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Challenges for Future Robotic Sorters of
Mixed Industrial Waste: A Survey
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Abstract— To achieve recycling of mixed industrial waste
toward an advanced sustainable society, waste sorting automation
through robots is crucial and urgent. For this purpose, a robot
is required to recognize the category, shape, pose, and condition
of different waste items and manipulate them according to the
category to be sorted. This survey considers three potential
difficulties in the sorting automation: 1) End-effector: to robustly
grasp and manipulate different waste items with dirt and
deformations; 2) Sensor: to recognize the category, shape, and
pose of existing objects to be manipulated and the wet and dirty
conditions of their surfaces; and 3) Planner: to generate feasible
and efficient sequences and trajectories. This survey includes
76 references to studies related to automatic waste sorting
and 159 references to worldwide waste recycling attempts. This
pioneering investigation reveals the possibility and limitations
of conventional systems; thus, providing insights on open issues
and potential technologies to achieve a robot-incorporated sorter
for the chaotic mixed waste is one of its contributions. This
paper further presents a system design policy for readers and
discusses future advanced sorters, thereby contributing to the
field of robotics and automation.

Note to Practitioners—Most automated sorting systems operate
for limited target waste items. This study is motivated by the
automation of mixed industrial waste treatment facilities using
advanced robotic sorters. Emerging advances and increasing
functionalities of robot system components will widen system
applicability and increase use cases in the chaotic mixed
industrial waste domain. This paper surveys the research
conducted to date, discusses open issues and potential approaches,
and presents user guides that provide practitioners with a
system design policy. The user guides created according to the
strengths and weaknesses of each system configuration provide
future researchers and developers with a useful a priori design
policy that has been thus far validated on efficiency, quality,
productivity, and reliability. A question-and-answer style guide
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and a sorting-target-aware previous study reference list allows
users to find the desired system configuration, including the
investigated components according to their purpose.

Index Terms— Waste sorter, sorting automation, robotic sorter,
robot manipulation, robot vision.

I. INTRODUCTION

THE demand for automation of robot-based recycling
processes is increasing because of the biological risks

involved in the manual processes [1] and persistent human-
labor shortages. Automating the sorting of a diverse variety
of waste is an urgent example [2]. Numerous companies have
considered robotizing waste recycling [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], and several related studies have also
been conducted worldwide [13], [14], [15], [16], [17], [18],
[19], [20]. These successful sorters were specifically developed
to handle waste items of a targeted category. This survey
summarizes current technologies in these existing sorters and
discusses future robotic sorters required to handle highly
mixed industrial waste with no limitation on the target waste
to overcome the generality of current robotic sorters.

Generally, in current treatment facilities for mixed industrial
waste, large amounts of unsorted recyclable waste are gathered
at a collection site (Fig. 1 (a)) and manually sorted into
designated boxes (Fig. 1 (b)) or conveyor lanes based on
their categories (Fig. 1 (c) and (d)). It is not realistic to
treat all industrial waste in the factory or office where it is
generated; therefore, we assume an automated system at an
outside waste treatment facility that gathers it together from
various companies. In other words, robotic recycling systems
are thought of being located in a recycling plant, not in the
same industrial plant where the waste is generated. The process
for limited categories of waste that have a low degree of
mixing is easy to mechanize or robotize. In contrast, for highly
mixed waste, sorting is very difficult with a single dedicated
machine or robot system. Therefore, a combined system that
includes both dedicated machines and robots together with few
human workers is required, which is shown in Fig. 2.

A. Background and Motivation

The following procedure can be considered for an assumed
sorting system using both dedicated machines and robots that
can handle all types of collected waste items while being
helped by a small number of human workers. In the first
stage, a semi-automatic multi-robot picking system capable of
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Fig. 1. Images showing current processes of sorting mixed industrial waste.
(a) Collected waste items are unloaded from a truck, (b) manual sorting of
the mixed industrial waste from the ground, (c) collected waste items on a
conveyor, and (d) manual sorting at the conveyor.

Fig. 2. Overview of an assumed system combining dedicated machines,
robots, and humans working for sorting mixed industrial waste. The thick
black arrows represent the flow of waste items in the series of processes.

a multi-modal sensing (the blue part of Fig. 2) must untangle
long items (e.g. plastic pipes, vinyl ropes, and strings) and
remove explosives (e.g. lithium-ion batteries, small electric
fans, and electronic cigarettes) from densely gathered waste
items that have been unloaded from trucks onto the ground.
In the second stage, with a dedicated vibration machine,
the manipulability by robots based on their movable range
and payload of the robots is considered; then, the vibrating
screen removes large, long, and heavy objects that exceed the
allowed range from the waste items brought by an evacuation
loader. In the third stage, using multi-modal sensors, global
sensing (e.g. recognition at the category level, object image
segmentation, and grasp point calculation) and local sensing
(e.g. recognition at the material level and estimation of
grasping state) are performed on several relatively small and
lightweight waste items. Finally, a semi-automatic multi-robot
module completes the agile sorting for all remaining moving
objects (the red part of Fig. 2).

