms show superior performance than
the baselines. The standing of this work could be seen from
three aspects. First, compared with prior arts in R&S [13],
[17], [18], [19], we expand the sampling-effort allocation to
more general situations of MDPs. Second, compared with
existing ensemble-based RL algorithms [34], [35], we replace
the widely used UCB with OCBA, which is more effective in
identifying the best actions. Third, we expand the assumption
of bounded reward in prior work [37] to a more general
situation, where the rewards are only assumed to have bounded
mean and variance.

The main contributions are as follows:
1) We facilitate the sampling process of RL with computing

effort allocation in OCBA, based on which an efficient
sampling strategy is proposed. In addition, we give a
criterion to measure confidence and provide a sampling
strategy to efficiently identify the best action. To the
best knowledge of authors, this is the first work to
incorporate OCBA into the sampling process of infinite-
horizon MDPs.

2) We adopt ensemble-based predictive-uncertainty estima-
tion, which makes the OCBA-based sampling strategy
effective for both tabular representations and nonlinear
function approximations. Besides, by incorporating pol-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: OCBA-BASED METHOD FOR EFFICIENT SAMPLE COLLECTION IN RL 3

icy ensemble, the OCBA-based sampling strategy can
be applied to almost all common RL settings.

3) We integrate the OCBA-based sampling strategy with
three modern RL algorithms, e.g., Q-learning, DQN, and
SAC, and validate their effectiveness through numerical
experiments. The results show that the OCBA-based
sampling strategy remarkably improves the performance
compared with the baseline algorithms.

The rest of this paper is organized as follows. We pro-
vide the preliminary in Section II, introduce the proposed
algorithms in Section III, give the convergence analysis in
Section IV, present the experimental results in Section V, and
briefly conclude in Section VI.

II. PRELIMINARY

In this section, we first introduce some basic RL concepts
and off-policy RL algorithms. Then, we present the main
results of OCBA, which is used to develop the sampling
strategy later.

A. Reinforcement Learning

We consider a sequential decision-making problem, which
can be characterized as an MDP, ⟨S,A, P, R, γ ⟩, where S
and A are the state and action spaces, R(s, a) : S ×A→ R1

is the reward function that assigns each state-action pair a
stochastic reward whose mean and variance are bounded, and
γ ∈ (0, 1) is the discount factor for balancing instantaneous
and future rewards. In the situation where S is discrete,
P(s ′|s, a) : S × A × S → [0, 1] defines the state transition
probability of transiting from state s to s ′ by taking action a,
while in the situation where S is continuous, P(s ′|s, a) : S ×
A×S → [0,+∞) defines corresponding state transition prob-
ability density. The agent intends to maximize the discounted
cumulative reward (so-called “return”), Rt =

∑
∞

k=0 γ krt+k ,
where rt+k is the reward given by the reward function R at
time t + k.

The action-value function Qπ (s, a) = E[Rt |st = s, at = a]
is defined as the expected return of taking action a under state
s and then following policy π , where in the situation where A
is discrete, π(a|s) : S ×A→ [0, 1] defines the probability of
taking action a under state s, while in the situation where
A is continuous, π(a|s) : S × A → [0,+∞) defines
corresponding probability density. The optimal action-value
function is defined as

Q∗(s, a) = max
π

Qπ (s, a), ∀(s, a) ∈ S ×A, (1)

which follows the Bellman equation

Q∗(s, a) = E
s ′∼P(·|s,a)

(R(s, a)+ γ max
a′

Q∗(s ′, a′)), (2)

and could be obtained through value-iteration algorithms.
There are various algorithms to solve MDPs under different

settings. We conclude the representative works in TABLE I.
For example, when both S and A are finite, the action-value

1R is the set of real numbers.

TABLE I
CATEGORIZATION OF REPRESENTATIVE RL ALGORITHMS

function could be described with a look-up table. Then, Q-
learning [21] could be applied to estimate the optimal action-
value function. It starts from random initialization and recur-
sively updates estimation following

Qt+1(st , at) = (1− αt (st , at))Qt (st , at)

+ αt (st , at)(rt + γ max
a

Qt (st+1, a)), (3)

where αt (s, a) ∈ [0, 1] is the step size taking non-zero value
only on (s, a) = (st , at). If all state-action pairs are performed
infinitely often, and∑

t

αt (s, a) = ∞
∑

t

α2
t (s, a) <∞ (4)

holds for all (s, a) ∈ S × A, the action values will converge
with probability 1 (w.p.1) to Q∗ [37].

Since tabular representations have limited capacity, they are
typically replaced with function approximations if the states
are continuous. For example, DQN approximates the action
values with neural networks and realizes value iteration by
minimizing the residual error

L(θ) =
1
N

∑
et∈B

(rt + γ max
a

Qθ−(st+1, a)− Qθ (st , at))
2, (5)

where θ , θ− are the parameters of the current network
Qθ and target network Qθ− , respectively. The target net-
work is adopted for stabilizing learning and is gradually
updated towards θ during the training process. Besides, et =

(st , at , rt , st+1) ∈ B is the experience collected at time t , and
N is the size of mini-batch B.

A more complex situation is that actions are continuous,
which makes the max(·) function in (3) and (5) hard to
be calculated. In order to handle this situation, some actor-
critic algorithms, e.g., DDPG [27], TD3 [28], and SAC [31],
[32], [33], incorporate a separate actor to inference the best
action. In this way, they separate the training process into two
phases, i.e., policy evaluation and policy improvement. Taking
SAC, a state-of-the-art off-policy actor-critic algorithm, as an
example, during policy evaluation, the action-value function,
i.e., critic, is updated by minimizing the residual error

L(θ) =
1
N

∑
et∈B

(yt − Qθ (st , at))
2, (6)

where

yt = rt + γ Qθ−(st+1, a′t+1)− ν log πφ(a′t+1|st+1) (7)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Illustration of OCBA. The shaded regions denote the distributions
of rewards.

is the soft target value, and the temperature ν determines the
relative importance of the entropy against the reward. The
action a′t+1 is freshly sampled from the actor πφ(·|s), which
embeds a probability density over the continuous action space,
and φ is the parameter. During policy improvement, the actor
is updated by maximizing the entropy-regularized action value,

J (φ) =
1
N

∑
et∈B

(Qθ (st , a′t)− ν log πφ(a′t |st)), (8)

where a′t is freshly sampled from πφ(·|st). In order to address
the overestimation error and stabilize learning, SAC also
incorporates target networks and clipped double-Q estimation,
whose details can be found in [32].

