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Abstract— This paper presents a novel approach to identifying
reskilling requirements, job merging pathways, and a tentative
timeline for transforming offshore oil and gas drilling occupations
amid the fourth industrial revolution (industry 4.0). The proposed
algorithm focuses on potential job merging due to technological
adoption. It introduces a scaling factor named digital readiness
level to incorporate modulation factors (e.g., cost of development
and deployment of new technologies, labour market dynamics,
economic benefits, regulatory readiness, and social acceptance)
that act as catalysts or hindrances for technology adoption.
A feature-based approach is developed to assess the similarities
between occupations, while a mathematical model is developed to
project automation trajectories for each job under investigation.
These facilitate the consideration of potential job merging
scenarios and the associated timeline. Since technology adoption
depends on the industry, region, occupation, and stakeholder’s
ability to manage the transformation, the proposed algorithm
is presented as a case study on Canadian offshore oil and gas
drilling occupations. However, this algorithm and approach can
be applied to other industries or occupation structures. The
proposed algorithm projects that the total number of personnel
on board (POB) in a typical offshore drilling platform will be
reduced to six by 2058. A sensitivity analysis was conducted
to assess the robustness of the proposed algorithm against
variations in the feature values and weighting factors. It was
found that when changing feature values and weighting factors up
to ±20% of their original values, only one job that remains after
2058 follows three different job merging pathways, while others
remain unchanged. Even the job that followed three different
pathways was composed of the same source jobs compared to
the corresponding job in the baseline results.

Note to Practitioners—This research is inspired by the ongoing
digital transformation initiatives and their socioeconomic impact.
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The adoption of digital technologies, such as automation,
robotization, digital twins, data-driven decision-making systems,
smart devices, and cloud computing technologies, gradually
transform existing workplaces into digitally-enabled smart
workplaces. Therefore, stakeholders must invest in training
programs to reskill existing workforces and to orient prospective
employees to work at these smart workplaces. If technology
adoption occurs at a rapid or slower pace than workforce
reformation, industries cannot gain the optimum benefit from
their digital transformation initiatives. Also, human capital
investments may not generate much benefit if technology
adoption and workforce reformation occur at different rates.
Therefore, this work presents a novel framework to predict future
employment scenarios, particularly for the workers in offshore
oil and gas drilling activities, along with a tentative timeline.
Stakeholders can utilize the proposed framework to effectively
plan the pace of technological adoption, future workforce
transformation and human capital investments.

Index Terms— Automation, job merging, future of work,
technological unemployment, reskilling, digital readiness (DR).

I. INTRODUCTION

AMID the fourth industrial revolution (Industry 4.0),
many industries have been adopting digital technologies,

including automation, robotization, digital twins, data-driven
decision-making systems, smart sensors/devices, advanced
visualizing technologies and cloud computing technologies,
to improve the safety and efficiency of industrial operations.
In addition to benefiting employees, such technologies can
help industry respond to demographic challenges, such as
the big crew change and the mismatch between labour
supply and demand. Such technology adoption has been
transforming existing workplaces into digitally-enabled smart
workplaces filled with more machinery. It is anticipated that
such technology adoption will result in the displacement
of some jobs, creation of new job, reshaped skill profiles
for existing jobs, and altered ways of working [1], [2].
Therefore, it is important to prepare both the existing and
prospective workforce to minimize the negative socioeconomic
impact of technology adoption and to enhance the economic
benefits. It is possible to implement immersive training
environments to train employees [2], [3], [4], [5]. Such
training can be supplemented by human-machine interfaces
(HMIs) that adapt to operators’ skills and capabilities [1],
[6], [7], [8], [9]. However, designing and implementing
new education programs, immersive workplace training
systems, and adaptive HMIs require enormous effort and
investment.
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When employee reskilling activities occur at a different
rate than technology adoption, stakeholders will not gain the
expected results from their digital transformation initiatives.
Therefore, it is important to understand the susceptibility
of existing jobs to digital transformation, particularly for
automation and robotization, and to plan employee reskilling
activities effectively. To support this objective, numerous
studies have been performed to predict susceptibilities of
existing jobs to automation [10], [11], [11], [12], [13], [14],
[15], [16].

Although all these studies predict the level of automation
in the future workforce and potential emerging and declining
jobs, they do not present possible job merging scenarios
arising from task automation and they do not present a
timeline for the transformation. Additionally, the studies
related to the socioeconomic impact of technology adoption
are polarized between two theses: (1) technology adoption
increases global unemployment level and (2) technology
adoption expands the job market, creating more opportunities
[17], [18], [19], [20], [21], [22], [23], [24]. The rationale for
these two distinct observations is that technology adoption
depends on the industry, region, occupation, and stakeholder’s
ability to manage the transformation. Therefore, employment
transformation should be considered within an industry,
a geographical region or an occupation-specific case study,
rather than as a general thesis.

Since the existing literature does not present possible job
merging scenarios nor a tentative timeline for transformation,
but rather attempts to develop a general conclusion about
technological unemployment/employment, it is challenging to
use existing studies directly to predict the future employment
scenarios and reskilling requirements with a tentative timeline.
The research presented in this article, therefore, proposes a
framework to utilize the existing literature to predict future
job merging scenarios and timeline, with employment within
offshore oil and gas drilling occupations used to illustrate and
validate the approach. Offshore oil and gas drilling operations
currently involve a workforce representing approximately
40 different occupations with distinct Canadian NOC codes.
The overall objective of the workers associated with an
operation is to drill oil and gas wells from an offshore oil and
gas platform. Jobs tend to be a combination of tasks that are
done manually or utilizing technology and the workers tend
to be co-located geographically. As technology advances, the
mix of manual and technology-mediated tasks changes which
gives rise to opportunities for workers to take on activities
from other occupations on the platform.

The study develops a reskilling cost matrix, job merging
pathways matrix, potential job automation, integrations and
creations, and the tentative timeline. The proposed career
pathway calculation approach is validated through a case
study wherein the offshore drilling occupation structure is
used as a target occupation group for the study. Stakeholders
can utilize the results of this study to more effectively
plan their technology adoption rate, their future workforce
transformation and their investment in human capital for
reskilling. Although the job merging framework is developed
for Canadian offshore oil and gas drilling occupations,

it can directly be applied to other industries or occupational
structures. The proposed algorithm projects that the total
number of personnel on board (POB) in a typical offshore
drilling platform will be reduced to six by 2058. A sensitivity
analysis was conducted to assess the robustness of the
proposed algorithm against variations in the feature values
and weighting factors. It was found that when changing
feature values and weighting factors up to ±20% of their
original values, only one job that remains after 2058 follows
three different job merging pathways, while others remain
unchanged. Even the job that followed three different pathways
was composed of the same source jobs compared to the
corresponding job in the baseline results.

The structure of the article is as follows. Section II
summarizes the existing literature in the area of technological
automation of the workforce. Section III presents the proposed
job merging framework. The simulation study and the results
are presented in Section IV. Finally, Section V summarizes
the overall findings of this study.

II. BACKGROUND

Several studies analyzed the susceptibility of existing jobs
to automation and computerization. Work presented in [11]
and [11] adapted the task categorization model from [10]
and developed occupation-based approach to predict the
susceptibility of existing jobs for automation. This occupation-
level modelling indicates mass unemployment implications
(e.g., approximately 47% of US employment has a high
probability (>0.7) of being automated during the next two
decades), which is expected to be an overestimation for
the impact of automation on the workforce. Work presented
in [12], [14], [25], [15], and [16] used task-based approaches
to predict the susceptibility of existing jobs for automation.
A study by McKinsey Global Institute evaluated the technical
automation potential of over 2000 work activities [15]. This
study concluded that 50% of activities across all occupations
could be automated by exploiting existing demonstrated
technologies. The work presented in [13] transferred the
findings of [11] and [25] into the Canadian labour market
context. Although all of these studies predict the level of
automation in the future workforce, as well as emerging and
declining jobs, the results do not present possible job merging
scenarios arising in parallel with task automation.

