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Abstract— In this work, we propose a route planning strategy1

for heterogeneous mobile robots in Precision Agriculture (PA)2

settings. Given a set of agricultural tasks to be performed3

at specific locations, we formulate a multi-Steiner Traveling4

Salesman Problem (TSP) to define the optimal assignment of5

these tasks to the robots as well as the respective optimal paths6

to be followed. The optimality criterion aims to minimize the total7

time required to execute all the tasks, as well as the cumulative8

execution times of the robots. Costs for travelling from one9

location to another, for maneuvering and for executing the task10

as well as limited energy capacity of the robots are considered.11

In addition, we propose a sub-optimal formulation to mitigate the12

computational complexity by leveraging the fact that generally13

in PA settings only a few locations require agricultural tasks in a14

certain period of interest compared to all possible locations in the15

field. A formal analysis of the optimality gap between the optimal16

and the sub-optimal formulations is provided. The effectiveness17

of the approach is validated in a simulated orchard where three18

heterogeneous aerial vehicles perform inspection tasks.19

Note to Practitioners—This paper aims at providing an efficient20

solution to PA needs by deploying a team of robots able21

to perform agricultural tasks at given locations in large-scale22

orchards. In particular, a novel general optimization problem is23

proposed that, given a set of mobile and possibly heterogeneous24

robots and a set of agricultural tasks to carry out, defines the25

assignment of these tasks to the robots as well as the routes to26

follow, while minimizing the total and the cumulative execution27

times of the robots. Existing approaches for route optimization28

in PA generally involves complete coverage of the field by one29

or multiple robots and do not account for maneuvering costs30

with general layouts of the field. We consider costs for travelling31

from one location to another, for executing the task and for32

maneuvering without any restriction on the layout of the plants33

as well as we take into account the limited energy capacity of the34

robots. We also provide a sub-optimal formulation which reduces35

the computational burden by relaxing the optimization of the36

maneuvering costs at the locations where agricultural tasks are37
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carried out and formally derive the optimality gap. The proposed 38

approach is flexible and can be easily adapted to any PA setting 39

involving multiple mobile robots that are required to accomplish 40

given tasks in an area of interest. We validate its effectiveness in a 41

realistic simulated setup composed of three heterogeneous aerial 42

vehicles performing inspection tasks. In future research, we aim 43

to design algorithms to solve the proposed optimization problems 44

in an efficient manner as well as to validate the formulations on 45

real-world robotic platforms. 46

Index Terms— Multi-robot systems, route optimization, 47

precision agriculture. 48

I. INTRODUCTION 49

CONTINUOUS plant-by-plant monitoring and targeted 50

interventions are key features of the Precision Agricul- 51

ture (PA) paradigm, that potentially enable increased crop pro- 52

ductivity while reducing waste. Although monitoring activities 53

can generally be carried out through remote sensing [1], close- 54

up operations, which we will refer to as agricultural tasks, 55

are typically required for intervention activities such as pesti- 56

cide [2], herbicide [3] and fertilizer [4] release, inspection [5], 57

weed detection [6], pruning [7], or harvesting [8]. Deploying 58

multiple, and possibly heterogeneous, mobile robots in the 59

field, which autonomously navigate among plants [9] and carry 60

out agricultural tasks, provides an effective solution to this 61

proximity need [10]. In this way, robots can reach out to the 62

different plants requiring intervention and perform the latter 63

in a parallel fashion. However, realistically, in large-scale PA 64

settings, agricultural tasks may be required in locations that are 65

sparse with respect to the size of the field and low in number 66

compared to the total number of plants. This is motivated 67

by the fact that the needs of the plants in the field can be 68

highly variable due to the varietal assortment, e.g., [11], and/or 69

different soil or climate conditions, e.g., [12]. Based on the 70

above, a fundamental question to be addressed is to define 71

which robot should treat which plants by wisely choosing the 72

respective path to be followed to reach them. 73

For this purpose, appropriate optimization metrics must be 74

defined which are capable of taking into account for the overall 75

execution times by the robots. 76

Moreover, it is also generally desirable to mitigate as 77

much as possible the occurrence of maneuvering or turning 78

operations in the planned paths since these are typically costly 79

in terms of both time and energy, requiring, for example, 80

high torques to the motors to be executed. Finally, the limited 81

energy capacity of the robots should also be taken into account 82
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since charging stations may be few and not always easily83

accessible in agricultural environments.84

Motivated by the reasons mentioned above and driven by the85

needs of some research projects on the use of robotics in PA86

settings, we devise a flexible planning strategy which, given87

a set of heterogeneous mobile robots and a set of agricultural88

tasks to be performed, defines the tasks that are assigned to89

each robot and the respective paths to carry out the assigned90

agronomic interventions. As envisioned in Supervisory Control91

and Data Acquisition (SCADA) architectures, which can be92

applied in PA settings as in the the H2020 PANTHEON93

project, we consider that a central unit gathers data from the94

field and is in charge of computing optimal routes for the95

robots. In this work, firstly, we define a field graph model,96

denoted as orientation graph, that accounts for turning costs97

with any planting pattern, i.e., any layout of plants in the field.98

Secondly, we formalize a multi-Steiner Traveling Salesman99

Problem (TSP), which extends the Steiner TSP to the multi-100

robot case. Turning costs as well as energy capacity constraints101

are taken into consideration in the proposed formulation.102

Thirdly, we provide an additional sub-optimal formulation103

which is based on the observation that, in a large-scale field,104

only few locations compared to the large number of possible105

ones typically require agronomic interventions, as discussed106

above due to the varietal assortment, e.g., [11], and/or different107

soil or climate conditions, e.g., [12]. The optimization of the108

turning costs is thus relaxed at these locations to reduce the109

computational burden at the price of an optimality gap. This110

gap has been theoretically investigated and a bound has been111

formally derived. Finally, simulation results on a realistic PA112

setting composed of three aerial robots show the effectiveness113

of the proposed two formulations and the related behaviors.114

An illustrative example of the envisioned PA setting is shown115

in Figure 1 in which three aerial robots have to perform116

inspection tasks on specific plants in a hazelnut orchard. Note117

that the proposed formulation is not limited to inspection tasks118

in PA settings, but could be applied to any setting where119

optimal routes for multiple robots to perform tasks in assigned120

locations of the environment must be computed. This includes,121

for example, logistics applications. In addition, in PA-specific122

settings, it can be adapted to carry out any agricultural task123

in permanent crops, e.g., release of herbicide or pesticide,124

pruning or harvesting.125

This paper builds on [13] with respect to which the follow-126

ing contributions are introduced:127

• A novel field modeling is defined which allows to take128

into account maneuvering costs with general field topol-129

ogy. Moreover, three-dimensional orchards are modeled130

in which also the height elevation is considered making131

the formulation suitable for both aerial and ground robots.132

• An extended optimization problem is formulated where133

the maximum execution time and the cumulative execu-134

tion times by the robots are minimized and possible lim-135

ited operational capabilities of the robots over time, due to136

the limited energy capacity, are taken into consideration.137

Moreover, teams composed by heterogeneous robots, i.e.,138

robots with different energy capacities and/or temporal139

costs, are enabled.140

Fig. 1. Example of operating scenario in which three heterogeneous aerial
robots are deployed in a hazelnut orchard for targeted inspection tasks.