B. Optimal Computing Budget Allocation

OCBA [13] is an effective technology for resources allo-
cation in the field of simulation-based optimization [42],
[43]. As shown in Fig. 1, there are k alternatives {i}ki=1,
whose performance follows Gaussian distributions N (µ1, σ

2
1),

N (µ2, σ
2
2), · · · , N (µk, σ

2
k), respectively. The agent aims to

identify the best alternative in the sense of mean performance,
i.e., b = argmaxi µi , with higher confidence.

Conduct a thought experiment that total T simulation repli-
cations are allocated to the alternatives, where each alternative
i is allocated with Ni replications, and

∑k
i=1 Ni = T . Then,

given the samples, the confidence is evaluated by PCS

PCS = P(∩i ̸=b(µb > µi)|X), (9)

where X = {{Xm
i }

Ni
m=1}

k
i=1 is the collection of samples, Xm

i
is the m-th sample from alternative i , and P(e) denotes
the probability of event e occurring. If we use Gaussian
distribution to approximate the posterior distribution for the
unknown mean and adopt a non-informative prior distribution,
the posterior distribution of µi is given in [44] as

µ̂i ∼ N (
1
Ni

Ni∑
m=1

Xm
i ,

σ 2
i

Ni
). (10)

Then, PCS could be rewritten as

PCS = P(∩i ̸=b(µ̂b > µ̂i)), (11)

which is lower bounded by the approximate probability of
correct selection (APCS)

APCS = 1−
∑
i ̸=b

P(µ̂b ≤ µ̂i). (12)

Since APCS provides an approximation of PCS and is easier
to be calculated [13], it will be used as a criterion to control
the sampling process of RL in the next section.

It can be seen from (10) that the computing budget alloca-
tion {Ni }

k
i=1 affects PCS and APCS by affecting the posterior

distributions. Therefore, towards higher confidence, OCBA
formulates the problem as

argmax
N1,··· ,Nk

APCS s.t.
k∑

i=1

Ni = T (13)

and gives an asymptotically optimal solution

Ni

N j
= (

σi/δb,i

σ j/δb, j
)2, i ̸= b and j ̸= b

Nb = σb(
∑
i ̸=b

N 2
i

σ 2
i

)
1
2

∑
i

Ni = T (14)

where δb,i = µb − µi is the performance difference. Getting
out of the thought experiment, when allocating budget as (14),
both µi and σi are estimated by earlier samples. Although the
estimated parameters are not accurate, the allocation results
still make sense by alternating between re-estimation and re-
allocation [8]. Other details of OCBA can be found in [13].

Based on the observation that OCBA performs effectively in
identifying the best alternative in R&S problems, we attempt
to expand it to MDP situations and develop an OCBA-based
sampling strategy for RL. The details are introduced in the
next section.

III. METHODOLOGY

In this section, we propose the main OCBA-based sampling
strategy. We first put forward the ensemble-based predictive-
uncertainty estimation, which is generalizable from tabular
representations to function approximations, e.g., neural net-
works. Then, based on the distributions estimated with ensem-
bles, the allocation strategy of OCBA is then mapped into
a sampling distribution over the action space. In principle,
this sampling strategy can be integrated into all off-policy
algorithms in TABLE I. In this section, we take Q-learning,
DQN, and SAC as instances to show the incorporation in the
situation of 1) discrete states and actions, 2) continuous states
and discrete actions, and 3) continuous actions, respectively.
The incorporation with other off-policy algorithms can be
realized in a similar way.

We firstly introduce the predictive-uncertainty estimation.
Since the solution of (2) is hard to be precisely calculated in
large-scale problems, the action values are typically estimated
with sample trajectories. Therefore, the estimated action values
might be different across multiple runs. Namely, for each state-
action pair, the estimated action value at a given time step is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: OCBA-BASED METHOD FOR EFFICIENT SAMPLE COLLECTION IN RL 5

a random variable that follows certain distribution, and the
estimated action value in each run is just a sample. Then,
in order to estimate the distributions to make better decisions,
we approximate the action values with an ensemble of M
independent estimations {Qθ i }

M
i=1 and calculate the mean and

variance with

µ(Qθ (s, a)) =
1
M

M∑
i=1

Qθ i (s, a) (15)

σ 2(Qθ (s, a)) =
1
M

M∑
i=1

(Qθ i (s, a)− µ(Qθ (s, a)))2, (16)

where by slightly abusing of notation, Qθ represents the
ensemble {Qθ i }

M
i=1, and θ =

{
θ i

}M
i=1 is the aggregation of

parameters. As shown in [36], by setting a proper ensemble
size M , σ 2(Qθ) is effective in estimating the predictive
uncertainty, and the estimation precision is even better than
the benchmark Bayesian neural networks.

For each state-action pair, we empirically use Gaus-
sian distributions to approximate the posterior distribu-
tions of estimated action values across multiple runs.
As in OCBA, we adopt a non-informative prior distribu-
tion, and therefore the posterior distribution is estimated as
N (µ(Qθ (s, a)), σ 2(Qθ (s, a))). Then, maximizing the proba-
bility of identifying the best action with noisy action-value
estimations falls into the scope of OCBA, where (14) provides
an asymptotically optimal solution. Note that normalizing
the results in (14) provides an allocation strategy that is
independent of T , which implies that it actually provides a
proportional relationship of the budget allocated to each action.
Based on this observation, we normalize (14) to a sampling
distribution pi =

Ni
T , with which the long-term allocation

converges to the optimal solution. By replacing µi , σi in (14)
with the ensemble-based estimations in (15) and (16), the
probability of taking each action a under state s is obtained
as

pθ (a|s) =

σ(Qθ (s, a∗))τθ (s)

zθ (s)
, a = a∗

σ 2(Qθ (s, a))

δ2
θ (s, a∗, a)zθ (s)

, o.w.

, (17)

where

a∗ = argmax
a

µ(Qθ (s, a)), (18)

δθ (s, a∗, a) = µ(Qθ (s, a∗))− µ(Qθ (s, a)), (19)

τθ (s) = (
∑
a ̸=a∗

σ 2(Qθ (s, a))

δ4
θ (s, a∗, a)

)
1
2 , (20)

and

zθ (s) =
∑
a ̸=a∗

σ 2(Qθ (s, a))

δ2
θ (s, a∗, a)

+ σ(Qθ (s, a∗))τθ (s). (21)

After that, we integrate the OCBA-based sampling strategy
(17) into three off-policy algorithms to show the incorporation
with RL.