TABLE I

LIST OF WEB DATABASES WITH URLS USED FOR SEARCHING
ARTICLES IN THIS SURVEY. THE ITEMS ARE ARRANGED

IN ALPHABETICAL ORDER

The major challenges in developing the components of
robotic sorting for mixed industrial waste are two-fold:
1) the wider variety of waste items that are densely gathered
and/or move on a conveyor must be manipulated in an agile
manner, 2) short lifecycle objects that are dirty on the surface,
deformed, and/or damaged must be robustly recognized.
A wider range of previous studies that can relate to this
topic were investigated. Therefore, this survey considers three
potential difficulties of the sorting automation pertaining to the
robotic components: 1) End-effector: to robustly grasp and
manipulate different waste items with dirt and deformation;
2) Sensor: to recognize the category, shape, and pose of
existing objects to be manipulated and the wet and dirty
conditions on their surfaces; and 3) Planner: to generate
feasible and efficient sequences, grasps, and trajectories.
After investigating the current technologies regarding the
components, we discuss the advanced modules including
these components, which rely on multi-modal sensing and
semi-automatic manipulation with multiple robots and human
workers.

B. Search and Collection Strategy

To collect the related articles, we first searched the ACM
Digital Library, ASME Digital Collection, IEEE Xplore,
MDPI, SAGE Journals, ScienceDirect, Springer Link, and
Taylor & Francis Online using the keywords “robot” and
“waste” and (“sort” or “recycle”). We also searched using
Google Scholar1 and discovered listed articles published in
other databases. Table I contains the list of the web databases
and their URLs, and Fig. 3 shows the number of articles for
each web database used in this survey. After examining the
abstracts and titles of all articles obtained from each database,
we chose the related articles among them. Fig. 4 shows
the waste domains described in the articles found, which
include Not Defined (ND), Municipal (urban) waste, Waste
electrical and electronic equipment (WEEE), Construction and
demolition (CND) waste, Nuclear waste, Litter, Underwater
waste, Household waste, Consumer and industrial (CNI)
waste, Biomedical waste, Space waste, and Floating waste.

Using the articles collected in this manner, effective
and efficient technologies that can be used for sorting

1https://scholar.google.co.jp/
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TABLE II

SURVEY AND REVIEW ARTICLES PUBLISHED THUS FAR. THIS LIST IS
ARRANGED IN ORDER OF THE PUBLICATION YEAR

Fig. 3. Numbers of articles from each web database used for this survey.
The database names of the recycling groups are arranged in descending order
from the left, and the databases with the same number are in alphabetical
order.

mixed industrial waste were investigated in this study. From
these investigations, domain-specific sorting approaches for
underwater [40], [41], [42], [43], floating [44], [45], [46],
space [47], [48], nuclear [49], [50], [51], [52], [53], [54],
[55], and biomedical [56], [57] waste were excluded. Rather,
Municipal and CNI [58] waste, along with ND, CND [36],

Fig. 4. Waste domains discussed in each article. Not defined (ND)
indicates the cases wherein the article does not explicitly mention the
target domain. WEEE, CND, and CNI are abbreviations of waste electrical
and electronic equipment, construction and demolition, and consumer and
industrial, respectively. The domain names of the recycling groups are
arranged in descending order from the left in the same manner.

WEEE [59], [60], garbage in public spaces [61], [62], [63],
[64], [65], [66], [67], [68], and household waste [69], [70],
[71], [72], [73] were included.

Furthermore, material- or product-specific waste sorting was
also researched. Likewise, these were divided based on the
target domain. They are included in this survey because of
related techniques that exist to sort solid waste. For example,
some existing technologies can sort aluminum scraps [74],
[75], plastics [22], [39], [76], beverage containers [77], and
batteries [78], [79], [80]. These objects are also often included
in mixed industrial waste.

Finally, this survey includes 76 references (hereinafter,
referred to as sorter group) to related studies on automatic
waste sorting and 159 references (hereinafter, referred to
as recycling group) to worldwide waste recycling attempts.
The former is a list of articles on sensing and manipulation
technologies applied toward waste sorting with dedicated
machines or robots in the target domains. The latter,
in addition to the former list, includes articles on waste
sorting technologies used in non-target domains and surveys
or reviews of existing recycling management activities around
the world. The following sections include the cited references
and also consider their further citations (that is, more recent
papers citing the selected ones).

C. Objectives and Contributions

To distinguish between this survey and other survey and
review articles, Table II summarizes the survey and review
articles published previously. Table II includes a wider range
of topics: sorting systems, recycling economics (circular
economy), recycling activities, and biological risks in each
country, domain, organization, and material. Some of these
articles summarize waste sorting systems and approaches for
different waste source domains, including WEEE [13], [21],
[25], [35], [37], municipal [1], [2], [14], [16], [17], [19],
[34], and CND [23], [30], [33], [36] waste. Furthermore,
several assessment and evaluation methods for sustainability
in construction automation and robotics [81], technological
developments for robotic sorting of plants [82], performance
in sorting technology [39], and waste treatment systems [83]
have also been proposed.
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To the best of our knowledge, this survey is the first attempt
to organize the related technologies and insights for future
robotic sorters related to the domain of mixed industrial waste.
This paper considers waste treatment on an industrial scale,
which includes household and municipal waste. The three
primary contributions of this survey are as follows:

1) Similar to this study, Bogue et al. [25], Gibson [12],
and Lubongo et al. [39] enumerated several practical
sorting machines to outline what current waste-specific
systems can manipulate (e.g. sort and disassemble)
the limited target waste. Sarc et al. [16] discussed
the role and limitation of robotic-based and waste-
specific sorting systems with relevance to business
models and data tools. Compared with these studies,
this paper concentrates on difficulties originating from
chaotic mixed waste sorting scenes. This paper broadly
covers conventional hardware (e.g. end-effector, sensor,
and integrated system) and software (e.g. planner and
controller) configurations and further addresses their
potential use in the ever-more chaotic and difficult-to-
sort situations of mixed industrial waste (e.g. densely
gathered and moving objects).