The impact of technology adoption on the workforce
depends on the tasks associated with individual occupa-
tions [26]. Since skills characterize tasks, the relationships
between technologies and skills can be used for modelling
the impact of technological adoption [27]. Using existing
labour market data, such as the O*NET database of the US
labour market, mathematical models have been developed
to interpret the dynamics in employment and wage shifts
over time in response to technology adoption. Among
the available models, the skill-biased technological change
model (SBTC), the routine-biased technological change model
(RBTC) and the complex-task biased technological change
(CBTC) model are considered as the primary technological
change models [28]. The SBTC model assumes that the
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tasks traditionally performed by unskilled workers will be
replaced by machines, demanding skilled workers to operate
these advanced machines [29], [30], [31]. The RBTC model,
which classifies the tasks into three main categories, namely
abstract tasks, routine tasks and non-routine tasks, shows that
technological adoption reduces the labour demand for routine
tasks while increasing the labour demand for non-routine and
abstract tasks [10], [26], [32]. The CBTC model classifies
tasks based on complexity instead of routineness to interpret
the changes in occupational wage structures and dynamics in
employment [28].

Industrial firms have been automating and robotizing their
workplaces over several decades. The COVID-19 increased
the rate of automation, robotization, remote operations, and
digitalization [33], [34], [35]. According to [33], 100 million
workers in China, France, Germany, India, Japan, Spain,
the United Kingdom, and the United States may need to
change occupations by 2030. The work presented in [34]
made four projections for the post-COVID-19 economy. These
predictions include increasing telework, city de-densification,
large-firm consolidation, and forced automation, affecting low-
wage workers and creating economic inequality across the
existing workforce. As reported in [35], females in mid-to-low-
wage jobs and lower education levels were severely affected
during COVID-19. This worker group had a more significant
initial decline in employment during the COVID-19 pandemic
and will likely have a weaker post-pandemic recovery.
Therefore, business leaders and policymakers are required to
invest in digital infrastructure, in reskilling workers, and in
innovative worker benefits and support mechanisms to assist
and prepare the existing and future workers to be able to
function in a rapidly changing industrial ecosystem [33].

III. METHODOLOGY

Since technology adoption depends on the industry,
region, occupation, and stakeholder’s ability to manage
the transformation, the proposed job merging algorithm is
presented as a case study.

A. Target Occupation Group for the Case Study

The oil and gas (O&G) industry is a high-risk and capital-
intensive business that is heavily regulated to minimize
health, safety and environmental risks. There could be severe
consequences if accidents occur during drilling, production,
processing, or at a storage facility. According to the
Worldwide Offshore Accident Databank (WOAD), there were
2288 fatalities distributed among the 6451 offshore accidents
between 1970 and 2012 [36]. Accidents can also pose
environmental risks. Among the offshore oil and gas related
operations, offshore drilling is considered to be a challenging
and risky activity. For example, the explosion that occurred on
the Deepwater Horizon platform, a semi-submersible, mobile,
floating, dynamic positioning drilling rig, is the largest marine
oil spill in the history of the petroleum industry. The accident
also contributed to the loss of lives of 11 personnel [37].

Automation and robotization can be deployed to improve
the reliability and safety of offshore drilling operations

Fig. 1. Overview of the proposed career pathways and job merging
framework.

while minimizing the number of personnel onboard. Current
digital initiatives by the offshore oil and gas industry aim
to remove (or reduce the number of) humans working in
hazardous environments, such as drilling platforms, by moving
some employees to onshore (i.e., implementing remote
operation capabilities) and replacing tasks in hazardous
environments with automation and robotization. This leads
to a transformation of future offshore drilling occupations.
It is vital to understand these transformations and to predict
future employment scenarios so that stakeholders can develop
and implement education and training programs for reskilling
existing workforce and orienting new employees.

B. Overview of the Proposed Job Merging Framework

An overview of the proposed job merging framework, which
is illustrated in Fig. 1, consists of ten key components. The
Career descriptions are assessed to determine key features and
to rank skills required for specific job and to then determine
career pathway costs and to rank order the pathways based
on cost. In addition, technology adoption & employment
literature is used to determine the susceptibility of these jobs
to automation and to determine the trajectory for automation
over time. The automation susceptibility trajectories and the
career pathway ranking are used to identify the optimal job
merging scenarios.

Career Description: It is necessary to identify the
occupations associated with specific industrial settings
and their associated job descriptions. For an offshore
drilling platform, 40 occupations (refer to Table XIV
in Appendix A for complete list) were identified for
key roles during drilling operations. Since this study
aims to evaluate the evolution of offshore drilling
occupations with technological adoption, onshore sup-
port occupations, such as purchasing clerks and supply
chain supervisors, were not included among the
relevant careers. Representative job descriptions for
the 40 occupations were created using various online
resources. Section III-C presents this process along
with the brief introduction to the online resources used
for creating representative job descriptions. The key
information for each job description includes the duties
and responsibilities, the education and industrial training
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requirements, and the required amount of prior work
experience to be able to perform the job.
Feature Selection and Skill Ranking: Once the job
descriptions are created, similarities between different
jobs are analyzed to identify the least disruptive way to
merge jobs. This study uses twelve features to compare
the similarities between multiple jobs. For each job,
based on the job descriptions, a relative ranking is
assigned for these features. Section III-D introduces
the 12 features used in the study, while Section III-E
presents the initial ranking for these features.
Career Pathway Cost Calculation: Once the skill
ranking for each job is assigned, the proposed
framework calculates a cost matrix that represents how
easy or challenging it is to merge a given job with the
rest of the existing jobs. The higher the cost, the great
the challenges of merging. Section III-F discusses the
career pathway cost calculation process.
Career Pathway Ranking: The calculated cost matrix
is then converted into a ranking matrix, which iteratively
considers each job in the list and arranges the remaining
other N − 1 jobs in a way that the job with the lowest
career pathway cost is ranked one and the job with the
highest career pathway cost is ranked N −1, where N is
the total number of jobs considered. The key difference
between the career pathway cost matrix and the ranking
matrix is that the former is an unsorted list while the
latter is a sorted list. Section III-G presents the career
pathway ranking calculation process.
Technology Adoption & Employment Literature:
Besides the similarity between two jobs, the portion
of tasks of each job that can be automated using the
demonstrated technologies plays a critical role when
merging jobs. For instance, let jobα and jobβ be two
jobs, each with 100 tasks that are non-automatable
and jobβ is ranked one in the jobα’s career pathway
ranking, i.e., tasks associated with these two jobs are
highly related. However, merging these two jobs is
impossible as the newly created job will then have
200 tasks to do. Therefore, this study conducted a
literature survey to extract automation susceptibility
values for the selected 40 occupations. The collected
data are listed in Table XIV.
Automation Susceptibility Trajectories: The collected
automation susceptibility data gives two pieces of
information: (i) the proportion of tasks that can be
automated using existing technologies, and (ii) the
probability of a given job being fully automated in
the next 10-20 years [11], [13], [25]. By utilizing
this information, the study presented in this article
calculates the automation susceptibility trajectories for
the selected 40 jobs over a 100 year period. More details
on the susceptibility trajectory calculation is presented
in Section III-H.

Following the steps noted above, all of the pairwise
combinations of existing jobs are generated and combined
with the susceptibility trajectories and the career pathway
rankings to determine optimal job merging, as well as the

tentative timeline for the job merging and job creation. Also,
the features are ranked for the newly created jobs. This process
will be discussed in Section III-I. When two jobs are merged,
a new type of occupation is created and the original jobs1

disappear from the workforce. Therefore, the offshore drilling
occupations’ job structure will be modified at each job merging
event. Newly created occupations and unmerged occupations
are re-evaluated to develop new career pathway costs, career
pathway rankings, the level of susceptibility to automation and
possible subsequent job merging. This iterative process allows
newly created jobs at an early stage of the timeline (say 2025)
to merge with another new job or unmerged (original) job
at the later stage of the timeline (say 2050). The proposed
algorithm continues this iterative job merging process until
the career pathway cost of possible job merging reaches a
predefined upper threshold.