A. OCBA-Based Q-Learning

Q-learning is an off-policy temporal-difference algorithm,
which directly estimates the optimal action-value function Q∗.
Different from the original ϵ-greedy policy, inspired by the
concept of APCS, the proposed sampling strategy starts by
estimating the decision confidence with

Cθ (s) = 1−
∑
a ̸=a∗

∫ ιθ (s,a)

−∞

f (x)dx, (22)

where ιθ (s, a) = −δθ (s,a∗,a)√
σ 2(Qθ (s,a))+σ 2(Qθ (s,a∗))

, a∗ is the estimated

best action defined in (18), and f (·) is the probability density
function of standard Gaussian distribution. Since APCS pro-
vides a lower bound of PCS, Cθ (s) is used as a measurement
of decision confidence. If Cθ (s) is larger than the threshold
η, the agent will exploit a∗. Otherwise, the agent will explore
actions to accumulate evidence for a reliable decision. In the
latter situation, the OCBA-based sampling distribution in (17)
will be adopted to accumulate evidence in a more efficient
way.

Indeed, similar to ϵ-greedy, we perform an ϵ-OCBA policy

p̃θ (a|s) =

(1− ϵ)pθ (a|s)+

ϵ

|A|
, Cθ (s) ≤ η

(1− ϵ) I(a = a∗)+
ϵ

|A|
, Cθ (s) > η

(23)

for alleviating the model error, where |A| is the number of
feasible actions, and I(e) is the indicator function taking value
one if and only if event e occurs (otherwise taking value zero).

By recurrently updating the value estimations following

Qθ i (st , at) = (1− αt (st , at))Qθ i (st , at)+ αt (st , at)yt , (24)

where αt ∈ [0, 1] satisfies (4), and

yt = rt + γ max
a′

µ(Qθ (st+1, a′)), (25)

all the action-value estimations converge to Q∗.
The pseudo-code is provided in Algorithm 1, and the

analysis towards its convergence is given in Section IV. In this
work, we finish the training process when the total sample
budget T is used up.

B. OCBA-Based DQN

As an extension of Q-learning, DQN replaces the look-up
tables with deep neural networks. Namely, each item in the

Algorithm 1 OCBA-Based Q-Learning

Randomly initialize {Qθ i }
M
i=1; set the step size αt , step

counter t = 0, parameter for exploration ϵ, and total sample
budget T ; observe the initial state s0.
repeat

Sample action at with the OCBA-based sampling strategy
at ∼ p̃θ (·|st).
Execute at and observe st+1, rt .
Update the action-value estimations with (24).
Set the iteration counter t ← t + 1.

until t = T .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

ensemble {Qθ i }
M
i=1 is a separate neural network. Besides,

OCBA-based DQN adopts the same sampling strategy as
OCBA-based Q-learning, which firstly estimates the decision
confidence with Cθ (s) and then decides to exploit a∗ or
explore actions with the OCBA-based sampling strategy. The
overall sampling strategy is given in (23). In order to esti-
mate the optimal action values, the agent alternates between
interacting with the environment and updating the estimations.
After each iteration, an experience et = (st , at , rt , st+1) will
be stored in the replay buffer D. Then, a mini-batch B will
be randomly sampled from D to update the action-value
estimations. The loss for each neural network is given by the
residual error

L(θ i) =
1
N

∑
et∈B

(yt − Qθ i (st , at))
2, (26)

where yt = rt +γ maxa µ(Qθ−(st+1, a)), Qθ− is the ensemble
of target networks {Qθ i−}

M
i=1, and θ− = {θ i−

}
M
i=1 is the

aggregation of parameters. Finally, the neural networks are
updated by performing stochastic gradient descent on L(θ i)

recurrently.
The pseudo-code is provided in Algorithm 2, where we

incorporate experience replay and target networks to improve
the performance. In order to stabilize training, in each time
step, the target networks are slightly modified towards the
current networks with a small step size κ .

Algorithm 2 OCBA-Based DQN

Randomly initialize {Qθ i }
M
i=1, and set the target parameters

θ− ← θ ; set the step size for target networks κ , replay
buffer D = ∅, step counter t = 0, parameter for exploration
ϵ, and total sample budget T ; observe the initial state s0.
repeat

Sample action at with the OCBA-based sampling strategy
at ∼ p̃θ (·|st).
Execute at and observe st+1, rt .
Store et = (st , at , rt , st+1) in D.
Update the action-value estimations by performing gra-
dient descent on L(θ i), which is defined in (26).
Update the target networks with

θ−← (1− κ)θ− + κθ (27)

Set the iteration counter t ← t + 1.
until t = T .

C. OCBA-Based SAC

As a state-of-the-art actor-critic algorithm for handling
MDPs with continuous actions, SAC maintains a separate
actor to generate actions. Similar to that, OCBA-based SAC
maintains an action-value ensemble {Qθ i }

M
i=1 and a policy

ensemble {πφi }
M
i=1, where πφi (a|s) is the probability density of

taking action a under state s. Correspondingly, the optimiza-
tion process is divided into two phases, i.e., policy evaluation
and policy improvement.

In policy-evaluation phase, each action-value estimation is
updated towards minimizing the residual error

L(θ i) =
1
N

∑
et∈B

(
yi

t − Qθ i (st , at)
)2

, (28)

where

yi
t = rt + γ (µ(Qθ−(st+1, ai ′

t+1))− ν log πφi (ai ′
t+1|st+1)),

(29)

and ai ′
t+1 is freshly sampled from πφi (·|st+1). The policy

ensemble makes it possible to apply OCBA-based sampling
strategy (17) on the proposed action set. Namely, in each time
step, we firstly collect a set of actions {ai

t ∼ πφi (·|st)}
M
i=1 and

then select one based on the OCBA-based sampling strategy.
In policy-improvement phase, each actor is updated by

performing gradient ascent on the entropy-regularized action
values

J (φi) =
1
N

∑
et∈B

(Qθ i (st , ai ′
t)− ν log πφi (ai ′

t |st)), (30)

where ai ′
t is freshly sampled from πφi (·|st). By training each

actor with a separate critic as in (30), we further enhance the
diversity of policies to learn multi-modal behaviors.

The pseudo-code is provided in Algorithm 3, where the ϵ-
OCBA policy is defined as

p̃θ (ai
t |st) =

(1− ϵ)pθ (ai

t |st)+
ϵ

M
, Cθ (st) ≤ η

(1− ϵ) I(ai
t = a∗t)+

ϵ

M
, Cθ (st) > η

,

(31)

where a∗t = argmaxai
t∈At

µ(Qθ (st , ai
t)) in this situation.