2) Other two review articles provide more concrete
details of components integrated in the sorting systems
developed thus far. Cui et al. [21] discussed the criteria
and principles of mechanical separation processes
with dedicated machines for WEEE sorting tasks.
Gundupalli et al. [14] reviewed different approaches
of physical processes, industrial sensors, and dedicated
actuators, as well as control and autonomy related issues
in automated sorting and recycling of source-separated
municipal solid waste items. Unlike these articles,
this paper discusses the role of future robotic sorters
for mixed industrial waste that can possibly eliminate
the persisting issues of previously developed dedicated
machines. The user guides created according to the
strengths and weaknesses of each system configuration
provide future researchers and developers with a useful
a priori design policy. A question-and-answer style guide
and a sorting-target-aware previous study reference list
allows users to find the desired system configuration,
including the investigated components according to
their purpose. Finally, based on these investigations
and clarifications, emergent issues are comprehensively
discussed to further improve the robotic technologies for
chaotic mixed waste treatment.

In the following section, we briefly explore the history of
the recent well-studied approaches and technologies based on
waste sorting automation. Section III introduces and classifies
the end-effectors, sensors, and planners used and developed for
waste manipulation operations thus far. Thereafter, Section IV
discusses the roles of the current dedicated machines and
future robotic sorters. Finally, Section V concludes this survey.

II. OVERVIEW OF SURVEY RESULTS

A. A Brief History

Waste sorting using robots was first attempted around the
1990s [84]. As shown in Fig. 5, it appears that few studies

Fig. 5. Publication years of the articles in the two groups. The vertical axis
shows the number of articles.

were initiated from 1990 and were actively studied until
around 2011.

In the 1990s and later, Ward et al. [49] constructed
several mockups of teleoperated robots for radiation exposure
reduction that can manipulate objects in sites that manufacture
nuclear materials. Customized end-effectors or tools were
equipped according to the application (i.e. the workplace
and target objects). They used force and torque sensors
to check the values for the safe operations and used
cameras only for viewing the remote workspaces. Similarly,
Holliday et al. [84] demonstrated an automated robotic
workcell equipped with multiple sensors for hazardous waste
characterization. Glass et al. [85] tackled the problem of
collision-free inverse kinematics of manipulators to perform
waste management tasks. Prassler et al. [69] proposed an
office waste cleanup mobile robot without robot arms.
Caldwell et al. [50] developed a pneumatic muscle actuator
driven manipulator rig without end-effectors that could be
teleoperated for nuclear waste retrieval operations. Karls-
son et al. [86] concentrated on a vision feature fusion approach
with multiple vision systems for classification of electrical
motors for recycling. No studies targeted CNI waste.

From the 2000s, Cui et al. [21] discussed mechanical
separation processes for fine particles of WEEE, which
was only beginning at that time. Another featured topic is
plastic recycling. Ahmad et al. [76] presented an automatic
identification and sorting method of plastic waste items. They
sorted the plastic materials based on optical identification of
fluorescence signatures of dyes, incorporated in these materials
in trace concentrations prior to product manufacturing. The
identified objects were arranged in a line on the conveyor and
sorted by operating the air jet for ejection to the appropriate
bins. One breakthrough came with ZenRobotics. ZenRobotics
company, based in Helsinki, Finland, was founded in 2007.
In 2009, ZenRobotics Heavy Picker was developed for sorting
CND waste. The system is equipped with gripper arms and
can sort out contaminants and recyclables from mixed waste
streams with the help of deep-learning.

In contrast, several developed countries have proposed
concepts and taken initiatives to achieve innovative man-
ufacturing processes, as represented by Industry 4.0 [87]
that started in 2011, Industrial Internet Consortium [88]
established in 2014, and Made-in-China 2025 [89] that started
in 2015. Because of this future innovation in the manufacturing
industry, the automation of recycling may have also attracted
considerable attention. The combined paradigm Recycling 4.0
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Fig. 6. Number of articles on issues specific to each country. The country
names of recycling groups are arranged in descending order from the left in
the same manner. Articles that mention the target country explicitly in the
title or text were counted.

Fig. 7. Mapping counted countries of Fig. 6 (recycling group). White-colored
areas indicate the countries where country-specific articles related to waste
recycling could not be obtained.

was discussed in [90]. Combining the emergence of practical
technologies, such as ZenRobotics’ sorting system with this
social background, numerous technologies related to waste
sorters have appeared, as described in the following sections.

B. Global Aspects

Fig. 6 shows the actual number of articles specified with
the country names and Fig. 7 shows a heat-map superimposed
on the world map with the json data of geographic
information.2 Recently, 15 developed countries: Australia [20],
[30], Austria [58], [82], Canada [13], China [26], [31],
[38], [91], [92], India [18], [29], Italy [61], Korea [28],
Malaysia [65], Malta [93], Poland [83], Portugal [94],
Russia [19], Slovenia [17], UK [55], and USA [49] have
worked on this topic on a large scale.

China and India have overwhelmingly large populations
compared to other countries. European countries and other

2https://github.com/johan/world.geo.json

Fig. 8. End-effector types used for sorting operations. Combined shows the
gripper with both two-fingered and suction grippers.

Asian countries (excluding China and India) are 3 and 0 in the
sorter group and 9 and 4 in the recycling group, respectively,
which are comparable to China and India. Other regions
include the United States and Canada in North America.