C. Career Descriptions

To perform a career pathway analysis, a large data set is
required which includes key characteristics, such as knowl-
edge, skills, abilities, education, experience, training, tasks,
interests, work values, work styles, tools and technologies,
work activities, etc., for each occupation. For example, the
US O⋆NET online database lists over 1000 occupations along
with descriptions and ranking for 120 occupation-related
features [38]. These data are generated using a range of
industrial surveys with over 67,000 responses. The O⋆NET
data set is widely used for employment modelling and
simulation purposes. With regard to the Canadian job market,
the National Occupation Classification (NOC) system has been
developed using national survey data to classify approximately
35,000 job titles into the 500 unit groups [39]. These 500 unit
groups are then classified into the 140 minor groups which
are then collected into 40 major groups which fall under
10 broad occupation categories. Each unit group presents a
lead statement, sample job titles, inclusions and exclusions,
primary duties, employment requirements, and additional
information regarding career progression and transfers. The
limitation of the NOC system for employment modelling
is that a given unit group consists of multiple job titles
which may not share the requirements pertaining to the level
of skill, knowledge, abilities, work values, work styles and
work activities. For example, “cement truck driver - oil field
services”, “chemical services operator - oil field services”,
“derrickman/woman - oil and gas drilling” and “dynamic
positioning operator - offshore drilling” are listed under the
unit group NOC 8412 - Oil and gas well drilling and related
workers and services operators.2 However, most of the job
duties and requirements of these four jobs do not coincide.
Therefore, without solely depending on NOC, this study
develops job descriptions for the 40 offshore drilling related

1These two jobs refer to source jobs or original jobs.
2Note that NOC 8412 unit group consists of 43 job titles. The four example

titles presented here are extracted only to illustrate that the skill, knowledge,
abilities, work values, work styles and work activities requirements of jobs
listed in a given unit group not necessarily be identical for all the jobs
contained in the unit group.
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occupations by aggregating the information extracted from the
following sources:

• Atlantic Canada offshore petroleum standard practice for
the training and qualification of offshore personnel [40]:
This report contains high-level job descriptions for
most of the jobs associated with the offshore drilling
installation and production installation.

• Offshore oil and gas people - overview of offshore
drilling operation [41]: This book contains an overview
of the people involved in offshore drilling operations,
their lifestyles, and their responsibilities. Additionally,
it categorizes offshore drilling personnel into three groups
based on the employer: oil and gas company, drilling
contractor, and third-party contractors.

• Newfoundland and Labrador oil and gas career informa-
tion website [42]: This website contains comprehensive
information about Newfoundland and Labrador’s oil and
gas industry, career profiles, education programs, ongoing
projects, upcoming projects, career progression tables,
etc.

• Job advertisements from the internet: A series of job
advertisements were collected from several online job
listing databases and oil and gas companies’ career
opportunity web pages.

D. Features for Career Pathways

Typically, skills, abilities, and knowledge features have been
used to model and simulate future employment scenarios based
on the impacts of technology. For example, work presented
in [11] argued that perception and manipulation, creative
intelligence, and social intelligence are the key bottlenecks for
computerization. These three bottlenecks were considered in
terms of nine O⋆NET variables (finger dexterity, manual dex-
terity, cramped workspace, and awkward positions, originality,
fine arts, social perceptiveness, negotiation, persuasion, and
assisting and caring for others) to perform quantitative analysis
for future employment scenarios. An identical feature set based
on Japanese occupation data was used in [43] to predict
the susceptibility of the Japanese workforce to technological
change. Work presented in [18] used all 120 features in the
O⋆NET database to predict the future skill demands. The study
presented in [15] used five capability groups, namely sensor
perception, cognitive capabilities, natural language processing,
social and emotional capabilities, and physical capabilities,
to determine the portion of activities that can be automated
using existing technologies.

The study presented in this article also follows the
feature-based cost calculation approach to numerically rank
the similarity between offshore oil and gas drilling-related
occupations. As this study investigates ways to merge
existing jobs to execute tasks that are not automatable
using the demonstrated technologies, we select a set of
features that can define similarities between given two jobs
along four dimensions: intellectual, cognitive, physical, and
social capabilities. When an employee assumes duties and
responsibilities of an occupation, the person must possess a
thorough intellectual background, including formal education,
technical training, and awareness of the rules and regulations

associated with the occupation. Technical training may be
acquired through a formal professional training program
or on-the-job training. Therefore, level of education, work
experience, exposure to new technologies, and awareness of
rules and regulations are selected as features that can be
used to compare intellectual similarities between two jobs
and identify intellectual reskilling required to merge two jobs.
Some occupations require employees to perform physically
demanding tasks in hazardous working conditions. These
employees need physical strength to conduct these manual
tasks and a well-planned occupational training program to
teach them correct postures when lifting and handling heavy
items, operating heavy equipment and protecting them in
hazardous working environments. Therefore, the amount of
physical work and hazard level are selected as features that
can be used to compare similarities between two jobs along
the physical dimension. Some offshore drilling occupations
have more responsibilities, ensuring the drilling operations
run smoothly, precisely, and safely while others follow the
directions provided by these individuals. Since each drilling
operation is a unique task, these supervising level employees
must have a high level of cognitive capabilities to propose
unique solutions to unique issues promptly. To compare the
similarities between two jobs along the cognitive dimension,
this study use ‘originality’ and ‘decision making’ as features
for career pathway cost calculation. Each occupation involves
some level of social interaction. However, the level and type
of interaction vary with jobs. For example, managerial jobs
interact with stakeholders more frequently than drill-floor
workers. Similarly, supervisors manage and guide employees
under them to safely conduct their tasks while subordinates
follow the directives of supervisors. When combining two
jobs, it is essential to identify training required along these
social dimensions and implement this training timely manner
so that social conflicts can be minimized, if not eliminated.
This study uses three features, i.e., stakeholder interaction,
managing others, and instructing to compare similarities
between two occupations along the social dimension. Apart
from the eleven features introduced above, working groups
broadly defines intellectual, cognitive, physical, and social
skills required to be employed in an occupation. People tend
to stay in the same working group instead of switching
between groups more frequently. For example, there is a
high similarity between tasks performed by a driller and an
assistant driller compared to a driller and a chef. Therefore,
merging a driller and an assistant driller is more reasonable
than merging a driller with a chef. To account effect coming
from working group, this study uses discipline as a feature for
cost calculation. Table I summarizes the twelve features which
are used in this study.

E. Initial Feature Ranking for Individual Occupation

Except for the work experience, discipline and education
features, all other features are ranked using a five-point scale:
extremely (5 points), very (4 points), moderately (3 points),
slightly (2 points), marginally (1 point). The work experience
requirements listed in job advertisements, [40] (manual for
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TABLE I
FEATURES FOR CAREER PATHWAY COST CALCULATIONS

TABLE II
SKILL TYPES OF CANADIAN WORKFORCE

Atlantic Canada offshore petroleum standard practice for the
training and qualification of offshore personnel) and [42]
(career information web site of petroleum industry human
resource committee Newfoundland & Labrador) are combined
to develop the ranking for the work experience feature.

The discipline feature represents the working group to
which the job belongs. This study uses NOC codes to
determine the working group for each job. As mentioned
earlier, the NOC codes for the Canadian workforce categorizes
approximately 35,000 jobs into 10 broad occupation categories
(also known as skill types), 40 major groups, 140 minor groups
and 500 unit groups. The 10 broad occupation categories are
listed in Table II.