• A sub-optimal formulation is proposed boosting the solu- 141

tion computation and a formal analysis of the optimality 142

gap is provided. 143

• A greedy solution is designed and implemented to com- 144

pare the performance of the proposed formulations. 145

The remainder of the paper is organized as follows. First, 146

relevant works at the state of the art are discussed and 147

compared to the proposed approach in Section II. Then, the 148

multi-Steiner TSP for PA settings is formalized in Section IV 149

and a sub-optimal formulation to reduce the computational 150

load is proposed in Section V. Finally, simulation results with 151

three aerial vehicles are presented in Section VI. 152

II. RELATED WORK 153

A typical problem in PA settings is how to optimally per- 154

form complete coverage of the field by one or multiple mobile 155

robots, i.e., how to find the routes associated to each robot in 156

order to visit all the locations of the field while optimizing 157

a certain objective function. The field is generally modeled 158

as a set of parallel tracks, e.g., [33], [34], [35], [36]. In this 159

work, we are not interested in solving a coverage problem but 160

rather we aim to define optimal routes for multiple robots, with 161

limited energy capacity, to visit only a subset of all possible 162

locations, as pointed out in the Introduction. Moreover, we aim 163

to consider a general field topology, meaning that it can 164

accommodate any planting pattern, while taking into account 165

maneuvering costs and limited energy capacity. 166

In the context of route optimization, the Traveling Salesman 167

Problem [47] lays the foundation for performing coverage 168

when a single mobile agent is involved: given a set of target 169

locations, the TSP aims to find the shortest path that crosses 170

all of them, returning to the origin location. Note that the TSP 171

formulation and its variants presented in the following do not 172

fulfill the requirements of our work, since they focus on a 173

single robot scenario covering the entire field, instead of target 174

locations. As instance for TSP in PA contexts, a relevant work 175

can be found in [14] which considers a spraying application by 176

an Unmanned Aerial Vehicle (UAV). Stressed areas in the field 177

are first identified and, then, the shortest path for traversing 178

them is defined using a TSP-based solution. Similarly, the 179

identification of stressed areas is considered in [15] where 180

a TSP routing algorithm is combined with human inputs to 181

build a collaborative and adaptive framework. A TSP-based 182
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TABLE I