III. CURRENT ROBOT CONFIGURATIONS

To enable sorting by robots, the end-effector, sensor, and
planner must be meticulously designed. According to [12], the
currently installed robotic sorting systems in waste treatment
facilities perform the following procedures. First, after the
system distinguishes between materials, a robotic arm is
activated to pick the targeted items. The robotic arm can
use a gripper shaped like a human hand or a suction cup to
pluck items off the conveyor. The robot often has a delta-
style configuration, with three arms connected in parallel at
the base. However, the ability of the sorting system used for
limited target objects like colored bins, clear bags, and papers
in small sizes must be extended. Therefore, for a wide range
of articles included in the sorter group, the current studies
regarding the end-effector, sensor, and planner are investigated
in this section.

A. End-Effectors and Manipulation

This section summarizes and classifies the robot hands and
grippers in terms of the mechanism, material, and manipula-
tion strategy, which are employed for sorting manipulation.
Furthermore, robotic sorting manipulation methods [95], [96],
[97], [98], [99], [100], [101] specific to the end-effectors are
explored.

1) Mechanism: Fig. 8 shows the end-effector categories
used for the waste sorting operations and the number of
articles. Most end-effectors are not different from the general
robotic grippers and hands. The designs used for the sorter
can be classified into six types: Two-finger, Vacuum, Multiple
grippers, Broom, Combined, and Multi-finger. Combined
shows the gripper with both a two-fingered gripper and a
suction gripper. Currently, the two-fingered gripper is the one
primarily used for the end-effector attached on the robot arm
to manipulate waste items. It must be easy to control such
that several moving waste items on a conveyor can be swiftly
handled. The two-fingered grippers can be easily controlled
compared with multi-fingered and combined robot hands.

2) Material: It is desirable that the material and component
used for grippers is robust to unseen objects without known
properties like three-dimensional shapes, friction characteris-
tics, and deformation characteristics. Chin et al. [102] used
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soft materials for the two fingers of a robot hand to grasp
several types of garbage to be sorted. These soft robotic
technologies [103], [104], [105] are expected to improve the
robustness of the gripper for various object shapes. Jamming
grippers [106], [107] can possibly be an effective approach,
but the durability of the soft membrane is a critical issue.
Sasatake et al. [73] proposed using a broom to manipulate
garbage with unknown shapes, with the same trajectory as
humans. Combined grippers comprising both a suction cup
and two fingers [93], [108] are acceptable devices for handling
a wider variety of waste items.

3) Manipulation Strategy Specific to Waste Sorting: To
achieve an agile robotic sorter for a huge volume of
waste, previous studies sorted items on a conveyor using
suction grippers for quick grasping and manipulation [4],
[109]. To only move objects to a desired position, such
as brooming or non-prehensile manipulation, grasping or
in-hand manipulation is not essential. Controlling the suction
grippers is easy compared to multi-fingered and combined
robot hands. Graspless [110], [111], prehensile pushing [112],
and non-prehensile manipulation [113], [114] methods, such
as the push-and-drop technique for waste items [77], have
not been applied in real waste treatment facilities thus far.
Huang et al. [115] proposed a nonprehensile manipulation
method for mobile robots to perform waste cleanup, but it was
not applied to a real environment. Therefore, the feasibility of
nonprehensile manipulation is still untested, notwithstanding
that such operations using a two-fingered or suction gripper
is a reasonable method of agile manipulation. In Section IV,
the grasping ability of the four types of grippers is compared,
including two each of different two-fingered and pneumatic
grippers.

B. Sensors and Recognition

This section summarizes and classifies sensors with
robust recognition methods used for sorting applications.
The following subsections describe sensing technologies in
terms of measurement principle, learning-free recognition
methods, learning-based recognition methods, and waste-
sorting-specific recognition tasks.

1) Measurement Principle: The waste category classifica-
tion approaches are categorized into contact-based, i.e., those
having active contact with target objects [102], [108], and no-
contact-based approaches [116], [117], [118], [119], [120],
[121]. Furthermore, deep learning (DL)-based algorithms
employing RGB and RGB-depth (RGBD) sensors have been
used to detect and segment individual waste items from a
densely cluttered pile [4], [78], [109], [122], [123], [124],
[125], [126], [127], [128], [129], [130], [131], [132], [133],
[134], [135], [136].

Conventional automatic sorting systems are based on differ-
ent types of sensors, e.g., optical [76], [117], [137] and thermal
techniques [138], [139]. Fig. 9 shows the sensor categories
used for waste sorting operations thus far. Multiple cameras
include near-infrared (NIR) hyperspectral camera [140], and
Multiple sensors include ultrasonic [62], infrared [141],
proximity [60], [93], and color sensors. The color sensor

Fig. 9. Sensor types used for sorting operations.

detects specific colors or color temperatures [60], [142].
Thermal and NIR hyperspectral cameras can be used for
material classification based on the intensity profiles of
different material surfaces.