For a given broad occupation category, the percentage
of transferable skills between two occupations is highest if
the two occupations are from the same unit group and is
lowest if the two occupations are from different major groups.

Although the percentage of transferable skills decreases when
moving from unit group to minor group to major group, the
reskilling cost to transfer from one broad occupation category
to another is not necessarily higher than the reskilling cost
to transfer between two jobs in the same unit group. For
example, the reskilling cost is lower when transferring from
“derrickman/woman - oil and gas drilling” (NOC 8412) to
“server - food and beverage services” (NOC 6513) while there
is some level of reskilling cost associated with transferring
from “derrickman/woman - oil and gas drilling” to “chemical
services operator - oil field services” (NOC 8412) although
these two jobs are from the same unit group. Since the
objective of our study is not to find the occupational transfer
matrix but to find career pathways for job merging, the
discipline changer costs are assigned to prioritize the job
merging as follows: jobs from the same unit group are merged
first; followed by the jobs from the same minor group, then
jobs from the same major group and finally the jobs from
different broader groups. To achieve this objective, the career
changer cost for the discipline feature (CCD) is set to 100, 200,
400, and 900 if the two source jobs are in two-unit groups,
minor groups, major groups and broad occupation categories,
respectively.

Among the 40 occupations directly associated with the
offshore oil and gas industry, only a few occupations would
be preserved without merging with others. Consider a drilling
platform that is not fully automated or is remotely operated
with few personnel onboard (POB). In this case, a medic
is required to be onboard to provide emergency and routine
medical services. Similarly, it is necessary to have a person
to prepare and serve food for the POB. Lastly, a top-ranked
officer like an offshore installation manager (OIM) must be
onboard to make critical decisions promptly and oversee the
entire operation to ensure that the activities comply with
the international, national and local regulatory standards. The
skill-type index, i.e., the first digit of a given NOC code,
of OIM, medic and food service-related occupations are 0,
3 and 6, respectively. The CCD for changing skill-type to
and from these three categories are set to relatively very
high values compared to the rest of the skill-type transfers.
Table III summarizes the broad occupation category transfer
costs used in this study. This study assigns a higher CCD for
transferring to and from high-level supervisory positions. This
modification merges multiple high-level supervisory positions
to a single supervisory job. Except for the OIM, all of the
high-level supervisory jobs associated with an offshore drilling
installation have the same NOC code, i.e., 8222. Therefore, the
cost of discipline change to and from NOC 8222 is set to 1500.

The point scale for the education feature is assigned using
the Canadian NOC codes. The first digit of the NOC code
represents the broad occupation category, also known as
skill type (refer to Table II). Except for the management
occupations (skill type 0 occupations), the second digit
represents the skill levels (refer to Table IV) which are defined
using the educational requirements of the jobs. The third and
fourth digits of the NOC code represent the minor group
and unit group levels, respectively. From Table IV, it can be
seen that the higher the second digit the lower the required
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TABLE III

CHANGER COST FOR ‘DISCIPLINE’ FEATURE FOR BROAD OCCUPATION CATEGORY CHANGING†

TABLE IV
CANADIAN EMPLOYMENT SKILL LEVELS

TABLE V
POINT RANKING FOR EDUCATION

education level. Therefore, the lowest education point rank,
i.e., one, is assigned to the highest second digit, i.e., seven.
Within the same skill level (A, B, C, or D), education point
rank is increased by one when the value of the second digit
is decreased by one. Transfer between skill levels is ranked
differently to incorporate the increase in challenge to transfer
from non-formal education to secondary school education
(2-point step change), secondary school education to post-
secondary education (3-point step change), and post-secondary
education to graduate studies (4-point step change).

Note that skill level categorization uses numbers in the
range of zero to seven (Table IV). However, this categorization
is not defined for management occupations (skill type-0).
The only skill type-0 job involved in the offshore drilling
operation is OIM, which belongs to NOC 0811. From the job
advertisements, it was noted that the educational requirement
of an OIM is between the upper limit of skill level-B and
the lower limit of skill level-A, with more bias towards skill
level-B. Therefore, this study assigned a higher education point
rank for the OIM than for the jobs in skill level-B, and a
lower education point rank for the OIM than for the jobs in
skill level-A. Table V lists the final ranking for the education
feature along with the associated second digit of NOC codes.

F. Career Pathway Cost Calculation

Feature ranking mismatches between jobs are applied to
compute the career pathway costs. When merging an upper

skill job with a lower skill job, education and training
programs are required to reskill the employees in those jobs.
The reskilling cost for a high-skill employee to perform a
low-skill job differs from the cost for a low-skill employee to
perform a high-skill job. Therefore, when considering pairwise
job merging, it is important to identify whether this is an
upward or a downward skill transfer and to assign scaling
(weighting) factors independently for each feature.

Career pathway cost (CPC) to merge jobs i and j , such
that an employee in job i is reskilled to perform the non-
automatable tasks of both the jobs, is computed as

CPC j,i =

12∑
n=2

kn
(

f j,n − fi,n
)2

+ k1CCD j,i (1)

where, kn represents upward/downward weighting factor for
nth feature, fi,n represents feature ranking for nth feature
of i th job, f j,n represents feature ranking for nth feature
of j th job, C PC j,i represents the career pathway cost to
reskill an employee in job i to performed the non-automatable
tasks of both jobs, and CC D j,i represents the changer cost
for the discipline feature. Note that the discipline feature
corresponds to the first feature in the feature list. The cost of
changing the discipline is calculated separately, as presented in
Section III-E. This costs is directly added to the calculated
cost due to the changes in other features, i.e., features two to
twelve.

The scaling factor kn defines, for feature n, the relative
level of challenge to change upward or downward. This is
also assigned using a five-point scale where five represents
extremely challenging, and one represents minimal challenge
(or no challenge at all). Scaling factors assigned for upward
and downward movements for the twelve features of interest
are listed in Table VI.

Upward skill transfer usually has a higher relative weight
than a downward skill transfer because moving upward
requires the employee to develop a new skill, while moving
downward typically does not have such a requirement. When it
comes to the amount of physical work and level of hazardous,
in this study, going upward implies that moving to a job
that involves fewer physical activities and is less hazardous.
Therefore, moving upward is more favourable than moving
downward, with a lower relative weight for upward movement
compared to downward movement. For the education feature,
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TABLE VI
RELATIVE WEIGHTS FOR UPWARD AND DOWNWARD SKILL TRANSFERS

moving upward implies that an employee with lower
education credentials is required to attend school, college
or university to obtain new (higher) education credentials.
Moving downward in education implies that an employee with
higher education credentials is required to work in a lower skill
job. When considering the existing organizational structure,
policies, education, and training opportunities, acquiring a new
education credential is relatively easier than hiring someone
with higher education credentials to perform lower skill jobs.
For example, companies do not assign or hire a person
with a doctoral degree to perform the tasks that high school
graduates can do. Therefore, a downward transfer of education
is penalized more than an upward transfer. The same principle
is applied to the work experience feature, since acquiring
more work experience is relatively easier than assigning a
highly experienced person to perform tasks that an entry-
level (no-experience) employee can do. As the discipline
feature determines the change in a workgroup, the concept
of upward/downward skill transfer does not apply to it.
Therefore, this study assigns a constant (equal) relative weight
for upward/downward transfer for the discipline feature.

Algorithm 1 outlines the procedure for career pathway cost
calculation. It initializes with a known feature ranking as
discussed in section III-E, upward/downward scaling factor
matrices, NOC codes, and data to compute CCD. Then, for
each job, the career pathway cost to all other jobs is calculated
and the results are stored in the career pathway cost matrix
(CPCM). The dimension of the CPCM is N × N , where N is
the number of occupations under study. The diagonal elements
of this matrix become zero because there is no cost when there
is no changing between jobs.