Algorithm 3 OCBA-Based SAC

Randomly initialize {Qθ i }
M
i=1 and

{
πφi

}M
i=1; set the target

parameters θ−← θ , step size for target networks κ , replay
buffer D = ∅, step counter t = 0, and total sample budget
T ; observe the initial state s0.
repeat

Collect actions At = {ai
t ∼ πφi (·|st)}

M
i=1.

Sample an action at ∼ p̃θ (·|st) from At .
Execute at and observe st+1, rt .
Store et = (st , at , rt , st+1) in D.
Update the critics by performing gradient descent on
L(θ i), which is defined in (28).
Update the actors by performing gradient ascent on
J (φi), which is defined in (30).
Update the target networks with

θ−← (1− κ)θ− + κθ. (32)

Set the iteration counter t ← t + 1.
until t = T .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: OCBA-BASED METHOD FOR EFFICIENT SAMPLE COLLECTION IN RL 7

IV. THEORETICAL RESULTS

In this section, we discuss the convergence property of the
proposed OCBA-based Q-learning algorithm. Compared with
prior works [37], [45], which consider a single action-value
estimation and bounded rewards, we study a more general
case, where multiple action-value estimations are updated
dependently, and the rewards are assumed to have bounded
mean and variance. For ease of presentation, the notations
are slightly different from prior sections. We replace the prior
notation Qθ = {Qθ i } with Qt = {Qi

t }
M
i=1 to represent the

estimated action values at time step t . Besides, for consistency
of notations, we use pt and p̃t to represent the same quantities
defined in (17) and (23), respectively.

The main theorem is developed on the following lemmas.
Lemma 1: [46] The random process {1t } taking values in

Rn is defined as

1t+1(x) = (1− αt (x))1t (x)+ αt (x)Ft (x), (33)

where αt (x) is the step size for x at time step t, and Ft is a
random process. Let Ft = {Fi |∀i < t}, then 1t converges to
0 w.p.1 if the following conditions are satisfied for all x.

1) 0 ≤ αt (x) ≤ 1,
∑
∞

t=0 αt (x) = ∞,
∑
∞

t=0 α2
t (x) <∞;

2) ∃ϑ < 1, so that |E[Ft (x)|Ft]| ≤ ϑ ||1t ||∞;
3) ∃C > 0, so that var[Ft (x)|Ft] ≤ C(1+ ||1t ||

2
∞

).
Lemma 2: [37] Given a finite MDP, ⟨S,A, P, R, γ ⟩, the

Q-learning algorithm given by the update rule

Qt+1(st , at) = Qt (st , at)+ αt (st , at)[yt −Qt (st , at)], (34)

where yt = rt + γ maxa′ Qt (st+1, a′), converges w.p.1 to the
optimal action-value function as long as each state-action pair
is performed infinitely often, and∑

t

αt (s, a) = ∞
∑

t

α2
t (s, a) <∞ (35)

holds for all (s, a) ∈ S ×A.
Lemma 1 gives a general criterion for the convergence of

random process, based on which Lemma 2 establishes the
convergence property of Q-learning. However, in the original
proof of Lemma 2 [37], they assume the rewards to be
bounded. In order to relax it to rewards with bounded mean
and variance, e.g., Gaussian rewards, we give a modified proof
in Appendix A.

Then, based on the lemmas, we provide the main theorem
as follows.

Theorem 1: Give a finite MDP ⟨S,A, P, R, γ ⟩, whose
rewards have bounded mean and variance. The OCBA-based
Q-learning agent maintains an ensemble of action-value esti-
mations {Qi

t }
M
i=1 and selects actions following the ϵ-OCBA

policy

p̃t (a|st) =

(1− ϵ)pt (a|st)+

ϵ

|A|
, Ct (st) ≤ η

(1− ϵ) I(a = a∗)+
ϵ

|A|
, Ct (st) > η

(36)

where pt is defined in (17). The estimations are updated with

Qi
t+1(st , at) = (1− αt (st , at))Qi

t (st , at)+ αt (st , at)yt , (37)

where yt = rt+γ maxa′ µ(Qt (st+1, a′)), αt (s, a) ∈ [0, 1] takes
non-zero values only on (s, a) = (st , at), and (35) holds for
all (s, a) ∈ S×A. Then the estimations converge w.p.1 to the
optimal action-value function, i.e.,

lim
t→∞

Qi
t (s, a) = Q∗(s, a), ∀(s, a) ∈ S ×A, ∀i ∈ 1, · · · , M .

(38)
Proof: Let us start by proving that µ(Qt) converges to

the optimal action-value function Q∗, which is defined in (1).
By averaging the two hands of (37), we obtain the update rule
for µ(Qt), i.e.,

µ(Qt+1(st , at))

= (1− αt (st , at))µ(Qt (st , at))+ αt (st , at)yt . (39)

Since p̃t (a|s) ≥ ϵ
|A| > 0 holds for all (s, a) ∈ S ×A, which

implies that each reachable state-action pair will be performed
infinitely often, it is easy to validate that µ(Qt) converges to
the optimal action-value estimation, i.e.,

lim
t→∞

µ(Qt (s, a)) = Q∗(s, a), ∀(s, a) ∈ S ×A, (40)

by replacing Qt in Lemma 2 with µ(Qt).
Then, we prove that each action-value estimation converges

to µ(Qt). We first derive the update rule of σ(Qt) by

σ 2(Qt+1(st , at))

=
1
M

M∑
i=1

(Qi
t+1(st , at)− µ(Qt+1(st , at)))

2

=
1
M

M∑
i=1

(1− αt (st , at))
2(Qi

t (st , at)− µ(Qt (st , at)))
2

= (1− αt (st , at))
2 1

M

M∑
i=1

(Qi
t (st , at)− µ(Qt (st , at)))

2

= (1− αt (st , at))
2σ 2(Qt (st , at)). (41)

Since αt (st , at) ∈ [0, 1], the update rule of σ(Qt) could be
obtained as,

σ(Qt+1(st , at)) = (1− αt (st , at))σ (Qt (st , at)). (42)

Further, by replacing 1t with σ(Qt) and setting Ft (x) = 0,
Lemma 1 establishes the convergence property, i.e.,

lim
t→∞

σ(Qt (s, a)) = 0, ∀(s, a) ∈ S ×A. (43)

Based on (40) and (43), all of the action-value estimations
converge to Q∗, which concludes the proof. □

To sum up, Theorem 1 establishes the convergence property
of OCBA-based Q-learning. We remark that like in related
works [37], [45], [47], [48], the convergence property is only
established under the finite settings. However, as shown in
most temporal-difference learning-based algorithms, e.g., [3],
[27], [28], replacing the look-up tables with function approx-
imations, e.g., neural networks, also show satisfying results.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. Testing results of vanilla Q-learning, UCB-based Q-learning (denoted as UCB Q-learning), and OCBA-based Q-learning (denoted as OCBA Q-learning).
The lines and shaded regions represent the mean and standard deviation across five runs.