2) Learning-Free Recognition: DL-free methods use hand-
crafted features obtained by the sensors. Huang et al. [137]
used a 3-dimensional (3D) line camera and laser beam to
obtain the position and 3D shapes of target metal objects.
In addition to these, they detected the object edges from
generated images to estimate the bounding box; then, the
geometrical center and the particle sizes of the objects could
be approximately determined. Gundupalli et al. [139] proposed
to classify and sort the recyclables using the thermal imaging-
based technique. The groups, metal, PCB, plastic, and glass,
were classified based on extracted features comprising the
mean intensity, standard deviation, and image sharpness.
Xiao et al. [140] proposed a system that makes use of height
maps and near-infrared (NIR) hyperspectral images to locate
the region of interest of objects and to do online statistic
pixel-based classification in contours. Two types of features
in a hyperspectral image were extracted; a scale-sensitive
algorithm was used to identify amplitude features, and a
scale-insensitive algorithm was used to identify trend features.
Rapolti et al. [60] proposed a system that categorizes the
components based on the materials’ spectral signature using
a hyperspectral image. The four components, silicon chips,
fiberglass, resin, and a mixture of fiberglass and copper, were
categorized based on principal component analysis applied
to preprocessed images. Localizing, estimating poses, and
reconstructing shapes can be achieved based on the DL-
free methods, but the classification task in a mixed waste
situation, where objects composed of various materials coexist,
is difficult by such three traditional approaches.

3) Learning-Based Recognition: Recent studies concentrate
more on utilizing a recognition system using DL with
RGBD images. The DL-based methods using RGBD cameras
release operators in recycling facilities from programming and
teaching and help the sustainable development according to
environmental changes. Generally, massive training datasets
are required for DL-based vision systems because of the
numerous model parameters that must be optimized [143].
With recent decreases in product lifecycles, unseen waste items
frequently appear at the recycling facilities. Therefore, the
training dataset must be promptly updated with new waste
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images for fine-tuning by utilizing annotation tools [144],
[145], [146], [147], [148], [149], [150]. Two major efforts
to easily collect large datasets are ongoing. One approach
includes data augmentation to enrich image datasets [151],
[152], [153], and the other addresses the simplification of
labor-intensive annotation processes [154], [155], [156], [157],
[158], [159]. Na et al. [160] and Patrizi et al. [161] have tried
to augment the dataset for waste recognition.

Despite the several ideas explored, the predominant datasets
were built by humans using bounding boxes or polygonal
masks [162], [163], [164]. Domain adaptation involves
adapting machine learning models across domains. This is
motivated by the challenge of the test and training datasets
falling from different data distributions because of some
factors [165]. Domain adaptation is a specific scenario in
transfer learning that can be used to effectively remove domain
differences.

For the waste sorting, Kiyokawa et al. [77] and
Koskinopoulou et al. [166] handled the data augmentation
problem with domain adaptation for a self-collected waste-
image dataset such that it can be adapted to a real waste-
sorting problem. In addition to data augmentation, using
existing datasets can possibly increase the sizes of the datasets.
Table III lists the existing public datasets. Several large
and small specific datasets are available in Kaggle.3 As
of April 2022, by searching using the keywords “waste”
and “garbage” in Kaggle, 155 and 75 datasets were found,
respectively.

4) Recognition Tasks Specific to Waste Sorting: Pre-
cisely sensing conveyed objects is a critical challenge.
Cowley et al. [167] used an RGBD sensor (Microsoft, Kinect)
and tackled tracking on a moving object by maintaining a
track state that includes both object position and velocity
with Kalman filtering. Liu et al. [168] proposed a method
for deblurring the images showing conveyed waste items.
If the blur can be removed from images, the aforementioned
DL-based recognition technologies can be applied for both
the motionless objects and the conveyed waste items. Using an
RGBD sensor (Intel, RealSense), Wong et al. [169] challenged
DL-based moving object recognition with prediction for
robotic grasping and manipulation and succeeded with
recognition using YOLACT [170], long short-term memory
(LSTM)-based moving position prediction, and convolutional
neural network (CNN)-based grasping point prediction.
However, recognizing conditions of object surfaces is a
persisting issue to be researched in the future. The robot must
consider the possibilities of grasping and manipulation based
on the identified surface condition while robustly tracking the
moving object.

In summary, technologies have been developed for global
and local sensing, as shown in Fig. 2. The local sensing
technologies, such as material identification, have been
installed in conventional dedicated machines, and their
applicability to waste items has been satisfactorily verified.
However, in robotic sorters, global sensing, such as recognition
of object categories, regions, and shapes that can be grasped

3https://www.kaggle.com/

and operated, is a challenge. In Section IV, a preliminary
verification of employing RGBD sensors, which have been
extensively used in robot manipulation research, in waste
applications was conducted.

C. Planning and Execution

Generally, previous planners relied on selective compliance
assembly robot arm (SCARA), Delta, or Multiple degrees
of freedom (DoFs) robots. We describe the technology
related to planning and execution phases by dividing it into
two sections: one is for SCARA or Delta robot, which
is a type of industry-specific robot, and the other is for
multiple DoFs robot, which are relatively flexible for various
environments.

1) SCARA or Delta Robot: A critical issue is that the sorting
robot must manipulate carrying objects utilizing a motion
planner such as a motion planning tool named MoveIt [171].
A well-known method to sort moving objects on the conveyor
is first-in first-out (FIFO) using a SCARA [172]. Several time-
minimum plans of path or trajectory for parallel link robots
that handle moving objects have been generated in previous
studies [173], [174], [175]. Chen et al. [176] proposed to
segment the sorting area based on the assumed maximum
velocity of a robot to reduce the computational load of
the robot’s velocity planning. Furthermore, they presented
a dynamic prediction method regarding workpiece picking
positions considering all possible positions of the robot
and the workpiece. Han et al. [177] developed a dynamic
programming-based optimal pick-and-place algorithm that
outperforms the existing state-of-the-art methods, including
FIFO. To break through the traditional pick-and-place
operations, Chen et al. [178] used a SCARA robot and planned
a robot throwing trajectory for solid waste handling. The
generation method of time-optimal pick-and-throw trajectories
for a SCARA robot was proposed by [179]. Similarly,
Raptopoulos et al. [180] replaced the usual pick-and-place
process with a much faster pick-and-toss process for delta
sorting robots.