G. Career Pathway Ranking

Each element in a column of the CPCM represents career
pathway cost from a given job each of the other jobs.
To determine the career pathway ranking matrix (CPRM),
the individual column of CPCM is sorted in ascending order
independently and assigned the career pathway ranking in the
range of 1 to N − 1 as shown in Algorithm 2. Therefore,
merging with the smallest CPC corresponds to a rank of one,
while merging with the largest CPC corresponds to a rank of
N − 1. The lower the CPRM value, the greater the similarity
between two jobs which means they are easier to merge.

Algorithm 1 Career Pathway Cost Calculation Algo-
rithm

Data: initial feature ranking matrix, upward/downward
scaling factors, NOCs, data to calculate CCD

Result: career pathway cost matrix (CPCM)
1 initialization: CPCM = zeros(N × N )

2 for each job in the list (say i) do
3 for each job in the list (say j) do
4 Compute career pathway cost (CPC j,i ) using

equation (1)
5 CPCM( j, i) = CPC j,i

Algorithm 2 Career Pathway Ranking Calculation
Algorithm

Data: career pathway cost matrix (CPCM)
Result: career pathway ranking matrix (CPRM)

1 initialization: CPRM = zeros(N × N )

2 for each column in CPCM do
3 Sort the column in ascending order
4 Assign career pathway ranking in the range 1 to

N − 1

Fig. 2. Two-states Markov chain.

H. Jobs’ Susceptibility for Automation

As outlined in Section II, there are numerous studies
modeled the susceptibility of a given job to automation
and computerization. This paper adapts the work presented
in [14], [44], [25], [15], [11], [11], and [13] to compute the
susceptibility of the offshore drilling occupations over a period
of 100 years. This is the span of the simulation. It does not
alter the study results since all the possible job merging occurs
within 40 to 60 years, depending on the digital readiness level
that has been used for evaluation.

1) Compute General Susceptibility Trajectories: A two
state Markov chain shown in Fig. 2 is applied to compute the
susceptibility of a given job to automation (digitalization). This
Markov chain follows a linear system given in (2) where S(n)

represents the susceptible labour and N S(n) represents the
non-susceptible labour. The value of S(n) and N S(n) are in the
range of zero to one and their summation should equal to one,
i.e., 0 ≤ S(n) ≤ 1, 0 ≤ N S(n) ≤ 1 and S(n)+N S(n) = 1 for
n > 0 where n is the simulation time step.

[
S(n)

N S(n)

]
=

[
1 1 − b

1 − a a

][
S(n − 1)

N S(n − 1)

]
(2)

In this Markov chain, it is assumed that a portion of the
susceptible labour, aS(n), remains susceptible, while the rest,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



WANASINGHE et al.: DIGITALIZATION AND THE FUTURE OF EMPLOYMENT 9

(1 − a)S(n), moves back to the non-susceptible labour due
to regulatory changes. Similarly, a portion of non-susceptible
labour, bN S(n), remains non-susceptible, while the rest,
(1 − b)N S(n), moves to the susceptible labour due to
technology adoption and/or regulatory requirements. The
parameters a and b represent the probability that the tasks in
a given job remain as susceptible labour and non-susceptible
labour, respectively. Note that (1−b) represents the probability
of changing from non-susceptible to susceptible labour; thus,
the susceptibility values given in [11], [11], and [13] (Oxford
percentages) can be used to represent this quantity. The
susceptibility values given in [44], [25], [15], and [13]
(McKinsey percentages) are used as the initial value for S(n).
The simulation time step, i.e., time step for the Markov
chain, is set to ten years. A smooth spiral-based curve fitting
approach is then used to interpolate missing susceptibility
values between two simulation time steps.

2) Compute Initial Oxford Trajectories: The fourth indus-
trial revolution is accelerating innovation and digitalization.
Such acceleration could see the Oxford percentages reported
in [11], [11], and [13] increase with time. Therefore,
a logistic regression-based approach is applied to compute
the trajectories for Oxford percentages. For the input data
set, it is assumed that the start year for Oxford trajectories
is 2018, corresponding to the year of the Oxford study, and
the year of the anticipated Oxford value is 2038. Note that
the Oxford values gives the probability of a given job being
fully automated in the next 10-20 years [11], [13], [25]. The
Oxford values at 2018 (the starting year) are assumed as 1%.

3) Digital Readiness Levels: It was proposed that there
are five factors affecting the pace and extent of technology
adoption [15]. These factors are:

• Technical feasibility: The existing industrial and demo-
graphic challenges may be solved by deploying
demonstrated (existing) technologies. However, in some
scenarios, technology has to be developed and integrated,
requiring an extended time frame for technology
adoption.

• Cost of developing and deploying solution: Development
and deployment of technologies involve a series of costs,
including hardware and software costs as well as taxes.
These additional costs may affect the pace of technology
adoption.

• Labour market dynamics: The supply, demand and costs
of human labour can catalyze or hinder automation and
digitalization.

• Economic benefits: While pure labour cost savings may
not drive technology adoption, other economic advantages
such as improved quality and throughput integrated with
labour cost saving could be drivers. The existence or
absence of such economic benefits either accelerates or
decelerates technology adoption.

• Regulatory and social acceptance: Social influence may
bring new regulations to either support or oppose the
technology adoption.

The Oxford and McKinsey projections were based on
technological readiness but did not account for the other four
abovementioned factors. These four factors cause technology

TABLE VII
TEN-POINT SCALE FOR DR LEVEL

adoption to lag technological feasibility, [15], requiring to
modify the susceptibility trajectories calculated in the last two
steps. Unfortunately, there is no sufficient quantitative data
to model these four factors. Therefore, this study adopted
the standard logistic growth curve (S-curve) approach that
has been used for centuries to project future scenarios
for many application domains, including ecology, medicine,
chemistry, physics, linguistics, agriculture, economics, and
sociology [45], [46], [47], [48], [49], [50], [51], [52] to project
the growth curves for digital adoption. Equation (3), gives
the standers logistic growth curve, where f (t) represents the
parameter of interest at time t , t◦ represents t values of the
sigmoid’s midpoint, L represents the supremum of f (t), and
k represents the steepness of the curve.

f (t) =
L

1 + e−k(t−t◦)
(3)

For our study, f (t) gives digital readiness (DR) projection,
which varies from zero to one (i.e., 0% to 100%), in year t .
Therefore, L = 1 (i.e., 100%) and t◦ represent the year that
the technology adoption is at 50% of its final value. Suppose
sufficient data is available representing the aggregated effect
of the five factors that affect the pace and extent of technology
adoption. In that case, it will be possible to perform nonlinear
least square estimation to calculate parameters k and t◦. Since
such data is unavailable, we consider ten DR scenarios as
summarized in VII, and calculate the steepness of the curve,
i.e., k, as −

(
ln 10−6

)
/S where S gives the numbers of years

needed to reach the supremum, i.e., L , of DR. Ten synthesized
DR growth curves are shown in Fig. 3.

4) Updated Susceptibility Trajectories: For a given job,
the susceptibility trajectories calculated in Section III-H1 are
updated by multiplying them by the calculated DR growth
curve. This updating step generates ten different susceptibility
trajectories per job. For example, the updated susceptibility
trajectories and Oxford-McKinsey-based original susceptibil-
ity trajectory for Offshore Installation Manager are shown
in Fig. 4.

I. Job Merging

The proposed job merging approach is outlined in
Algorithm 3. The inputs to the job merging algorithm
include the existing job titles, the associated NOC codes,
the McKinsey and Oxford percentages, the year to the
anticipated Oxford value, the simulation start year and time
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Fig. 3. Digital readiness levels. The readiness levels are in the one-to-ten scale
where Level-1 represents the lowest digital readiness and Level-10 represents
the highest digital readiness.