V. EXPERIMENTAL RESULTS

In this section, we conduct several experiments to evaluate
the effectiveness of the proposed OCBA-based sampling strat-
egy. For the selection of ensemble size M , we give a qualitative
analysis in Appendix B, based on which we set M = 5 for
all the experiments. Besides, detailed hyper-parameters are
provided in Appendix C.

Firstly, we compare the vanilla Q-learning [21], UCB-based
Q-learning [34], and OCBA-based Q-learning on some MDPs
with finite states and actions. Taking the MDP with state space
S = {s}Ss=1 and action space A = {a}Aa=1 as example, the state
transition probability is designed as

P(s ′|s, a) =
exp(−20(g(s ′, s, a)/(S − 1))2)∑S
s̃=1 exp(−20(g(s̃, s, a)/(S − 1))2)

, (44)

where g(s̃, s, a) = min j∈Z |s̃ + j S − a + (A+ 1)/2|, and Z is
the set of integers. Besides, the reward is given by

R(s, a) = e−5((2s−S−1)/(S−1))2
+ 0.1e−5((2a−A−1)/(A−1))2

+ ς,

(45)

where ς ∼ N (0, 0.12) is a Gaussian noise. We remark
that UCB-based Q-learning adopts a similar ensemble-based
uncertainty estimation but selects actions following pθ (a|st) =

(1− ϵ) I(a = a∗t)+
ϵ
|A| , where a∗t = argmaxa(µ(Qθ (st , a))+

ασ(Qθ (st , a))), and α > 0 is a temperature coefficient. In the
experiments, the sizes of decision spaces, i.e., S × A, are
set as 10 × 5, 10 × 10, 30 × 10, and 50 × 50, respectively.
The learned policies are tested at every fixed interval, and the
performance is evaluated by cumulative rewards. The results
are shown in Fig. 2, where OCBA-based Q-learning shows
the best performance in all tasks. Besides, OCBA-based Q-
learning has the smallest variance, which implies that the
OCBA-based sampling strategy makes the training process
stable. Compared with UCB-based Q-learning, OCBA-based
Q-learning converges faster, which is reasonable since the
situation of identifying the best action for each state in RL is
similar to R&S, where typically OCBA is more efficient. This
also reveals that the OCBA-based sampling strategy makes
a better tradeoff between exploration and exploitation. If the
decision confidence is low, the OCBA-based sampling strategy
provides an effective approach to accumulate more evidence
for a reliable decision.

Then, we conduct experiments on four classic-control tasks,
i.e., CartPole, MountainCar, Acrobot, and Spread, to evaluate
OCBA-based DQN. The first three tasks are provided by
OpenAI Gym [49], and the last is provided in [50]. Since these
tasks have continuous states and discrete actions, we provide

TABLE II
DESCRIPTIONS OF DECISION SPACES

TABLE III
DESCRIPTIONS OF DECISION SPACES

their dimension of states d(S) and number of feasible actions
|A| in TABLE II for a comparison. We set two baseline algo-
rithms, SUNRISE (DQN version) [35] and vanilla DQN [3].
SUNRISE incorporates ensemble-based uncertainty estimation
and UCB-based sampling strategy, and vanilla DQN [3] adopts
ϵ-greedy sampling strategy. The results are shown in Fig. 3,
where OCBA-based DQN outperforms the baseline algorithms
in all the environments. Similar to the tabular situations in
Fig. 2, OCBA-based DQN converges faster and performs
more stable, which implies that both the ensemble-based
predictive-uncertainty estimation and OCBA-based sampling
strategy can be effectively expanded to the situations of
nonlinear function approximations. Besides, the OCBA-based
sampling strategy performs better in complex situations, e.g.,
Fig. 2d and Fig. 3d, which implies its potential to han-
dle large-scale problems. Moreover, from these experiments,
it can be found that the OCBA-based algorithms significantly
accelerate training in the initial phase, which further benefits
later iteration due to the sequential relationship among states.
As a consequence, the OCBA-based sampling strategy shows
advantages in reducing sampling efforts.

Finally, we evaluate OCBA-based SAC on some continuous-
control tasks, i.e., HalfCheetah, Walker, Hopper, and Ant,
which are provided by OpenAI Gym and MuJoCo simu-
lator. Since these tasks have continuous states and actions,
we provide their dimension of states d(S) and dimension
of actions d(A) in TABLE III. We take eight state-of-
the-art algorithms as baselines, including three model-based
algorithms (PETS [53], POPLIN [52], and ME-TRPO [54]),
two on-policy model-free algorithms (TRPO [29] and
PPO [30]), two off-policy model-free algorithms (TD3 [28]
and SAC [32]), and an ensemble-based algorithm (SAC-
version SUNRISE [35]) which incorporates ensemble-based
predictive-uncertainty estimation and UCB-based sampling
strategy. The results are reported in TABLE IV. In the first
three environments, OCBA-based SAC obtains the best scores,
especially in HalfCheetah, where it surpasses other algorithms

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: OCBA-BASED METHOD FOR EFFICIENT SAMPLE COLLECTION IN RL 9

Fig. 3. Testing results of vanilla DQN, SUNRISE (DQN version), and OCBA-based DQN (denoted as OCBA DQN). The lines and shaded regions represent
the mean and standard deviation across five runs.

Fig. 4. Testing results of vanilla SAC, SUNRISE (SAC version), and OCBA-based SAC (denoted as OCBA SAC). The lines and shaded regions represent
the mean and standard deviation across three runs.