2) Multiple DoFs Robot: Besides SCARA and delta
(parallel link) robots, various dynamic object manipulation
planners for a robot of several DoFs have been discussed.
Cowley et al. [167] used a mobile and dual-armed robot
(Willow Garage, PR2) and developed a pick-and-place planner
for dynamic objects. Based on the sensing of dynamic objects
in the previous section, they divided the manipulation planning
into grasp recording and selection, trajectory planning with
ARA* [181], and pick and place action execution. Similarly,
Menon et al. [182] used PR2 and presented a heuristic
kinodynamic motion planning that can generate smooth
trajectories to pick moving objects. The generated trajectories
can be matched with object velocity throughout the grasping
motion while being feasible with respect to joint torques and
velocity limits.

Gundupalli et al. [183] proposed a pick-and-place sequence
planner primarily based on the time spent on moving the
end-effector to the object and then to the bin. Ku et al. [98]
tackled dynamic grasping planning by locating the end-effector
relative to the target object and optimizing robot kinematics
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Fig. 10. Different scenes of mixed industrial waste items unloaded from a
track, as shown in Fig. 1 (a). The varieties of waste items are largely different
depending on the carrying-out source. For example, almost all waste items are
packed in bags, as shown in scene (a). (b) shows a scene with many objects
of similar shapes and of the same category. Scenes (c) and (d) include long
and several other small items not contained in a bag.

parameters based on the sorting efficiency. [184] and [169]
constructed DL-based object motion prediction along with
feasible and efficient grasp configuration frameworks. Accord-
ing to the predicted object state and planned grasp, a single
robot arm moves adaptively. They used the same robot arm
(Robotiq, UR5). [184] proposed a learning-based generation
of smooth adaptive trajectories using RGBD image features,
and [169] used MoveIt to generate trajectories. [185] tried to
make a UR5 robot to learn moving object manipulation with a
reinforcement learning method. Although combined planners
between task, grasp, and trajectory have been extensively
discussed thus far [186], [187], [188], the combined planner
for sorting moving and densely gathered various waste items
is an open issue.

Saravanan et al. [189] considered the minimization of
traveling time and total energy and the maximization of
manipulability to plan the trajectory for a robotic sorter with
payload constraints. Currently, to remove the manual teaching
process and hard-coded programs, several studies have
used reinforcement learning [190] and active learning [191]
methods to enable robots to learn sorting motions for static
objects. To carefully manipulate the tangled and densely
cluttered mixed waste items, such as in Fig. 1 (c) and (d), bulk
picking planners for contaminated deformable objects might
be necessary for mixed industrial waste sorting.

IV. TOWARD FUTURE ROBOTIC SORTERS

This section discusses the potential sorting system for
the future, possibilities of current technologies in terms
of sensing and grasping, and technologies expected to be
introduced.

A. Potential Design According to Level of Chaotic Situation

Fig. 10 shows example scenes of mixed industrial waste
items unloaded from a track, as shown in Fig. 1 (a). As shown
in the figure, because the variety of the collected waste items
in terms of the shape and material is quite large, most cases

TABLE III

EXISTING PUBLIC DATASETS THAT CAN BE USED
FOR WASTE SORTING VISION SYSTEMS

cannot be fully automated. We can classify the unloading site
into two categories because the varieties of the waste items
are largely different depending on the carrying-out source.
For example, almost all waste items are packed in bags or
relatively large waste items containing only a few types,
as shown in scenes (a) and (b). In contrast, scenes (c) and
(d) include not only different bags but also tangled long items,
several small items, and deformable sheets.

To achieve a waste sorting system that can be applied for
a situation with these large variations, the aforementioned
combined system is required with dedicated machines and
robots based on the advantages of using robots while being
helped by a small number of human workers. As shown
in Fig. 2, the procedure mentioned in Section I might be
applied to handle all types of collected waste items shown
in Fig. 10.

1) Re-Identifying Mature and Off-the-Shelf Technologies:
To further re-examine the currently developed technologies,
the depth sensing (Fig. 11) and currently developed end-
effectors (Fig. 12) were applied for some samples extracted
from the mixed industrial waste items to verify if the sensor
can be used to obtain deformed waste items and if the
end-effectors can be used to grasp the different-shaped waste
items. For the robot grasping and manipulation of mixed waste,
classifying the graspable and manipulable category using a
color camera is important to accurately obtain the shapes of
various objects through a depth sensor and to robustly grasp
the different shapes. Therefore, we applied several grippers
and RGBD sensors for different waste items to verify their
sensing and grasping potential.

Our scope in this section does not include sensors such as
industrial-grade hyperspectral sensors and laser sensors, and
we will not apply any off-the-shelf robust shape estimation
methods to improve the performance of original sensing.

In the sensing experiment, sensors were installed such
that the object placement table and imaging direction were
perpendicular to each other, and the images were captured
from a height of 615 mm. Acquiring relatively low-resolution
ranged images with these inexpensive depth sensors for robots
does not sacrifice the performance of robot manipulation [195],
[196]. The results indicate that it is difficult to capture shapes
of semi-transparent objects with all sensors. Moreover, using
Azure Kinect DK (manufactured by Microsoft Corporation) ,4

which is based on the time-of-flight method, almost all object

4https://azure.microsoft.com/en-us/services/kinect-dk/
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Fig. 11. Case study on sensing through four different RGBD sensors for waste examples of seven different categories. The sensors were installed such that
the object placement table and imaging direction were perpendicular to each other, and the images were captured from a height of 615 mm.