Fig. 4. Susceptibility of OIM for automation.

window, the feature value matrix for existing jobs, the upward
and downward skill transfer weights, and the weights for
transferring between different skill types (broad occupation
categories). Values for the first four parameters are given
in Table XIV (Appendix A). It is assumed that the year
to the anticipated Oxford values for the existing jobs is
2038 (20 years from the starting year). The simulation start
time is set to 2018, and the simulation time window is
set to 100 years. Feature values used for existing jobs are
listed Table XV (Appendix B). The upward and downward
skill transfer weights are given in Table VI (Section III-F).
As discussed in Section III-E, the discipline change cost is
derived using the NOC codes. Thus, the NOC codes are listed
as feature values for the Discipline vector. The weight for
the skill type (broad occupation group) transfer is given in
Table III (Section III-E).

The algorithm initializes with calculating the digital readi-
ness levels. The Oxford trajectories, the general susceptibility
trajectories, and the updated susceptibility trajectories are then
calculated for each digital readiness level. The job merging
iterations follow this. The proposed algorithm first computes
the career pathway cost matrix for the input jobs at the first
iteration. This step is followed by the calculation of the career

Algorithm 3 Job Merging Algorithm
Data: Job titles, NOCs, McKinsey percentages, Oxford

percentages, year to know Oxford %, start year,
simulation time window, feature values for
existing jobs, weight for moving up, weights for
moving down, weights for skill type transfers

Result: Future occupation scenarios
1 Initialization: Compute digital readiness levels

(Section III-H3)
2 Compute Oxford trajectories for each job

(Section III-H2)
3 Compute general susceptibilities for each job

(Section III-H1)
4 Compute the updated susceptibilities for each job

(Section III-H4)
5 for each digital readiness level do
6 while jobs can be merged do
7 Compute CPCM (Algorithm 1)
8 Compute CPRM (Algorithm 2)
9 for each column of CPRM do

10 for each entry of the column do
11 if CPC < threshold then
12 Create new job

13 if No job has created then
14 Break the while-loop

15 for each new job do
16 Add susceptibility values of source jobs
17 Find year of job merging (Y i

m)

18 Determine the smallest value for job merging
year (say min(Y i

m))
19 Select the job merging in the time window of

min(Y i
m) to (min(Y i

m) + 5)

20 Discard the rest of the job merging scenarios
21 Sort the selected job merging scenarios in

ascending order of CPC
22 Analyse this list to determine and remove the

multiple use of source jobs
23 for each job merging do
24 Merge two jobs
25 Compute new susceptibility values
26 Compute values for features
27 Remove the source jobs from job list
28 Add new job to the occupation list

pathway ranking matrix. Dimensions of these matrices are
N × N where N is the number of jobs in the input data set
of the current iteration. A sample career pathway cost matrix
and ranking matrix are given in Table XVI and Table XVII,
respectively (Appendix B).

For each entry in the CPRM, except for the diagonal
elements, a new job is created by merging the column index
job with the row index job. This results in a maximum of
N × (N − 1) pairwise job merging scenarios for the list of N
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jobs. If the career pathway cost is higher than a pre-defined
threshold for a given job merging scenario, this particular job
merging scenario is discarded. In our study, 2000 is used as
the upper threshold. This upper bound is set to ensure Medic,
OIM and Food services-related occupations are not merged
with others and remain intact as long as someone is onboard
an offshore drilling installation.

For the remaining job merging scenarios, the susceptibility
values of source jobs are added to create a combined
susceptibility of the source jobs. These combined susceptibility
values range from 0% to 200%, where 0% indicates that both
of the source jobs are not susceptible to automation, while
200% indicates that both of the source jobs are entirely (100%)
susceptible to automation. For a given job merging iteration
(say i th job merging iteration), the year that the combined
susceptibility first exceeds 120% is considered to be the year
of job merging, Y i

m for those jobs. Note that 100% would
be the ideal threshold level for combined susceptibility to
determine Y i

m because 100% ensures that the newly created
job has no activities left that can be automated using the
demonstrated technologies at Y i

m . However, this is an overly
optimistic assumption, and this study considers 120% as the
threshold level for the combined susceptibility to determine
Y i

m , to provide a margin for potential deviations that may occur
during practical industrial implementations of automation.

For all of the possible job merging scenarios, the
corresponding Y i

m are calculated. If two source jobs are highly
susceptible to automation, the summation of these susceptibil-
ity values will exceed 120% very quickly. In contrast, if two
source jobs are not susceptible to automation, the summation
of the two susceptibility values will take more time to exceed
the 120% threshold. Therefore, Y i

m values of the possible job
merging scenarios are reviewed to determine the lowest Y i

m
value denoted as min(Y i

m) (line 18, Algorithm 3).
In a list of many jobs, we may end up with several hundreds

of options where a given job becomes a member of multiple
job merging scenarios. For example, job1 can be a member
of multiple job merging scenarios such as ( job1 + job5),
( job1+ job15), ( job10+ job1), ( job17+ job1), ( job21+ job1),
etc.. This study assumes that if a given job is merged with
another job, both jobs become unavailable for subsequent job
merging steps. This constraint is introduced to ensure that the
job merging process leads to a decrease in POB rather increase
in POB. Therefore, when a given job is a member of multiple
job merging scenarios, the lowest-cost option is selected, and
the higher-cost options are discarded. Suppose it is desirable to
perform job merging as early as possible and to allow C PC to
play a critical role in the job merging approach. In such a case,
it is better to analyze the job merging scenarios that occur at
min(Y i

m) and the job merging scenarios that occur within a pre-
defined time window from the min(Y i

m) to find the optimum
sequence of job merging. This study selects the job merging
scenarios that exceed the combined susceptibility of 120%
during the period of min(Y i

m) to (min(Y i
m) + 5) for further

analysis (line 19, Algorithm 3). Any job merging scenario
that occurs after (min(Y i

m) + 5) is discarded for the current
job merging iteration (line 20, Algorithm 3). The rationale for
selecting a five-year time window from min(Y i

m) as a threshold

is because the half-life of a learned skill3 being proposed to be
five years [53], [54]. This pruning process allows jobs created
at an early iteration to combine with an existing job or another
newly created job at later iterations.

To limit one job to be merged with one another job and
perform job merging as early as possible while giving a high
priority to the job merging scenarios with lower CPC, the job
merging scenarios for min(Y i

m) to (min(Y i
m)+5) time window

are first arranged in the ascending order of CPC (line 21,
Algorithm 3). Then, starting from the lowest cost option, the
elements of the sorted job merging list are evaluated to identify
the multiple uses of the same job and to remove higher cost
options (line 21, Algorithm 3). This is achieved by creating
a list, say list-A, that contains source jobs that have already
been considered for the current job merging iteration. The list
is initialized by inserting two source jobs of the job merging
scenario with the lowest CPC. Then the source jobs of the job
merging scenario with the second lowest CPC are compared
with the jobs in list-A. If at least one of the source jobs
of the job merging scenario with the second lowest CPC is
a member of list-A, this job merging scenario is discarded.
Otherwise, it is considered a valid job merging scenario, and
the list-A is updated by appending the source jobs of this job
merging scenario. This process continues until all the selected
job merging scenarios, going from the third lowest CPC to the
highest CPC - one at a time, have been considered.

As a final step, new jobs are created using the job
merging scenarios that remain after the pruning step at line
22 of Algorithm 3. Once two jobs are merged into one,
the source jobs are removed from the occupation list, and a
newly created job is added to the occupation list of offshore
drilling installation. The proposed algorithm computes the
susceptibility percentages and the ranking of features for the
newly created jobs to ensure a continuum of job merging
iterations.