TABLE IV
PERFORMANCE COMPARISON ON CONTINUOUS TASKS

by a remarkable margin. In Ant task, OCBA-based SAC
does not obtain the best score but still performs similarly to
TD3 and SAC, which are state-of-the-art off-policy model-
free algorithms. In TABLE IV, compared with model-based
algorithms, i.e., PETS, POPLIN, and ME-TRPO, OCBA-
based SAC performs competitively from the aspect of sample
efficiency. Empirically, model-based algorithms have higher
sample efficiency but suffer from relatively worse asymptotic
performance due to the bias of models. Therefore, OCBA-
based SAC provides an effective approach that not only has
competitive sample efficiency but executes in a model-free
manner. Compared with the on-policy model-free algorithms,
i.e., TRPO and PPO, OCBA-based SAC performs better in
all the tasks, which validates the positive impact of the
OCBA-based sampling strategy. In order to intuitively show
the superior performance of OCBA-based SAC, we provide
the learning curves in Fig. 4, where OCBA-based SAC shows
remarkable gains towards the baseline algorithms in the first
three tasks. In the last task, OCBA-based SAC and UCB-based
SAC perform similarly, but compared with vanilla SAC, the

Fig. 5. Length of confidence intervals with respect to M .

proposed algorithm also shows a remarkable improvement in
the initial training phases. These results verify the effectiveness
of the OCBA-based sampling strategy in continuous control
tasks.

To sum up, we implement the proposed algorithms on some
benchmarks and compare them with baseline algorithms. It is
shown that the OCBA-based sampling strategy significantly
reduces the sampling efforts and meanwhile stabilizes training.
Moreover, as an orthogonal technique, OCBA-based sampling

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

strategy can be easily superimposed with other techniques,
e.g., dueling network [24], prioritized experience replay [55],
and noisy net [56], to further improve the performance.

VI. CONCLUSION

In this work, we focus on the sample collection in RL and
develop an OCBA-based sampling strategy. Firstly, we esti-
mate the action values with ensembles, with which the predic-
tive uncertainties can be estimated. Based on this, we develop
an OCBA-based sampling strategy and integrate it with three
modern off-policy algorithms, i.e., Q-learning, DQN, and
SAC. Then, we establish the convergence property and eval-
uate its performance with several experiments. It is shown
that the OCBA-based sampling strategy effectively reduces
the sampling efforts and surpasses other ensemble-based algo-
rithms by a remarkable margin.

To the best knowledge of authors, this work is the first
one to incorporate OCBA-based sampling-effort allocation
into ensemble-based RL algorithms. In current work, we only
focus on off-policy RL algorithms. As for future works,
we will take on-policy RL algorithms, e.g., TRPO and PPO,
into consideration. Besides, it is also interesting to incorpo-
rate the OCBA-based sampling strategy into curiosity-driven
algorithms, e.g., [57], and decentralized networked systems,
e.g., [48], [58], [59], [60], where the predictive-uncertainty
estimation is more complicated. We hope this work will shed
light on related directions.

APPENDIX A
MODIFIED PROOF OF LEMMA 2

In this section, we prove that Lemma 2 holds for rewards
with bounded mean and variance. Compared with the original
work [37], which establishes the convergence property for
bounded rewards, we consider a more general situation, where
the variance term in Condition 3 of Lemma 1 cannot be
easily bounded by a given constant. For the strictness of the
theoretical analysis, we give a modified proof below.

Firstly, by defining

1t (s, a) = Qt (s, a)− Q∗(s, a) (46)

and subtracting Q∗(st , at) from both hands of (34), we have

1t+1(st , at) = (1− αt (st , at))1t (st , at)+ αt (st , at)Ft (st , at),

(47)

where

Ft (s, a)

= (rt + γ max
a′
Qt (st+1, a′)− Q∗(st , at)) I(s = st , a = at).

(48)

Then, for all (s, a) ∈ S ×A,

|E[Ft (s, a)|Ft]| ≤ |E[Ft (st , at)|Ft]|

①
=γ | E

st+1∼P(·|st ,at)
(max

a′
Qt (st+1, a)−max

a′
Q∗(st+1, a′))|

≤ γ E
st+1∼P(·|st ,at)

(|max
a′
Qt (st+1, a′)−max

a′
Q∗(st+1, a′)|)

≤ γ E
st+1∼P(·|st ,at)

(max
a′
|Qt (st+1, a′)− Q∗(st+1, a′)|)

≤ γ max
st+1,a′
|Qt (st+1, a′)− Q∗(st+1, a′)| = γ ||1t ||∞, (49)

Fig. 6. The impact of M on OCBA-based DQN (denoted as OCBA DQN).
The lines and shaded regions represent the mean and standard deviation across
five runs.

where ① is obtained by substituting (2) in. Therefore, condi-
tion 2 in Lemma 1 is satisfied. Besides,

var[Ft (s, a)|Ft] ≤ var[Ft (st , at)|Ft]

②
=var(rt)+ γ 2var[max

a′
Qt (st+1, a′)|Ft]

= var(rt)+ γ 2var[max
a′

(1t (st+1, a′)+ Q∗(st+1, a′))|Ft]

③
≤var(rt)+ γ 2 E[(max

a′
(1t (st+1, a′)+ Q∗(st+1, a′)))2

|Ft]

≤ var(rt)+ γ 2 E[(||1t ||∞ + ||Q∗||∞)2
|Ft]

≤ var(rt)+ 2γ 2(||1t ||
2
∞
+ ||Q∗||2

∞
), (50)

where ② holds since that rt is independent of Ft and st+1
given (st , at), and ③ holds since that for any random variable
X , var(X) = EX2

− (EX)2
≤ EX2. Because the rewards

have bounded mean and variance, both var(rt) and ||Q∗||∞
are bounded, which verifies condition 3 in Lemma 1. Finally,
since condition 1 is naturally satisfied, Lemma 1 establishes
the convergence property of Lemma 2.

APPENDIX B
IMPACT OF ENSEMBLE SIZE

In this section, we give qualitative analyses about the impact
of ensemble size M , which can be seen from the following
two aspects.

Firstly, we show the impact of M from the perspective
of statistical inference. In the algorithms, we use M esti-
mated action values to approximate the posterior distribu-
tions, which can be related to the situation of estimating
the parameters of a Gaussian distribution N (µ, σ 2) with M
samples. From the results in [61], the expected length of
confidence intervals for estimated µ and σ are cµ =

2σNυ/2
√

M

and cσ = σ
√

M−1
X 2

M−1,1−υ/2
−σ

√
M−1

X 2
M−1,υ/2

, respectively, where Nυ/2,

X 2
M−1,υ/2, and X 2

M−1,1−υ/2 are quantiles of Gaussian and chi-
square distributions. The lengths of confidence intervals with
respect to M are shown in Fig. 5, where the improvement
of increasing M gradually gets smaller. However, since the
required computational resources increase linearly, we must
select an appropriate ensemble size to make a tradeoff.