Fig. 12. Case studies on grasping with four different end-effectors for waste examples of seven different categories. In the grasping experiment, a gripper
attached to a robot arm approached directly from above a target object placed on the table in a random pose and deformed state. Thereafter, it was considered
successful if the grasp could be applied, the arm could lift straight up, and the grasp could be maintained for five seconds or longer. ◦ indicates if it was
successful six or more times out of 10 attempts, and � indicates if it was successful eight or more times. The empty squares indicate the failed pairs.

shapes could be captured, whereas other sensors could not
detect some of the object shapes. We must carefully choose
the sensor based on the measurement principle.

In the grasping experiment, four grippers were used: a
parallel-jaw gripper (Robotiq, Hand-E), soft gripper (NITTA,
SOFTmatics), balloon hand (CONVUM, SGB), and multi-
suction gripper. Each gripper attached to a robot arm
approached directly from above an object placed on the table
in a random pose and deformed state. Thereafter, we assumed
that it was successful if the grasp could be applied, the object
could be lifted straight up, and the grasp could be maintained
for five seconds or longer. When the number of successes is
six or more out of 10 attempts, it is indicated by ◦, and if it
is eight or more times out of 10 attempts, it is indicated by
�. The empty squares indicate the failed pairs. The results
indicate that it is difficult to grasp plate-shaped and large
and/or heavy items with the gripper, even when it has two or
more fingers. In contrast, the suction grippers demonstrated
successful grasping of plate-shaped items but failed to grasp
strings, hoses, small cylinders, stacked containers, voids, bags,
and heavy items in the ten trials.

2) Role of Robots Against Dedicated Machines and
Humans: This section clarifies the role of the robotic sorter
in the combined system shown in Fig. 2 to differentiate

the role, job, and duty with the dedicated machines and
human operators. The table in Fig. 14 lists the sorting-target-
aware references categorized into the domains (e.g. Municipal,
WEEE, CND, Nuclear, Litter, Underwater, Household, CNI,
Biomedical, Space, and Floating) with descriptions regarding
the features of manipulation, sensing, and planning. To avoid
the list becoming too large, the table does not describe articles
that deal only with recognition modules for various sensors
(e.g. the articles that present learning-based recognizers using
UAVs, UUVs, and mobile robots are excluded from this
list because of their large numbers) and focuses on articles
discussing methods that have relatively high feasibility for
actual sorting operations. We read all the selected articles and
extracted several references in which either the target material
or the target object was clearly indicated or the details of the
proposed method were described.

Fig. 15 and Fig. 16 illustrate user guides that make it
easier for readers to design manipulation and sensing system
configurations, respectively. Note that these user guides will
not be always general in the future and must be updated
without fail based on the progress of research and development
technology and changes in social background in the future.
To divide the objective of users into different situations
related to the required manipulation system configuration,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 13. Required operations for the future robotic sorter. (a) and (b) show
human-like dual-arm operations for large and heavy objects. (c) and (d) can be
used to remove entanglements caused by string wrappings or multiple objects
stacked in the scene. To agilely handle densely cluttered waste items, the
robot can be made to push conveyed objects like (e).

Fig. 15 asks four major questions: Sorting target is limited
and already specified?, Densely gathered?, Heavy or large?,
and Deformable, thin, long, or small? If the answer is Yes
to the first question, the readers can start finding a desired
configuration from the reference list shown in Fig. 14. If the
answer is No or if we cannot find any related study in
the list, we proceed to the second question. Thereafter, the
readers can follow the arrows as they answer the questions
and will end up with one of six different configurations:
Semi-automatic module, Multi-robot (arm) module, Multiple
end-effectors with tool changers, Multiple suction grippers,
Robot hand, and Suction gripper.

Similarly, in the situations related to the required sensing
system configuration, Fig. 16 asks three major questions:
Sorting target is limited and already specified?, Transparent?,
and Densely gathered, deformable, or contaminated? If the
answer is No or if we cannot find any related study in the
list, we proceed to the second question. In the same way,
following the arrows when answering the questions, the reader
will end up with one of the four configurations included in
the reference list: Semi-automatic and DL-based multi-modal

recognizer, Learning-free multi-modal recognizer, DL-based
visual recognizer, and Learning-free visual recognizer.

To completely remove the target waste items that are often
left behind even if a dedicated machine and robot are used,
one promising method is to construct a qualified human-robot
collaboration system [197], [198], [199], [200], [201] through
interactions using ambiguous linguistic descriptions [202] to
thoroughly sort the waste items. We believe that human-robot
collaboration is essential for establishing safer work conditions
for recyclable waste sorting, e.g. by detecting dangerous waste
items. In this collaboration, the concern regarding human
workload can be alleviated with a power assisting robot [203].
Considering the big picture, establishing a human-robot
collaboration workflow that can maximize efficiency, profit,
safety, and work quality in waste sorting is an essential
requirement to address the critical waste sorting problem in
an equitable and just manner. Given that only a small portion
of the recyclable waste is currently recycled, a human-robot
collaboration has the potential to enforce the introduction of
robot-based sorting technologies.