The susceptibility value for a newly created job is calculated
by subtracting 100% from the combined susceptibility value
of the two source jobs at the merging. Except for the level
of hazardous, amount of physical work, and the discipline
features, the ranking of the other features of a newly created
job is set to the maximum value of the corresponding feature
ranking of the source jobs. The level of hazardous and the
amount of physical work features of the new job are set
to the average of the corresponding feature ranking of the
source jobs. The discipline feature of the new job is set to the
NOC code of the highest skilled job of the two source jobs.
The second bit of the newly created NOC code is reset to
the highest education level required for the source jobs. This
process is iterated until no more job merging is possible.

IV. RESULTS

A. Simulation Environment

The proposed algorithm projects possible job-merging
scenarios for the next few decades, which is not a rapidly

3This means that much of what someone learned ten years ago is obsolete
and half of what they learned five years ago is no longer relevant for the
present world.
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TABLE VIII
VALIDATION CASE STUDY WITH TEN DRILLING RIG OCCUPATIONS

changing parameter that requires real-time observation and
instantaneous action to avoid catastrophic failures. Therefore,
the minimized computational complexity and the algorithm’s
real-time execution capability are not the focus of this study.
We implemented and simulated the proposed algorithms in
MATLAB because it is a user-friendly programming and
numeric computing platform with many inbuilt mathematical
libraries. The software was installed in a laptop computer with
a dual-core Intel Core i7-4510U CPU with multi-threading,
operating at 2.00 GHz and 16 GB of RAM. On average, the
processing time of the algorithm was less than two minutes,
which included the read and write time of data and results for
each job merging iterations.

B. Validation of Career Pathway Generation Process

To validate the proposed model, ten occupations related
to offshore drilling operations were isolated and evaluated
through Algorithm 1 and Algorithm 2. These ten occupations
are roustabout, roughneck, motorman, assistant derrickman,
derrickman, assistant driller, driller, tool pusher, rig super-
intendent, and OIM. The rationale for selecting these ten
occupations is that their career progression path is well
known. For example, someone can start as a roustabout
and then progress to OIM following the path roughneck,
motorman, assistant derrickman, derrickman, assistant driller,
driller, toolpusher, rig superintendent, and finally, OIM [42].
The career path cost and the ranking for a roustabout to
reskill to perform the task of the other nine jobs, as calculated
by the proposed algorithms, are given in Table VIII. The
result illustrates that, for a roustabout, the reskilling cost to
become other nine occupations increases in the ascending
order of career progression. This is consistent with [42]
and demonstrated that the proposed framework can capture
relalistic career pathways. Note that a change to supervisory
positions, such as toolpusher, rig superintendent and OIM, has
a relatively high career pathway cost since the transfer costs for
the discipline feature have relatively high values for merging
with the OIM job (refer to Section III-E for more details.).

C. A Sample Job Merging Simulation

The proposed job merging approach develops a timeline for
the evolution of jobs, i.e. new jobs to emerge and existing
jobs to disappear. This study considers eleven simulation

cases where the first job merging simulation is performed
purely on the technological feasibility, without integrating the
digital readiness levels. The remaining ten simulation cases
correspond to individual digital readiness levels. The timeline
for the evolution of jobs for digital readiness level five (DRL5)
is shown in Table XVIII (Appendix C). The first column of
the table represents the job title, the second column represents
the starting year, Ys , of the job and the last column gives the
life span, YL S , of the job. This result is presented to illustrate
some important characteristics of the proposed job merging
algorithm.

The job merging process was started with 40 occupations.
If n pairwise job merging events occurs at a given iteration,
the total number of occupations will be reduced by n. For the
case of DRL5, the total number of iterations was six, reducing
the POB to six. These six occupations include OIM, medic,
a food service related job, a supervisory job, a general labour
(low-skilled and medium-skilled) position and a high-skilled
labour position. In Table XVIII, these six jobs are shaded in
green.

The job title format of a newly created job encodes the
reskilling direction information. For example, job title ( job1+

job2) indicates that an employee in job1 is reskilled to
perform the task of both jobs while the job title ( job2 +

job1) indicates that an employee in job2 is reskilled to
perform the task of both jobs. While the proposed algorithm
performs pairwise job merging, it may be economical and
technologically feasible to combine more than two jobs
at once. The iterative nature of the proposed algorithm
effectively captures such situations. For example, in 2049,
a new job ( jobα+ jobβ) is created combining jobα ((Dynamic
Positioning Operator + Ballast Control Operator) + (Assistant
Derrickman + Motorman)) with jobβ ((Derrickman +

Cement Pump Operator) + (Roughneck + Roustabout)).
In Table XVIII, this job merging scenario is shaded in blue.
This newly created job is then merged with jobγ (Radio
Operator + Storekeeper) in the same year, i.e., 2049. As a
result, the life span of ( jobα + jobβ) became zero years,
indicating that all three jobs are combined in a single step
( jobα + jobβ + jobγ ).

Note that the life span of some of the new jobs is very
short. Investing in implementing new education and training
programs to reskill or orient the workforce (existing and
prospective) to perform jobs that have a shorter life span
and asking the workforce to spend resources (monetary as
well as time) to gain these skills do not lead to sustainable
socioeconomic development, but may cause for a sever
socioeconomic distress. For example, in 2041, a new job
emerged by merging ‘Chief Steward’ and ‘Steward,’ shaded
red row in Table XVIII. This new job is later merged with
‘Cook’ in 2043, resulting in another new job ‘((Chief Stewards
+ Steward) + Cook)’. This implies that the life span of
‘(Chief Steward + Steward) is two years. Although reskilling
of ‘Chief Steward’ to perform the tasks related to both jobs
does not require new education or training programs, it will
create socioeconomic distress as someone could view this
as demoting ‘Chief Steward’ to ‘Steward’. It may not be
worth introducing such distress since the job lasts only two
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TABLE IX
USE CASES FOR THE SENSITIVITY ANALYSIS

years. Alternatively, it might be appropriate to accelerate the
technology adoption and combine these three jobs in 2041 or
to delay technology adoption and combine these three jobs
in 2043 in a single step. These observations imply that the
stakeholders, including regulators, policymakers, education
institutes, employers, trade unions, and subject matter experts,
can use the results of the proposed algorithm only as a baseline
to plan their education and reskilling programs, digitalization
strategies, and human capital investments. Since the proposed
algorithm provides all possible job merging scenarios, the
stakeholders can implement, skip, accelerate or delay job
merging steps to achieve optimum benefit from technology
adoption and human capital investments while minimizing
socioeconomic distress.

D. Sensitivity Analysis

The proposed algorithm follows a feature-based approach to
calculate career pathway costs. The values for these features
were determined by analyzing a range of literature and
information gathered by attending two industrial conferences,
two workshops, and multiple focus group discussions, which
were focused on the digitalization of the offshore O&G
industry. The fluctuation of these parameters could affect the
overall cost calculation and, thus, the job merging pathways.
Since this is the first study proposing the concept of job
merging, no data is available in the literature to compare
and validate the outputs of the proposed algorithm. Therefore,
a sensitivity analysis (SA) was conducted to assess the
robustness of the proposed algorithm against the parameter
fluctuations.

As given in (1), calculated CPC depends on feature values
and upward/downward weighting factor kn . The following
sensitivity analysis assesses how the job merging pathways
will be affected if kn changes (SA-I), if feature values
change (SA-II), and if both kn and feature values change
simultaneously (SA-III) - as summarized in Table IX. In each
case, the parameters under sensitivity analysis were changed
up to 20% of their original value, both in upward and
downward directions, in 5% steps. This implies that each SA
scenario consists of eight assessments, totaling 24 assessments.
Each assessment’s resulting job merging pathways were
compared with those given in Table XVIII.