In practice, due to the noise of function approximations,
e.g., neural networks, increasing the ensemble size over a
threshold will not lead to a remarkable improvement. In order
to intuitively show this, we take the CartPole task [49] and
OCBA-based DQN algorithm as an example to show the
practical impact of M . We set the ensemble size as M = 3,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: OCBA-BASED METHOD FOR EFFICIENT SAMPLE COLLECTION IN RL 11

M = 5, and M = 7, respectively, and the results are
shown in Fig. 6. It can be found that M = 5 has shown
a satisfying performance, and increasing it from M = 5 to
M = 7 only shows a slight improvement. This is also pointed
out in [36], where they show that M = 5 has provided effective
estimations, especially when neural networks are adopted.

Based on above observations, to make a tradeoff between
the performance and required computational resources,
we choose M = 5 for all the following experiments.

APPENDIX C
DETAILS OF EXPERIMENTS

In this section, we provide detailed hyper-parameters for all
the experiments.

Firstly, the following hyper-parameters are set as the same
for all the experiments, including M = 5, ϵ = 0.1, η = 0.99,
and γ = 0.99. Then, for the hyper-parameters that arise in
each group, we describe them as follows.

In the first group (Fig. 2), we set αt = 0.01. We remark that
slightly different from the original step size that satisfies (35),
we adopt a small constant step size, which is widely adopted
in practice [3], [27], [28], [32].

In the second group (Fig. 3), we set N = 64, κ = 0.01,
and learning rate l = 0.001. The neural networks have two
fully connected hidden layers with Relu activation function,
where each layer has h = 64 hidden nodes. The output layer
is a fully connected layer with Identity activation function.
Relu function is defined as R(x) = max(x, 0), and Identity
function is defined as I(x) = x .

In the third group (Fig. 4), we set N = 100, ν = 0.2,
κ = 0.005, and l = 0.001. Both the critic and actor networks
have two fully connected hidden layers with Relu activation
function, where each layer has h = 256 hidden nodes. Besides,
each critic network has a fully connected output layer with
Identity activation function, and each actor network has two
fully connected output layers with Identity activation function.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[2] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[3] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, 2015.

[4] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” in Proc. AAAI, Nov. 2015, pp. 1–9.

[5] Z. Liu et al., “Visuomotor reinforcement learning for multirobot coop-
erative navigation,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4,
pp. 3234–3245, Oct. 2022.

[6] W. Zhang, K. Song, X. Rong, and Y. Li, “Coarse-to-fine UAV target
tracking with deep reinforcement learning,” IEEE Trans. Autom. Sci.
Eng., vol. 16, no. 4, pp. 1522–1530, Oct. 2019.

[7] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electron. Imag., vol. 29,
no. 19, pp. 70–76, Jan. 2017.

[8] C.-H. Chen, S. E. Chick, L. H. Lee, and N. A. Pujowidianto, “Ranking
and selection: Efficient simulation budget allocation,” in Handbook
of Simulation Optimization. New York, NY, USA: Springer, 2015,
pp. 45–80.

[9] A. Garivier and E. Moulines, “On upper-confidence bound policies
for switching bandit problems,” in Proc. Int. Conf. Algorithmic Learn.
Theory, Lyon, France, Oct. 2011, pp. 174–188.

[10] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, nos. 3–4, pp. 285–294, Dec. 1933.

[11] W. R. Thompson, “On the theory of apportionment,” Amer. J. Math.,
vol. 57, no. 2, pp. 450–456, 1935.

[12] Y. Li, M. C. Fu, and J. Xu, “An optimal computing budget allocation
tree policy for Monte Carlo tree search,” IEEE Trans. Autom. Control,
vol. 67, no. 6, pp. 2685–2699, Jun. 2022.

[13] H.-C. Chen, C.-H. Chen, and E. Yucesan, “Computing efforts allocation
for ordinal optimization and discrete event simulation,” IEEE Trans.
Autom. Control, vol. 45, no. 5, pp. 960–964, May 2000.

[14] C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick, “Simulation budget
allocation for further enhancing the efficiency of ordinal optimization,”
Discrete Event Dyn. Syst., vol. 10, no. 3, pp. 251–270, Jul. 2000.

[15] J. Zhang, C. Wang, D. Zang, and M. Zhou, “Incorporation of optimal
computing budget allocation for ordinal optimization into learning
automata,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 1008–1017,
Apr. 2016.

[16] Y. Peng, E. K. P. Chong, C.-H. Chen, and M. C. Fu, “Ranking and
selection as stochastic control,” IEEE Trans. Autom. Control, vol. 63,
no. 8, pp. 2359–2373, Aug. 2018.

[17] S. E. Chick and K. Inoue, “New two-stage and sequential procedures
for selecting the best simulated system,” Operations Res., vol. 49, no. 5,
pp. 732–743, Oct. 2001.

[18] P. I. Frazier, W. B. Powell, and S. Dayanik, “A knowledge-gradient
policy for sequential information collection,” SIAM J. Control Optim.,
vol. 47, no. 5, pp. 2410–2439, Jan. 2008.

[19] S. E. Chick, J. Branke, and C. Schmidt, “Sequential sampling to
myopically maximize the expected value of information,” INFORMS
J. Comput., vol. 22, no. 1, pp. 71–80, Feb. 2010.

[20] L. J. Hong, W. Fan, and J. Luo, “Review on ranking and selection:
A new perspective,” Frontiers Eng. Manag., vol. 8, no. 3, pp. 321–343,
Sep. 2021.

[21] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[22] H. V. Hasselt, “Double Q-learning,” in Proc. Neural Inf. Process. Syst.
(NIPS), Vancouver, BC, Canada, vol. 23, Dec. 2010, pp. 2613–2621.

[23] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[24] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforce-
ment learning,” in Proc. ICML, New York, NY, USA, Jun. 2016,
pp. 1995–2003.

[25] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is Q-learning
provably efficient?” in Proc. Int. Conf. Neural Inf. Process. Syst.,
Montréal, QC, Canada, Dec. 2018, pp. 4868–4878.

[26] R. Dearden, N. Friedman, and S. Russell, “Bayesian Q-learning,” in
Proc. 15th Nat. Conf. Artif. Intell., Jul. 1998, pp. 761–768.

[27] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., May 2016, pp. 1–14.

[28] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn.
(ICML), Stockholm, Sweden, Jun. 2018, pp. 1587–1596.

[29] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., Lille,
France, Jun. 2015, pp. 1889–1897.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[31] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in Proc. Int. Conf. Mach. Learn.,
Aug. 2017, pp. 1352–1361.

[32] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., Stockholm, Sweden, Jul. 2018,
pp. 1861–1870.