OVERVIEW OF PROBLEMS CONSIDERED BY STATE OF THE ART PAPERS:
TSP, STEINER TSP, MULTI-TSP, VRP, OP, GMDTSP AND

MULTI-STEINER TSP. THE WORKS IN THE TABLE ARE DESCRIBED

IN DETAIL IN SECTION II AND, FOR THE SAKE OF READABILITY,
THEY ARE INDEXED BY THEIR REFERENCE NUMBER

approach is also devised in [16] for releasing pesticides in183

pests-ridden areas. Possible obstacles between the field areas184

are taken into account. Pesticide application is additionally185

addressed in [17] where a TSP-based formulation is designed186

relying on a Model Predictive Control-based demand man-187

agement to define the optimal amount of pesticide to release188

in each location. Furthermore, the work in [18] combines the189

TSP with the coverage path planning to survey several regions190

that are spatially distributed by a UAV. Finally, path planning191

for a UAV in PA wireless sensor networks is also addressed192

in [19] where a heuristic model for the TSP is exploited.193

Variants of the TSP have been studied to address monitoring194

problems for a UAV in contexts beyond PA [20], [21], [22],195

[23], [24], [25], [26]. In these problems, particular attention is196

generally paid to the UAV’s energy supply, which is necessary197

for the success of the mission. More in detail, in [20] the UAV198

can recharge in dedicated depots and the route minimizing the199

fuel consumption, while visiting all the locations and comply-200

ing with energy constraints, is computed. The possibility of201

recharging on Unmanned Ground Vehicles (UGVs), moving202

with same or lower velocity than the UAV, is introduced in203

[21] and efficient solving algorithms are provided in [22].204

A similar scenario is also considered in [23], tackling different205

velocities for the aerial and ground robots. A particular model206

of the field using boustrophedon cells is used in [24], where a207

coverage problem using a UAV, which can land on a UGV to208

refuel, is addressed. In the context of PA, a boustrophedon209

cell can represent a row of a crop. Differently from the210

above methods, the work in [25] considers a coverage problem211

with a UAV-UGV team acting as a unique entity: the UAV212

travels on the UGV and leaves only to reach locations that213

are inaccessible to the UGV. Persistent monitoring is studied214

instead in [26] which defines a min–max weighted latency215

walk problem, where the robot is required to repeatedly carry 216

out a closed walk in a graph with weighted vertices. 217

An extension of the classical TSP is the Steiner TSP in 218

which only a subset of all the possible locations is required 219

to be visited. However, as per the TSP, also this formulation 220

only considers a single robot and thus it is not appropriate 221

for our setting. As instance of Steiner TSP, the study in [27] 222

generalizes the Steiner TSP to visit each target location twice 223

and requires that a human operator provides instructions 224

about the agricultural tasks before their execution. Possible 225

communication limitations are tackled. 226

A further extension of the TSP enables the inclusion of 227

multiple robotic platforms. In this case, a multi-TSP [48] is 228

formulated, which however does not foresee to only visit target 229

locations in the field, as we require, and does not take into 230

account limited energy capacity of the robots. An application 231

of multi-TSP to harvesting in PA settings can be found in [28] 232

in which travel distance and workload balancing among the 233

vehicles are optimized. A monitoring problem using UAVs or 234

UGVs is addressed in [29] where two path planning problems 235

to visit all the possible locations are defined for UAVs and 236

UGVs, respectively. In both problems, the robots in the team 237

are heterogeneous and each robot can visit different subsets of 238

nodes. Persistency in coverage problems with multiple robots 239

is addressed in [30], [31], [32]. In particular, in [30], multiple 240

UAVs are in charge of monitoring the environment while 241

multiple UGVs are in charge of providing recharge to the 242

UAVs. The authors assume that the paths of the UAVs are 243

assigned and the objective is to plan the routes for the UGVs 244

accordingly. An extension with efficient algorithms is provided 245

in [31]. A team composed of homogeneous UAVs only is 246

considered instead in [32] to realize persistent coverage of 247

target nodes. The goal of this work is to determine cycles for 248

UAVs such that the data of all target nodes is collected and 249

sent to a control station within a desired frequency and with 250

a maximum delivery time. 251

More commonly, when multiple mobile robots are involved 252

in the system, a Vehicle Routing Problem (VRP) [49] is set-up 253

in which also limited capacities of the robots are taken into 254

account compared to the multi-TSP. However, as for the multi- 255

TSP, all the locations of the field are visited in a VRP which is 256

not appropriate to our setup. Works in [33] and [34] formulate 257

a VRP in PA settings in which the field is modeled through 258

parallel tracks and each track is associated with a node in a 259

graph. All the nodes are required to be crossed by exactly 260

one vehicle, while not exceeding the vehicle capacity. Routes 261

are obtained minimizing the headland turning costs from the 262

end of one track to the start of the following one. Similar 263

formulations can be found in [37], where intra- and inter-row 264

orchard operations are possible, in [38], where the presence of 265

possible obstacles in the tracks is introduced, in [36], where 266

two kinds of turns are characterized, in [39], where VRP-based 267

solutions are compared to traditional routes performed by 268

expert human drivers, in [40], where an Evolutionary Hybrid 269

Neighbourhood Search algorithm is proposed to solve the 270

VRP, and in [35], where no turning costs are taken into account 271

but an adaptive large neighborhood search-based solution is 272

provided to find the robots’ routes in an efficient manner. 273
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A more general topology of the field is then considered in [41]274

where the latter is modeled as a square grid graph. A VRP with275

turning penalties is formulated and a minimum cost network276

flow problem is defined to improve the computational times.277

Persistency in coverage problems for heterogeneous UAVs,278

having limited energy capacity, and UGVs with restricted279

visibility is then studied in [42].280

An Orienteering Problem (OP), that is a variant of the281

TSP, is then formulated in [43] where a UAV is exploited282

to retrieve aerial measurements near points that are poten-283

tially mislabeled. The problem of maximizing the number of284

points visited by the UAV while complying with the limited285

capacity is addressed. A Team OP, that is a variant of the286

VRP, is considered in [44] where an irrigation application287

in vineyards is considered. Multiple ground robots need to288

traverse a planar graph where nodes, associated with water289

emitters, have rewards, and edges have costs and are associated290

with possible paths between emitters. The paths maximizing291

the sum of rewards for visited nodes while complying with292

limited capacities of the robots are found and heuristics are293

defined.294

Another extension of the TSP is the Generalized multi-depot295

TSP (GMDTSP) [45], in which the target locations are296

partitioned into clusters and the overall shortest paths for297

the salesmen to visit at least one target location for each298

cluster, starting from distinct depots, are found. However, the299

GMDTSP does not allow to visit only specific locations as we300

require.301

Differently from the papers described above, we propose302

a multi-Steiner TSP extending the Steiner TSP to i) multiple303

heterogeneous mobile robots and ii) allowing to visit only a304

subset of all possible locations within the field, as typical305

for PA settings. To summarize, as reported above, existing306

formulations do not provide a viable solution accounting for307

both points i) and ii), i.e., the simple TSP requires a single308

robot to visit all the possible locations, the Steiner TSP309

requires a single robot to visit a subset of locations, the multi310

TSP requires multiple robots to visit all possible locations, the311

vehicle routing requires multiple robots with limited capacity312

to visit all the locations, while the GMDTSP requires multiple313

robots to visit all clusters, so that at least one node for each314

cluster is visited by at least one robot. It is worth mentioning315

that a multi-Steiner TSP is also addressed in [46]. However,316

a fundamental difference compared to our contribution is that317

the work in [46] assumes that the set of nodes to serve is pre-318

assigned to each robot. In contrast, we here aim to determine319

the optimal set of nodes to assign to each robot as an output320

of the optimization problem.321

Table I summarizes the above mentioned works at the state322

of the art, categorizing them according to the addressed prob-323

lems, i.e., TSP, Steiner TSP, multi-TSP, VRP, OP, GMDTSP324

and multi-Steiner TSP. This paper advances the state of the325

art on the following aspects:326

i) A comprehensive multi-Steiner TSP formulation is pro-327

posed;328

ii) A novel field model is devised which allows to tackle329

turning costs with any field topology, i.e., orchards are330

TABLE II

MAIN NOTATIONS INTRODUCED IN THE PAPER

not restricted to exhibit only parallel tracks or regular 331

planting pattern; 332

iii) A sub-optimal formulation is proposed and formally 333

analyzed to reduce the computational burden. 334

III. PRELIMINARIES 335

We model the orchard field by means of a directed graph 336

G = (V, E), referred to as field graph, with set of vertices 337

(or nodes) V = {v0, v1, . . . , vn} and set of edges (or arcs) 338

E ⊆ {(vi , v j ) | vi , v j ∈ V, i �= j}. Each vertex vi is associated 339

with a possible location where an agricultural task can be 340

carried out and we denote its position in the field with respect 341

to a common frame �w by pi ∈ R
3. As instance, a location 342

close to each plant can be selected for tasks involving harvest- 343

ing, pruning or applications of herbicide, pesticide or fertilizer. 344

An edge (vi , v j ) is associated with a possible passage, e.g., 345

line-of-sight, from location vi to v j for which we make the 346

following assumption. 347
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Fig. 2. Example of field graph associated with a field. Nodes are represented
by circles and edges by arrows.

Assumption 1: The physical passages in the field, associ-348

ated with edges in the field graph, do not require maneuvering349

operations.350

The above assumption implies that the physical passages351

can be approximated as straight paths. This is only assumed352

to simplify the mathematical analysis in the following. In case353

non-straight curves need to be associated with the edges, the354

additional information about the orientation to enter and exit355

each node as well as possible turns in the path should be356

integrated within the formulation.357

Without loss of generality, we order the set of edges and358

denote the k th one by ek ∈ E . As instance, we sort the359

edges in increasing order with respect to the left vertex of360

the pair. An example of field graph associated with a given361

field is provided in Figure 2. Nodes are represented by circles362

and edges by arrows. Each edge ek = (vi , v j ) is labeled with363

its physical length lk = ‖pi−p j‖, where ‖ · ‖ denotes the364

Euclidean norm. The graph is defined complete if all the365

possible edges (vi , v j ) ∀vi , v j ∈ V with vi �= v j exist, i.e.,366

no self-loops are allowed. We introduce the following sets:367

δ+i = {(v j , vi ) ∈ E | v j ∈ V}368

δ−i = {(vi , v j ) ∈ E | v j ∈ V}369

where δ+i is the set of edges having vi as head, while δ−i is370

the set of edges having vi as tail. Based on these, the set Ec371

of all the pairs of consecutive edges in the graph is defined:372

Ec = {(ep, eq) | ep ∈ δ+i , eq ∈ δ−i , vi ∈ V} ⊆ E × E .373

Given a pair of consecutive edges (ep, eq) ∈ Ec, where374

ep = (vt , vv ) and eq = (vv , vh), with {vt , vv , vh} ∈ V , the375

vectors u p = pt − pv and uq = ph − pv are introduced.376

Based on these, the angle ϕp,q between ep and eq , in the plane377

containing the respective segments, is computed as follows:378

ϕp,q = arccos

(
uT

p uq

‖u p‖‖uq‖

)
. (1)379

The maximum value of ϕp,q is equal to π in case the edges ep380

and eq are parallel and with opposite directions, meaning that381

the robot has to completely turn back along its path to traverse382

ep and eq , while the minimum value is equal to 0 in case the383

edges are parallel and with same directions, meaning that the384

Fig. 3. Example of field graph (left) and respective orientation graph (right).
The sets of edges ξ+1 , ξ+2 , ξ+3 are marked with dashed, dotted and solid lines,
respectively.