If kn or/and feature values are scaled, according to (1),
the calculated CPC will also be varied. Therefore, the upper
threshold of the CPC that prevents two jobs with high
dissimilarities from beings merged into a single job must also
be updated with the change of parameter values. This upper
threshold is predominantly defined by the value of discipline

TABLE X
SAMPLE CALCULATION OF SCALING FACTOR FOR THE UPPER THRESHOLD

USING (4). THIS EXAMPLE CONSIDERS A 10% CHANGE IN
THE UPWARD DIRECTION

TABLE XI
GROUPING OF JOB SENSITIVITY ANALYSIS SCENARIOS WITH IDENTICAL

JOB MERGING PATHWAYS

feature compared to the other features. Therefore, the scaling
factor for the upper threshold was approximated as the product
of the scaling factor for kn and CCD, which is given in (4)
where SFT , SFkn , and SFFV represent scaling factors for the
upper threshold, kn , and feature values respectively. A sample
calculation of the upper threshold scaling is given in Table X.

SFT = SFkv
× SFFV (4)

Despite the variations in parameter values, each of the
24 assessment scenarios terminated the job merging process
after six iterations, which is identical to the baseline case
presented in the manuscript. Additionally, similar to the
baseline results, each of the 24 assessment scenarios reduces
POB from 40 occupations to six occupations. The number
of job merging iterations and the final POB are independent
parameters, although both become six in our simulations.
The 24 assessment scenarios generated three distinct job
merging pathways as grouped in Table XI. Three symbols,
‘✶’, ‘◆’, and ‘❍’, represent similar job merging pathways.
Out of 24 cases, 17 assessment scenarios (marked with ‘✶’ in
Table XI) generated identical results compared to the baseline
scenario given in Table XVIII, while the remaining seven cases
followed two different pathways.

Table XII gives a more expanded view of the results
presented in Table XI, wherein for each simulation case,
it shows the final six jobs (say J1, J2, J3, J4, J5, J6) and
whether these jobs follow identical job merging pathways
compared to the baseline scenario, i.e., green highlighted
jobs in Table XVIII. The jobs that followed identical job
merging scenarios compared to the baseline scenario are
shaded in green. Red or blue shading represents the jobs
that follow different job merging pathways compared to the
baseline scenario. As we can see, J1, J2, J3, J4, and J6
followed identical pathways for all 24 assessment scenarios.
The preceding job merging steps in iterations one to five that
led to J1, J2, J3, J4, and J6 at the sixth iteration were also
identical to the corresponding merging in the baseline scenario.
For 17 out of 24 assessment scenarios, J5 also followed the
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TABLE XII
COMPARISON OF THE JOB MERGING PATHWAYS FOR 24 SENSITIVITY

ANALYSIS ASSESSMENTS SCENARIOS. JOBS WITH IDENTICAL JOB
MERGING PATHWAYS ARE HIGHLIGHTED IN SIMILAR COLOUR

TABLE XIII
THREE POSSIBLE JOB MERGING PATHWAYS FOR J5

same job merging pathway compared to the baseline case. For
the cases highlighted in red and blue, the job merging pathway
of J5 followed an identical pathway compared to the baseline
scenario until the third and fourth iterations, respectively, and
then deviated. However, as shown in Table XIII, the source
jobs that composed J5 for red and blue cases also remained
unchanged, although the sequence that they were merged is
different compared to the baseline case (green). All these
observations confirm that the proposed algorithm is robust
against variations in the feature values and upward/downward
weighting factor kn .

TABLE XIV
EXISTING OCCUPATIONS IN OFFSHORE DRILLING OPERATION

V. DISCUSSION

The available literature that predicts the susceptibility of
existing jobs for automation mainly focuses on predicting
the level of automation in the future workforce and potential
emerging and declining jobs. However, these studies lack
consideration of possible job merging scenarios due to task
automation. Additionally, the existing literature is mainly
concerned with technological readiness, with little to no focus
given to the other modulating factors such as regulatory
frameworks or social acceptance. Therefore, the results of
those studies may be valid for specific industries under certain
geopolitical conditions but do not generalize across industries
and geographical regions. Addressing these two barriers, this
article presented a method to utilize the existing literature to
identify potential job merging scenarios along with a timeline
under various digital readiness levels.
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TABLE XV
FEATURE VALUES FOR INITIAL OCCUPATION LIST

The proposed job merging algorithm is presented as a case
study on the evolution of Canadian offshore oil and gas drilling
occupations. However, this algorithm can be applied to other
industries or occupation structures. The proposed algorithm
projects that the total number of POB will be reduced to
six from 40 within 30 years. These six occupations include
an OIM, a medic, a food service-related job, a supervisory
job, a general labour (low-skilled and medium-skilled), and a
high-skilled labour position. The sensitivity analysis confirmed
that the proposed algorithm is robust against variations
in the feature values and upward/downward weighting
factor kn .

By using the results of the proposed algorithm, stakehold-
ers, including regulators, policymakers, education institutes,
employers (oil and gas operators and service companies), trade

unions, and subject matter experts, can obtain various insights.
First, the algorithm provides possible job merging scenarios,
allowing stakeholders to identify jobs that have high potential
to be merged in the future and plan education and training
programs timely manner to prepare the workforce

for these jobs. Second, the algorithm provides a tentative
timeline for these job merging scenarios, allowing stakeholders
to decide whether to implement, skip, accelerate or delay job
merging steps to achieve optimum benefit from technology
adoption and human capital investments while minimizing
socio-economic impact. Third, as the algorithm provides
tentative job merging scenarios and a timeline, the stakeholders
can envision the required upgrade to their existing drilling
platforms and how to design their future platform to
blend seamlessly with the future workforce. By combining
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TABLE XVIII
TIMELINE FOR EMERGING AND DISAPPEARING OF JOBS WHEN THE DIGITAL READINESS LEVEL IS FIVE. Cont. CONTINUE TO EXIST AFTER

100 YEARS FROM 2018, Ys : STARTING YEAR, YL S : LIFE SPAN OF THE JOB
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TABLE XVIII
(Continued.) TIMELINE FOR EMERGING AND DISAPPEARING OF JOBS WHEN THE DIGITAL READINESS LEVEL IS FIVE. Cont. CONTINUE TO EXIST

AFTER 100 YEARS FROM 2018, Ys : STARTING YEAR, YL S : LIFE SPAN OF THE JOB

these three insights, the stakeholders can effectively lay
down their digitalization strategies to maximize the benefits
of digitalization while minimizing socio-economic impact.
Additionally, the proposed algorithm can be served as a testing
platform for various “what if” scenarios, including what will
happen if we accelerate our digital readiness and what will
happen if we relax regulatory and socio-economic constraints
for someone to assume duties and responsibilities of a low
skill job while holding educational and technical knowledge
to do high skill jobs.

Several critical occupations are required to successfully
deploy modern technologies regardless of the industry,

process, and geographical location. For example, a recent
publication of World Economic Forum [17] listed ten emerging
jobs in the oil and gas sector. These jobs include data analysts
and scientists, big data specialists, robotics specialists and
engineers, renewable energy engineers, process automation
specialists, organizational development specialists, new tech-
nology specialists, information technology services, digital
transformation specialists, and scrum masters. Most oil and
gas operators and service companies already have employees
under these, or related, job titles. These employees generally
work from a central location and work on multiple projects
simultaneously. In addition to these ten occupations, it is
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required to have technicians and technologists with expertise
in automation, robotics, data communication and networking.
With an increase in digitalization onboard offshore oil and
gas platforms, additional technician/technologist jobs will be
required, increasing the POB by 3∼5 employees.

APPENDIX A
EXISTING OCCUPATION LIST FOR OFFSHORE

DRILLING INSTALLATION

Following table lists the job titles, NOC codes, McKinsey
percentages (proportion of tasks that can be automated using
existing technologies) and Oxford percentages (probability of
automation in the next 10-20 years) for 40 occupations related
to offshore drilling operations.

APPENDIX B
INITIAL FEATURE VALUES AND CAREER PATHWAY COST

AND RANKING MATRICES

See Tables XV–XVII.

APPENDIX C
SAMPLE TIMELINE FOR JOB EMERGING AND

DISAPPEARING

See Table XVIII.
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