Regarding the operations executed after sensing and
grasping, Fig. 13 shows the operations to be executed by
future robotic sorters. Fig. 13 (a) and (b) show human-
like dual-arm operations for large and heavy objects.
Fig. 13 (c) and (d) can be used to remove entanglements
caused by the string wrappings or stacking multiple objects in
the scene. To agilely handle densely cluttered waste items, the
robot might push conveyed objects, as in Fig. 13 (e). Dual-
armed robotic grasp and toss of an object on the conveyor
is a reasonable approach to swiftly manipulate the objects
proposed by Bombile et al. [204]. As mentioned before
in Section II-A, numerous telemanipulated robotic sorters
have been developed to avoid manual nuclear and hazardous
waste retrieval [49], [50], [84]. Vision-based shared control
technologies for telemanipulation have been developed in
simulation [205]. Rahal et al. [206] attempted robotic cutting
using the shared-control approach.

In these semi-automatic frameworks (e.g. teleoperated
robots, collaborative robots, and assistive robots), multi-
fingered hands are required for the end-effector of future
robotic sorters to outperform the adaptability of two-fingered
grippers and suction grippers. In general, although automatic
control of the multi-fingered hand is difficult, the hand
with a similar physical structure to humans makes it
easier to remotely operate and can be taught easily.
To automatically control the multi-fingered hand for moving
object manipulation, the robot hand must track a moving object
to prepare for subsequent grasping, and it naturally changes
the hand pose to generate an optimal pre-grasp to avoid post-
grasp adjustments [207].

B. Challenges to Developing Global Recycling

The advanced technologies used to enhance the availability
of the robotic sorter are automated disassembling to change
the waste of assembly products into a recyclable state [37],
[80], [208], [209], [210], [211], [212], [213], autonomous
mobile robots capable of manipulating waste items on the
ground [214], [215] equipped with a function to handle
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Fig. 14. Sorting-target-aware reference list showing precedent systems.

objects of unknown shapes [216], [217], [218], and Internet of
Things (IoT) that enables communication between their mobile
devices [219], [220].

As discussed in the previous section, the sorting of mixed
industrial waste requires an integrated system with new
components such as sensing using multiple modalities, semi-
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Fig. 15. User guide for designing an unknown target object-oriented feasible
manipulation system configuration.

Fig. 16. User guide for designing an unknown target object-oriented feasible
sensing system configuration.

automatic operation, and object manipulation by multiple
robots, in addition to the components of sensors, grippers,
and planners. We believe that it is better to actively promote
the diversion of technologies that have been researched
and developed in other domains. Research promotion in
this direction will expand the possibility that the results of
future research on this mixed industrial waste sorting can be
conversely diverted for sorting systems in other domains, and
a synergistic effect can be expected. The problem setting of
densely gathered mixed waste can be applied to target in
other domains. For example, in situations other than CNI,
which is the subject of this paper, such as municipal, litter,
underwater, household, and floating, it is difficult to assume
a priori what type of waste will be present; thus, a similar
situation with many densely gathered mixed waste items can
be assumed. Additionally, in environments such as WEEE,
CND, nuclear, biomedical, and space, where the possible target
waste can be narrowed down within a certain range, the robust
and prompt picking operation of densely gathered and moving
objects can be one of the required specifications, and a similar
problem can be set. Densely gathered and mixed situations
are still considered to be a difficult problem and are regarded
as unfeasible in the previous studies; thus, they are still not
sufficiently addressed. Therefore, there is a possibility that
the technology can be transferred to other domains if similar
problem settings are anticipated.

In this context, in addition to the aforementioned modules
that consist of semi-automation with multiple robots, the
components for the modules: multi-modal sensors, robustly

applicable grippers, and integrated planners, are necessary.
Improving the fusion systems of multiple sensor data [221],
[222] and/or multiple features of sensors [86] is a promising
approach to replace the customized sensing systems indi-
vidually prepared according to different sorting workplaces.
Modular [223] and/or multifunctional [224], [225] end-
effectors can possibly be used for handling a large variety
of waste. The usage of an automated tool changing system
(e.g. SMARTSHIFT5) and airbag-equipped gripper to ensure
the safety of humans at the workspace of a robot [226] are
anticipated for future sorting systems. An integrated planner
for more dexterous navigation, grasping, and manipulation
must be developed and researched in future studies. Currently,
research for the planner is often conducted on individuals
and segmented planning problems; however, in practice, each
plan interacts with other planning strategies and outcomes,
which necessitates the integration of planners for a more
general-purpose sorting system.

V. CONCLUSION

To achieve recycling of mixed industrial waste items toward
an advanced sustainable society, waste sorting automation by
robots is crucial and urgent. For this purpose, a robot is
required to recognize the categories, poses, and conditions
of different waste items and manipulate them based on
the category to be sorted. This survey was organized
around the following three potential difficulties in sorting
automation components: 1) End-effector: to robustly grasp and
manipulate different waste items with dirt and deformation;
2) Sensor: to recognize the category, shape, and pose of
existing objects to be manipulated and the wet and dirty
conditions on their surfaces; and 3) Planners: to generate
feasible and efficient sequences and trajectories. This survey
included 76 references to related studies on automatic waste
sorting and 159 references to worldwide waste recycling
attempts.

In summary, the possibility and limitations of conventional
system configurations were summarized; thus, providing
insights on open issues and potential technologies to achieve a
robot-incorporated system to sort chaotic mixed waste items is
one of this paper’s contributions. Based on the investigations
and organizations, we created user guides to show a system
configuration design policy for readers and discussed emergent
issues to be solved toward identifying advanced future robotic
sorters; this is another contribution of this paper.

Robotics and automation for handling mixed industrial
waste is an emerging research field, but one that is expected
to grow rapidly in the coming years as more researchers seek
to create robots that can actively help toward a sustainable
society in the future.
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