robot does not have to perform any steering to cross the edges. 385

We consider that a depot location is present in the field which, 386

without loss of generality, is associated with the vertex v0 ∈ V . 387

Moreover, we consider that a subset Vs ⊆ V \ {v0} of vertices 388

must be served, i.e., agricultural tasks must be carried out only 389

in the respective locations of the field. This set excludes the 390

depot vertex v0. Note that large-scale orchards are generally 391

characterized by a high number of nodes, i.e., |V| � 1 with |·| 392

denoting the cardinality of the set (·), where only few of them 393

must be processed with agricultural tasks, i.e., it generally 394

holds |Vs | � |V|. 395

Given the field graph, we build an additional graph 396

Ḡ = (V̄, Ē), called orientation graph which models the rela- 397

tions between couples of edges in E . These relations are 398

needed to handle turning costs with generic field topologies. 399

In detail, each vertex v̄k ∈ V̄ is associated with an edge ek 400

of the field graph, i.e, v̄k = ek = (vt , vi ) ∀ek ∈ E , and 401

each edge ēk ∈ Ē is associated with consecutive edges of 402

the field graph, i.e., ēk = (v̄ p, v̄q) exists if (ep, eq) ∈ Ec. 403

An edge ēk = (v̄ p, v̄q) is labeled with a tuple (l̄k , ϕp,q), where 404

l̄k = l p + lq is the overall length of the edges ep and eq and 405

ϕp,q is the angle between the edges computed according to (1). 406

Moreover, we introduce the following sets: 407

ξ̄+i = {ēk = (v̄ p, v̄q) | v̄q ∈ δ+i , ēk ∈ Ē} (2) 408

ξ̄−i = {ēk = (v̄ p, v̄q) | v̄ p ∈ δ−i , ēk ∈ Ē} (3) 409

where ξ̄+i is the set of edges in Ē which eventually flow into 410

node vi ∈ V of the field graph, and ξ̄−i is the set of edges 411

in Ē which originate from node vi ∈ V of the field graph. 412

Figure 3 reports another illustrative example of a field graph 413

G (left), composed of three nodes and five edges and respective 414

orientation graph Ḡ (right). The sets of edges ξ+1 , ξ+2 , ξ+3 are 415

highlighted with dashed, dotted and solid lines, respectively. 416

A set R = {r1, . . . , rm} of m robots is available to perform 417

agricultural tasks in the field. As it occurs in real-world 418

contexts, we consider that each robot r j has a limited energy 419

capacity denoted by K j . Moreover, for each robot r j , the 420

following temporal costs are defined: 421

• ce
j ∈ R: unit temporal cost for traversing an edge, i.e., 422

average amount of seconds to travel one meter along an 423

edge; 424
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• ct
j ∈ R: unit temporal cost for turning, i.e., average425