[33] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” 2018,
arXiv:1812.05905.

[34] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman, “UCB exploration via
Q-ensembles,” 2017, arXiv:1706.01502.

[35] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel, “Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., Jul. 2021, pp. 6131–6141.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[36] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proc. Int.
Conf. Neural Inf. Process. Syst., Los Angeles, CA, USA, Dec. 2017,
pp. 6405–6416.

[37] F. S. Melo, “Convergence of Q-learning: A simple proof,” Inst. Syst.
Robot., Zürich, Switzerland, Tech. Rep., pp. 1–4, 2001.

[38] G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Connec-
tionist Systems, vol. 37. Princeton, NJ, USA: Citeseer, 1994.

[39] P. Christodoulou, “Soft actor-critic for discrete action settings,” 2019,
arXiv:1910.07207.

[40] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., New York, NY, USA, Jun. 2016,
pp. 1928–1937.

[41] M. Hessel et al., “Rainbow: Combining improvements in deep rein-
forcement learning,” in Proc. AAAI Conf. Artif. Intell., Feb. 2018,
pp. 3215–3222.

[42] A. Gosavi, Simulation-Based Optimization. Berlin, Germany: Springer,
2015.

[43] F. Gao, S. Gao, H. Xiao, and Z. Shi, “Advancing constrained ranking and
selection with regression in partitioned domains,” IEEE Trans. Autom.
Sci. Eng., vol. 16, no. 1, pp. 382–391, Jan. 2019.

[44] S. E. Chick, “Bayesian analysis for simulation input and output,” in
Proc. 29th Conf. Winter Simul., 1997, pp. 253–260.

[45] K. Li and Q.-S. Jia, “Decentralized multi-agent reinforcement learning:
An off-policy method,” 2021, arXiv:2111.00438.

[46] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural Comput.,
vol. 6, no. 6, pp. 1185–1201, Nov. 1994.

[47] S. Bhatnagar, “An actor–critic algorithm with function approximation for
discounted cost constrained Markov decision processes,” Syst. Control
Lett., vol. 59, no. 12, pp. 760–766, Dec. 2010.

[48] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. Int.
Conf. Mach. Learn., Stockholm, Sweden, Jul. 2018, pp. 5872–5881.

[49] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[50] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-

agent actor-critic for mixed cooperative-competitive environments,” in
Proc. Int. Conf. Neural Inf. Process. Syst., Los Angeles, CA, USA,
Dec. 2017, pp. 1–12.

[51] T. Wang et al., “Benchmarking model-based reinforcement learning,”
2019, arXiv:1907.02057.

[52] T. Wang and J. Ba, “Exploring model-based planning with policy
networks,” in Proc. Int. Conf. Learn. Represent., May 2019, pp. 1–20.

[53] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models,”
in Proc. Int. Conf. Neural Inf. Process. Syst., Montréal, QC, Canada,
Dec. 2018, pp. 4759–4770.

[54] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-
ensemble trust-region policy optimization,” in Proc. Int. Conf. Learn.
Represent., Vancouver, BC, Canada, Apr. 2018, pp. 1–15.

[55] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learn. Represent., May 2016, pp. 1–21.

[56] M. Fortunato et al., “Noisy networks for exploration,” in Proc. Int. Conf.
Learn. Represent., Vancouver, BC, Canada, Apr. 2018, pp. 1–21.

[57] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 488–489.

[58] J. Yan, C. Deng, and C. Wen, “Resilient output regulation in heteroge-
neous networked systems under Byzantine agents,” Automatica, vol. 133,
Nov. 2021, Art. no. 109872.

[59] J. Yan, F. Guo, and C. Wen, “False data injection against state estimation
in power systems with multiple cooperative attackers,” ISA Trans.,
vol. 101, pp. 225–233, Jun. 2020.

[60] M. Brittain and P. Wei, “Scalable autonomous separation assurance with
heterogeneous multi-agent reinforcement learning,” IEEE Trans. Autom.
Sci. Eng., vol. 19, no. 4, pp. 2837–2848, Oct. 2022.

[61] G. Casella and R. L. Berger, Statistical Inference. Bosto, MA, USA:
Cengage, 2021.

Kuo Li (Graduate Student Member, IEEE) received
the B.E. degree in automation from Tsinghua Uni-
versity, Beijing, China, in 2019, where he is cur-
rently pursuing the Ph.D. degree with the Center
for Intelligent and Networked Systems (CFINS),
Department of Automation.

His research interests include theories and applica-
tions of reinforcement learning and transfer learning
in cyber-physical systems.

Xinze Jin (Student Member, IEEE) received the
B.E. degree (Hons.) from Beihang University,
Beijing, China, in 2018. He is currently pursuing
the Ph.D. degree with the Center for Intelligent
and Networked Systems (CFINS), Department of
Automation, Tsinghua University, Beijing.

His research interests include safe reinforcement
learning, event-based optimization, and their appli-
cations in cyber-physical systems.

Qing-Shan Jia (Senior Member, IEEE) received the
B.E. degree in automation and the Ph.D. degree
in control science and engineering from Tsinghua
University, Beijing, China, in 2002 and 2006,
respectively.

He was a Visiting Scholar with Harvard University,
Cambridge, MA, USA; The Hong Kong University
of Science and Technology, Hong Kong; and the
Massachusetts Institute of Technology, Cambridge,
in 2006, 2010, and 2013, respectively. He is cur-
rently a Professor with the Center for Intelligent

and Networked Systems (CFINS), Department of Automation, Beijing
National Research Center for Information Science and Technology (BNRist),
Tsinghua University. His research interests include theories and applications of
discrete-event dynamic systems (DEDSs) and simulation-based optimization
of cyber-physical systems.

Dongchun Ren received the B.E. degree in automa-
tion from Nankai University, Tianjin, China, in 2008,
and the Ph.D. degree in pattern recognition and
intelligent systems from the Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China,
in 2014.

He is currently a Researcher with the Department
of Autonomous Driving, Meituan Group, Beijing.
His research interests include the areas of robotics,
with a focus on motion planning, behavior planning,
and trajectory prediction.

Huaxia Xia (Member, IEEE) received the Ph.D.
degree from the University of California, San Diego,
in 2006.

He is currently a Chief Scientist with the Meituan
Group and the Head of the Meituan Autonomous
Driving Department. Before joining the Meituan
Group, he worked as a Senior Software Engineer
at Google and a Principal Architect at Baidu. His
research interests include software infrastructure,
artificial intelligence, and autonomous driving.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