amount of seconds needed to make a turn of one radian;426

• cs
i, j ∈ R, ∀vi ∈ Vs : temporal service cost for performing427

an agricultural task on node vi . Note that the dependency428

on the node vi is required as the different agricultural429

tasks may require different times to be executed.430

Similarly, we introduce the respective unit energy costs for431

each robot, representing the consumed energy in the time432

unit. These unit energy costs for traversing an edge, turning433

and serving a node by robot r j are denoted by εe
j , εt

j , εs
j ,434

respectively. We make the following assumptions.435

Assumption 2: Robots are equipped with a navigation con-436

troller that enables traveling through the assigned routes.437

Assumption 3: All the robots depart from a depot station438

v0 and must return to it.439

Assumption 2 can be easily satisfied by resorting to existing440

navigation architectures, e.g., [9], [50], which are out of the441

scope of this paper, while Assumption 3 is realistic, for442

example, in typical PA settings where all the robots are usually443

stored in a warehouse. Table II summarizes the main notations444

of the paper.445

IV. MULTI-STEINER TSP446

In this section, we define the main problem addressed in447

this paper and describe the proposed formulation to solve it.448

A. Problem Statement449

Let B be the binary set, i.e., B = {0, 1}. We intro-450

duce the following binary decision variables: xk, j ∈ B,451

∀ēk ∈ Ē, r j ∈ R, encoding the route assigned to robot r j ,452

which is 1 if robot r j has to traverse the edge ēk of the453

orientation graph, 0 otherwise, and si, j ∈ B, ∀vi ∈ Vs , r j ∈ R,454

encoding the nodes to serve by robot r j along the assigned455

route, which is 1 if robot r j serves the vertex vi belonging456

to Vs , i.e., it performs an agricultural task on node vi ∈457

Vs , 0 otherwise. Note that the condition xk, j = 1, with458

ēk = (v̄ p, v̄q) implies that robot r j has to traverse both edges459

ep ∈ E and eq ∈ E of the field graph. Finally, we define460

the aggregate decision vectors x j = [x1, j . . . x|Ē|, j ]T ∈ B|Ē|461

and s j = [s1, j . . . s|Vs |, j ]T ∈ B|Vs | collecting the variables xk, j462

∀ēk ∈ Ē and si, j ∀vi ∈ Vs for robot r j , respectively.463

Problem 1: Consider a set R of (possibly) heterogeneous464

robots with energy capacity K j , j ∈ R. Let G = (V, E) be the465

field graph, with orientation graph Ḡ = (V̄, Ē), and Vs ⊂ V be466

the subset of nodes where agricultural tasks must be carried467

out. We aim to optimally determine for each robot r j :468

i) which agricultural tasks it has to perform, i.e., si, j ,469

∀vi ∈ Vs ,470

ii) its route, i.e., xk, j , ∀ēk ∈ Ē ,471

while complying with energy capacity constraints. The opti-472

mality is intended to minimize the maximum temporal cost473

as well as the cumulative temporal costs by all the robots,474

comprising costs to traverse the edges, to turn and to perform475

agricultural tasks.476

As discussed in the following, the optimality notion in477

Problem 1 provides a good compromise between balancing478

the workload among the robots, within the energy constraints,479

and minimizing the overall execution time.480

B. Problem Formulation 481

We are now ready to present the proposed multi-Steiner 482

TSP formulation for solving Problem 1. Let us introduce the 483

following aggregate temporal costs for each robot r j : 484

Ce
j (x j) =

∑
ēk∈Ē

ce
j · l̄k · xk, j (4) 485

Ct
j(x j) =

∑
ēk=(v̄ p,v̄q )∈Ē

ct
j · ϕp,q · xk, j (5) 486

Cs
j (s j) =

∑
vi∈Vs

cs
i, j · si, j (6) 487

where Ce
j in (4) represents the overall temporal cost of robot r j 488

to traverse the edges, Ct
j in (5) is the overall temporal cost of 489

robot r j to turn, and Cs
j in (6) is the overall service time for 490

agricultural tasks performed by robot r j . Note that the turning 491

costs are easily computed in (5) thanks to the orientation graph 492

model which allows to preserve the information of which 493

consecutive edges are crossed and the respective turn to transit 494

from one to the next. We define the overall temporal cost of 495

robot j as follows 496

C j(x j , s j ) = α Ce
j (x j)+ β Ct

j(x j)+ γ Cs
j (s j) (7) 497

with α, β, γ ∈ R
+ positive weights, and denote the maximum 498

cost among the robots by 499

Cmax = max
r j∈R

C j (x j , s j ). (8) 500

As common in multi-objective optimization problems [51] 501

with weighted sum, the weights α, β, γ in (7) influence the 502

priority assigned in minimizing the temporal cost of traversing 503

edges, turning, and serving nodes in the solution, respectively, 504

i.e., the higher a weight compared to the others, the more the 505

optimal solution will aim to minimize the respective cost. 506

At this point, we can formally state our novel multi-Steiner 507

TSP formulation which is expressed as an Integer Linear 508

Programming (ILP) problem: 509

min
x j , s j∀r j ∈ R

Cmax +
∑
r j∈R

C j (x j , s j ) (9a) 510

s.t.
∑
r j∈R

si, j = 1, ∀vi ∈ Vs (9b) 511

∑
ē p∈ξ+i

x p, j ≥ si, j , ∀vi ∈ Vs,∀r j ∈ R (9c) 512

∑
ēq∈ξ−0

xq, j ≥ si, j , ∀vi ∈Vs ,∀r j ∈R (9d) 513

∑
ē p∈ξ+i

x p, j =
∑

ēq∈ξ−i
xq, j , ∀vi ∈ V,∀r j ∈ R (9e) 514

∑
ē p∈ξ−i

f p, j−
∑

ēq∈ξ+i
fq, j=si, j , ∀vi ∈Vs,∀r j ∈R (9f) 515

∑
ē p∈ξ−i

f p, j =
∑

ēq∈ξ+i
fq, j , ∀vi ∈V\{Vs}, vi �= v0, ∀r j ∈R 516

(9g) 517

εe
j C

e
j (x j)+ εt

j C
t
j (x j)+ εs

j C
s
j(s j ) ≤ K j , ∀r j ∈ R (9h) 518
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si, j ∈ B, ∀vi ∈ Vs, ∀r j ∈ R (9i)519

xk, j ∈ B, ∀ēk ∈ Ē, ∀r j ∈ R (9j)520

0 ≤ fk, j ≤ |Vs | · xk, j , ∀ēk ∈ Ē, ∀r j ∈ R. (9k)521

The objective, according to (9a), is to determine the decision522

vectors x j , s j , ∀r j ∈ R while minimizing the maximum523

temporal cost Cmax and the cumulative weighted temporal524

cost of the robotic platforms, i.e.,
∑

r j∈R C j (x j , s j ). In this525

way, we aim to minimize the total time to perform all the526

agricultural tasks, while avoiding unnecessary motions by all527

the robots. Indeed, in the case only Cmax is considered in the528

objective function, the other robots r j ∈ R are allowed to529

arbitrarily move within the constraints as long as C j < Cmax530

even if these motions are not aimed to serve nodes. On the531

other hand, if only the cumulative temporal cost
∑

r j∈R C j is532

considered in the objective function, a solution may allocate533

most of the work to one robot without balancing the load534

and leading to a higher Cmax. Note that practical benefits535

result from encouraging load-balancing. In particular, the more536

balanced the load, the more uniform the robots’ wear and tear537

in the long run and, therefore, the longer their lifetime. More-538

over, considering the typical presence of uncertainties during539

execution in terms of times and energy, such as in [52], work540

distribution provides increased robustness if these measures541

are underestimated at allocation time. This motivates why a542

combined objective function is considered. However, in case543

one only wants to optimize the time efficiency, the proposed544

formulation can be adapted to the purpose in a straightforward545

manner by excluding the term
∑

r j∈R C j (x j , s j ) in the cost546

function in (9a).547

As far as the constraints are concerned, the following are548

defined:549

• Equation (9b) implies that each node vi ∈ Vs is served550

by exactly one robot. However, this constraint does not551

prevent other robots or the same serving robot from552

transiting on node vi multiple times if needed.553

• Equation (9c) states that, in order for a robot to serve a554

node vi ∈ Vs and thus perform agricultural tasks on it, the555

node must be entered by the robot, i.e., if si, j = 1 then556

the robot v j must traverse an edge ē p = (v̄s , v̄t ) ∈ ξ+i557

which eventually enters the node.558

• Equation (9d) implies that, if a robot r j has to serve559

at least one node, i.e., it exists si, j = 1 for vi ∈ Vs ,560

then the robot has to exit the depot v0. In this way, if a561

robot is not supposed to carry out any agricultural tasks,562

no unnecessary motion is performed.563

• Equation (9e) states that each time a robot r j enters a564

node vi , i.e., it exists x p, j = 1 for ē p ∈ ξ+i , the same565

robot must also exit it, i.e. it must hold xq, j = 1 for566

ēq ∈ ξ−i .567

• Equations (9f)-(9g) refer to the single commodity flow568

formulation [53] which allows avoiding the generation of569

disjoint loops in the robots’ routes. In detail, each robot570

virtually transports commodities through edges: a com-571

modity is released when the robot serves a node, while572

no commodity change occurs when the robot only transits573

on a node. Equation (9f) imposes the flow adaptation if a574

node vi ∈ Vs , which can be potentially served, is traversed575

by robot r j : if the node is served, i.e., if it holds si, j = 1, 576

then the amount of commodities is reduced by one unit, 577

otherwise no commodities are released. Equation (9g) 578

imposes the flow conservation on transit nodes, i.e., nodes 579

that should not be served. When these nodes are transited, 580

the number of commodities must be unaffected. With this 581

formulation, even if a node is served by a certain robot, 582

the remaining ones are still allowed to pass through it, 583

without modifying their flow. 584

• Equation (9h) bounds the overall energy consumption of 585

a robot r j to its capacity K j . The energy costs for edge 586

traversing, turning and serving operations are taken into 587

account. 588

• Equations (9i)-(9j) impose the binary nature of the deci- 589

sion variables xk, j , si, j ∀i, j, k; 590

• Equation (9k) regulates the commodity flow variables 591

fk, j , imposing that, for each edge ēk and for each robot r j , 592

the amount of commodities fk, j passing through the edge 593

i) does not exceed the number of nodes to be visited |Vs | 594

if the edge is traversed, and ii) is equal to 0 otherwise. 595

This guarantees that an edge is present in the robot’s route 596

if a commodity is passed through this edge by the same 597

robot. 598

Notably, the proposed formulation allows to easily specify 599

different locations where agricultural tasks should be carried 600

out by a heterogeneous team of robots, while minimizing 601

the maximum and the cumulative temporal costs. Moreover, 602

the formulation is completely flexible in regards to the field 603

topology, allowing turning costs to be included in any case. 604

Concerning the problem complexity, it can be proven that 605

the formulated multi-Steiner TSP is NP-hard, i.e., it cannot be 606

solved by a polynomial algorithm if P �= NP. More specifically, 607

by recalling that the TSP is NP-hard [54] and is a special 608

case of the single Steiner TSP in which all the nodes must 609

be served, i.e., Vs ≡ V , the NP-hardness of the single Steiner 610

TSP follows [54]. This NP-hardness is thus inherited also by 611

the multiple robots case addressed in this paper [46]. Notably, 612

heuristics like in [35] and [40] could be designed to cope 613

with the NP-hardness of the problem and make the solution 614

computation more affordable. However, this is beyond the 615

scope of this paper, which focuses on the problem formulation 616

aspects to perform agricultural tasks by multiple robots in 617

realistic PA settings, rather than the algorithmic aspects for 618

efficiently solving the problem. Nevertheless, in the following 619

we propose a sub-optimal formulation which reduces the 620

problem dimensionality thus mitigating its computational load, 621

as validated in Section VI. 622

V. SUB-OPTIMAL FORMULATION 623

In order to properly account for the turning costs, the 624

entire orientation graph must be considered as in (9a) and 625

all the maneuvering costs associated with turns must be 626

counted. However, in case the number of agricultural tasks 627

to perform is significantly lower than the number of possible 628

field locations, i.e., |Vs| � |V|, as typical for PA settings, 629

a sub-optimal formulation for addressing Problem 1 which 630

relaxes the turning costs at the service nodes only may be 631
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convenient. Algorithm 1 summarizes the two-phase procedure632

to set-up and solve the sub-optimal problem starting from633

the orientation graph Ḡ. The basic idea is to decompose634

the original formulation into multiple polynomial problems635

which require overall substantially less computational time636

to be solved. This enables involving a reduced number of637

variables in the final optimization problem at the cost of638

sub-optimality, for which we characterize a bound in the639

following.640

Algorithm 1 Procedure to Solve Sub-Optimal Formulation

Require: Service nodes Vs , Orientation graph Ḡ, coefficients
ck

j , cs
i, j with k = e, t , ∀vi ∈ Vs , εk

j with k = e, t, s ∀r j ∈ R
Phase 1 - Build service graph Ĝ
1: V̂ ← Vs ∪ {v0}
2: Ê ← ∅
3: for each vs , vt ∈ V̂ do
4: êh := (vs, vt )
5: for each r j ∈ R do
6: L̂h, j ← local optimum(Ḡ, vs , vt , ck

j ) [eq. (10)]
7: end for
8: Ê ← Ê ∪ {êhwith label L̂h}
9: end for

Phase 2 - Find sub-optimal solution in Ĝ
1: x̂h, j←global sub-optimum(Ĝ, ck

j , cs
i, j , ε

k
j ) [eq. (15)]

As first step, we build an additional graph Ĝ = (V̂, Ê)641

(Phase 1 of Algorithm 1), called service graph, which embeds642

the information of minimum cost paths between service nodes.643

The set of vertices V̂ only comprises the nodes to serve Vs644

and the depot v0, i.e., V̂ = Vs ∪ {v0} (line 1.1). Concerning645

the edges, a complete graph is built, i.e., Ê = V̂ × V̂ (lines646

1.2-1.9), in which each edge êh = (vs, vt ) ∈ Ê represents the647

paths with minimum cost from the start node vs to the target648

one vt for each robot. In detail, a m-dimensional cost vector649

L̂h = [L̂h,1, .., L̂h,m] is associated with edge êh whose j th650

component is a tuple L̂h, j = (L̂e
h, j , L̂t

h, j ) (line 1.6), where651

L̂e
h, j is the overall temporal cost for robot r j to traverse652

the edges from vs to vt , while L̂t
h, j is the overall temporal653

cost for robot r j for turning operations at the transit nodes.654

Additionally, the sets δ̂+i ,δ̂−i are defined for each node vi ∈ V̂,655

which, similarly to the sets δ+i , δ−i of the field graph, are656

composed of the edges in Ê entering and exiting vertex vi ,657

respectively. Furthermore, the set Êc of consecutive edges in658

Ê is defined.659

To optimally define the cost vector L̂h for each edge660

êh = (vs , vt ) ∈ Ê , we resort to the orientation graph Ḡ. Let661

us introduce the decision variable ak,h, j which is 1 if the edge662

ēk ∈ Ē belongs to the path from vs to vt with minimum cost for663

robot r j , 0 otherwise, and the respective collective vector ah, j664

obtained by considering all ēk ∈ Ē . The following optimization665

problem is solved ∀êh = (vs , vt ) ∈ Ê, r j ∈ R:666

min
ah, j

α Ce
j (ah, j )+ β Ct

j(ah, j ) (10a)667

Fig. 4. Example of field graph (left) and respective service graph (right).
Nodes v1 and v5, highlighted in gray, are required to be visited. The shortest
paths between pairs of nodes v1 and v5 and the depot node v0 are highlighted
with colored arrows in the field graph.

s.t.
∑

ē p∈ξ+i
ap,h, j−

∑
ēq∈ξ−i

aq,h, j=

⎧⎪⎨⎪⎩
1 if vi = vs

−1 if vi = vt

0 otherwise,

∀vi ∈ V 668

(10b) 669

ak,h, j ∈ B, ∀ēk ∈ Ē (10c) 670

where α and β are selected as in (9a). Based on the solu- 671

tion ah, j to the above problem, it holds L̂e
h, j = Ce

j (ah, j), 672

L̂t
h, j = Ct

j (ah, j ). The optimization problem in (15) is formu- 673

lated as a shortest path problem [55] which can be thus solved 674

through polynomial algorithms [55]. More specifically, accord- 675

ing to the objective function (10a), it minimizes the overall 676

temporal cost for robot r j to traverse edges and to execute the 677

respective turnings from vs to vt . As far as the constraints are 678

concerned, equation (10b) regulates the value of the decision 679

variable ak,h, j imposing that exactly one edge is selected to 680

exit the start node vs and one is selected to enter the target node 681

vt , as well as that all the other edges comprising the optimal 682

path are selected. Finally, equation (10c) defines the binary 683

nature of the decision variables ak,h, j . 684

We denote the path in the field graph G associated with 685

the solution ah, j by Ph, j = {e[1]h, j , . . . , e[ω]h, j }, where e[i]h, j ∈ E 686

denotes the i th edge of the path Ph, j with cardinality ω. 687

To transition from the orientation graph to the field graph and 688

thus define the path Ph, j , we consider, as in Section IV, that, 689

if ak,h, j = 1, with ēk = (v̄ p, v̄q), then both edges ep ∈ E and 690

eq ∈ E belong to the path. Note that different optimal paths 691

from vs to vt can be found for the different robots r j ∈ R 692

due to their heterogeneity, i.e., to their different unit costs for 693

turning and for traversing an edge. 694

Remark 1: In the case of homogeneous robots, the costs 695

ce
j , ct

j are coincident for each robot r j ∈ R, therefore a unique 696

path for all the robots is found that connects vs and vt . This 697

implies that problem (10) can be solved only once for each 698

edge êh ∈ Ê and a single label L̂h is generated. 699

Figure 4 depicts an example of service graph (on the right) 700

obtained from a field graph (on the left). In the example, 701

homogeneous robots are assumed and two nodes (highlighted 702
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in gray) are required to be visited, namely Vs = {v1, v5}. The703

service graph is composed of the set of nodes V̂ = {v0, v1, v5}704

and the set of edges Ê = {ê1, . . . , ê6} obtained by the shortest705

paths connecting the respective origin and destination nodes.706

Colored arrows in the figure are used to denote the shortest707

paths used in the service graph. For example, edges ê1 =708

(v0, v1) and ê2 = (v1, v0) correspond to the shortest paths709

P1, j = {e1} and P2, j = {e1} (blue arrows) from nodes v0 to710

v1 and v1 to v0, respectively, for a generic robot r j , while edges711

ê3 = (v1, v5) and ê4 = (v5, v1) correspond to the shortest paths712

P3, j = {e2, e3, e4} and P4, j = {e4, e3, e2} (green arrows) from713

nodes v1 to v5 and v5 to v1, respectively.714

At this point, we are ready to exploit the service graph715

to define a sub-optimal solution to (9a) (Phase 2 of Algo-716

rithm 1). Let us introduce the binary decision variable x̂k, j717

∀êk ∈ Ê, r j ∈ R which is 1 when robot r j traverses the edge718

êh = (vs , vt ) and serves node vt , and is 0 otherwise, and the719

variable ŷ p,q, j ∀(ê p, êq) ∈ Êc, r j ∈ R which is 1 if the con-720

secutive edges (ê p, êq) are traversed by robot r j , 0 otherwise.721

Note that no service is made if vt = v0. Moreover, we define722

the angle between two consecutive edges of the service graph723

ê p, êq ∈ Êc traversed by robot r j as follows724

ϕ̂p,q, j = ϕ[ω]p, j ,[1]q, j (11)725

meaning that it represents the angle between the last edge726

(e[ω]p, j ) of the path Pp, j associated with ê p and the first edge727

(e[1]q, j ) of the path Pq, j associated with êq . Note that the angle728

ϕ̂p,q, j depends on the robot r j since, as mentioned above,729

different paths Ph, j may be associated with different robots r j .730

Similarly to eqs. (4)-(6), the following costs are introduced731

Ĉe
j =

∑
êk∈Ê

L̂e
k, j · x̂k, j (12)732

Ĉ t
j = Ĉ tt

j + Ĉ ts
j with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĉ tt

j =
∑
êk∈Ê

L̂t
k, j · x̂k, j

Ĉ ts
j =

∑
(ê p,êq )∈Êc

ct
j · ϕ̂p,q, j · ŷ p,q, j

(13)733

Ĉs
j =

∑
vi∈Vs

∑
ê p∈δ̂+i

cs
i, j · x̂ p, j (14)734

where Ĉe
j in (12) is the overall temporal cost of robot r j to735

traverse the edges, Ĉ t
j in (13) is the one for turning made736

up of the component Ĉ tt
j , related to transit nodes, and the737

component Ĉ ts
j , related to nodes to serve, and Cs

j in (14) is738

the overall service time of robot r j . Moreover, we introduce739

the following aggregate cost for robot r j740

Ĉ j = α Ĉe
j + β Ĉ t

j + γ Ĉs
j741

with α, β and γ as in (9a), whose maximum value is742

denoted by743

Ĉmax = max
r j∈R

Ĉ j .744

The following optimization problem is formulated on the745

basis of the service graph Ĝ (Phase 2 in Algorithm 1, line 2.1):746

min
x̂k, j , ŷ p,q, j∀k, j, p, q

Ĉmax +
∑
r j∈R

Ĉ j (15a)747

s.t.
∑
r j∈R

∑
ê p∈δ̂+i

x̂ p, j = 1, ∀vi ∈ Vs (15b) 748

∑
r j∈R

∑
êq∈δ̂−i

x̂q, j = 1, ∀vi ∈ Vs (15c) 749

∑
r j∈R

∑
ê p∈δ̂−i

x̂ p, j=
∑
r j∈R

∑
êq∈δ̂+i

x̂q, j , ∀vi ∈ V̂ (15d) 750

∑
êk ∈ Ê :

êk = (vs , vt ),
vs , vt ∈ S

x̂k, j ≤ |S| − 1, ∀S ⊂ V̂,S �= ∅ (15e) 751

x̂ p, j + x̂q, j ≤ 1+ ŷ p,q, j , ∀(ê p, êq) ∈ Êc (15f) 752

εe
j Ĉ

e
j + εt

j Ĉ
t
j + εs

j Ĉ
s
j ≤ K j , ∀r j ∈ R (15g) 753

x̂k, j ∈ B, ∀êk ∈ Ê, ∀r j ∈ R (15h) 754

ŷ p,q, j ∈ B, ∀(ê p,êq)∈ Êc, ∀r j ∈R. (15i) 755

By analogy with the formulation in Section IV, we here aim 756

to minimize in (15a) the maximum weighted temporal cost 757

Ĉmax and the cumulative weighted temporal costs of all the 758

robotic platforms, resorting to the service graph. The following 759

constraints are defined: 760

• Equations (15b)-(15c) require that each node to serve vi ∈ 761

Vs is entered and exited by exactly one robot. 762

• Equation (15d) states that each time a robot enters a node 763

vi ∈ V̂ , the robot must also exit the same node. 764

• Equation (15e) allows avoiding sub-tours [56]. More 765

specifically, for each non-empty subset S of V̂ , the 766

inequality in (15e) forces the selection of a number of 767

edges with vertices in S lower than |S|, thus preventing 768

the creation of sub-tours of length |S|. 769

• Equation (15f) determines the behavior of the variables 770

ŷ p,q, j ∀(ê p, êq) ∈ Êc,∀r j ∈ R needed for the turning 771

costs at the service nodes Ĉ ts
j in (13). More specifically, 772

if a robot r j traverses the paths associated with the 773

consecutive edges ê p and êq , i.e., x̂ p, j = x̂q, j = 1, the 774

inequality forces the variable ŷ p,q, j to be greater than or 775

equal to 1. On the contrary, if the consecutive edges are 776

not both assigned to robot r j , the variable yp,q, j can be 777

equal to 0. Note that, as we minimize the turning costs, 778

these variables will be equal to 0 in the latter case. 779

• Equation (15g), similar to (9h), bounds the overall energy 780

consumption of robot r j to its capacity K j . 781

• Equations (15h)-(15i) impose the binary nature of the 782

variables x̂i, j and ŷ p,q, j , ∀i, j, p, q . 783

Based on the solution to (15), the nodes that each robot r j has 784

to serve are determined by the variables x̂h, j , i.e., si, j = 1 if 785

edge êh terminates in vi , i.e., êh = (vs, vi ), with vi �= v0 and 786

it is assigned to robot r j , i.e., x̂h, j = 1, si, j = 0 otherwise. 787

Concerning the route assigned to each robot r j , it is determined 788

by the shortest paths associated with the variables x̂h, j = 1, 789

i.e., xk, j = 1 with ek ∈ E if x̂h, j = 1 and ak,h, j = 1, 790

xk, j = 0 otherwise. 791

Concerning the problem complexity, it inherits the 792

NP-hardness of the orientation graph-based formulation 793

in (9a), where the P problems for finding the shortest paths 794

in (10) are negligible if P �= NP. However, the number 795
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Fig. 5. Example of optimal (in red) and sub-optimal (in blue) solutions. The
angles at the service nodes are highlighted by dotted lines.

of variables which are involved in the service graph-based796

formulation in (15) is significantly reduced compared to the797

previous one since it focuses only on the nodes to serve,798

for which it generally holds |Vs | � |V|. The sub-optimality799

of the solution arises from the fact that, when solving the800

local problem (10) for each edge (vs , vt ), the turning costs to801

exit node vt are not considered, i.e., the turning costs to the802

subsequent part of the path are not taken into account. This803

is mitigated by the turning costs Ĉ ts
j in (13) which, however,804

do not ensure that the optimal path in the orientation graph is805

obtained.806

Figure 5 shows the sub-optimal and optimal solutions for807

the example scenario in Figure 4. The considered sub-optimal808

and optimal solutions correspond to cycles {e1, e2, e3, e4, e7}809

(highlighted with red arrows) and {e1, e5, e6, e4, e7} (high-810

lighted with blue arrows), respectively. In the figure, the dotted811

lines, colored in red and blue, represent the turning angles812

at service nodes for the optimal and sub-optimal solutions,813

respectively. We can notice that the turning angle at node814

v1 is higher (3π/4) for the sub-optimal solution compared815

to the optimal one (π/2), while it is the same (3π/4) at816

node v5 for both solutions. This is due to the fact that817

the sub-optimal method selects the shortest paths ignoring818

the turning costs at the service nodes, while the optimal819

solution, which in general does not consist of solely shortest820

paths, compromises between minimizing the path cost and the821

turning angle at the service nodes. This is the case for the822

optimal solution depicted in the figure, which, from node v1 to823

v5 follows a different, slightly longer, path than the shortest824

one (chosen by the sub-optimal solution in blue), but com-825

promises with a much smaller turning angle at node v1, thus826

minimizing the overall cycle cost. We now formally provide827

a bound on the optimality gap with respect to the formulation828

in (9a).829

Theorem 1: Consider the multi-Steiner TSP formulation830

based on the orientation graph in (9a) with optimal cost C∗ and831

the formulation based on the service graph in (15) with optimal832

cost Ĉ∗, then the relative optimality gap can be bounded as 833

follows 834

Ĉ∗ − C∗

C∗
≤ 2π

βct

αce + γ cs
, (16) 835

with ct = maxr j∈R ct
j the maximum turning unit cost, 836

ce = minr j∈R ce
j the minimum edge traversing unit cost, and 837

cs = minr j∈R,vi∈Vs cs
i, j the minimum service cost. 838

Proof: A bound on the relative optimality gap can 839

be obtained by maximizing the difference at numerator 840

C̃ = Ĉ∗ − C∗, while minimizing the denominator term C∗. 841

Let us define the following variables related to the solution 842

of (9a) 843

E∗ = α Ce∗
max + α

∑
r j∈R

Ce∗
j 844

T ∗t = β Ctt∗
max + β

∑
r j∈R

Ctt∗
j 845

T ∗s = β Cts∗
max + β

∑
r j∈R

Cts∗
j 846

S∗ = γ Cs∗
max + γ

∑
r j∈R

Cs∗
j 847

where C (·)∗
max is the respective component in C∗max, and the 848

equivalent variables Ê∗, T̂ ∗t , T̂ ∗s , Ŝ∗ for the solution of (15). 849

The costs Ĉ∗ and C∗ can be rewritten as 850

C∗ = E∗ + T ∗t + T ∗s + S∗, Ĉ∗ = Ê∗ + T̂ ∗t + T̂ ∗s + Ŝ∗. 851

Since the service based-formulation in (15) does not globally 852

optimize for the turning costs T̂ ∗s at the nodes to serve, 853

we consider its worst case scenario to characterize the bound 854

on C̃ . In particular, the worst case arises when the angle ϕ̂p,q, j 855

between subsequent paths Pp, j and Pq, j (obtained according 856

to (10)) is always maximum, i.e., ϕ̂p,q, j = π ∀(ê p, êq) ∈ 857

Êc, r j ∈ R, and the maximum cycle serves all the nodes 858

vi ∈ Vs with maximum unit turning cost ct . It follows 859

T̂ ∗s ≤ 2πβ ct |Vs |. 860

Moreover, by construction it holds that the orientation-based 861

formulation achieves lower or equal performance than the 862

service-based one, i.e., C∗ ≤ Ĉ∗, implying that 863

E∗ + T ∗t + T ∗s + S∗ ≤ 2πβ ct |Vs | + Ê∗ + T̂ ∗t + Ŝ∗. (17) 864

At this point, we can observe that, when ϕ̂p,q, j = π ∀p, q, j , 865

no optimization is made by the service-based formulation on 866

the turning costs at the service nodes. This implies that the 867

latter formulation will only minimize the remaining terms in 868

the cost function and will achieve their minimum possible 869

values, i.e., by construction the following inequality is verified 870

E∗ + T ∗t + S∗ ≥ Ê∗ + T̂ ∗t + Ŝ∗. (18) 871

Considering (18) in (17), it follows T ∗s ≤ 2πβct |Vs |. The 872

difference C̃ is thus maximized when T ∗s = 0, i.e., no turning 873

costs on the service nodes are present in the orientation graph- 874

based solution, leading to 875

C̃ ≤ 2πβct |Vs |. (19) 876
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Fig. 6. Aerial vehicles involved in the simulation setup. From the left:
Hummingbird, Firefly, Neo11.

As far as the minimization of C∗ is concerned, we observe that877

its lower bound is obtained when there are no turning costs at878

the service nodes, i.e., T ∗s = 0, and the robot with lowest edge879

traversing and service costs is chosen for each service node,880

leading to C∗ ≥ (αce + γ cs)|Vs |. The relative optimality gap881

is thus bounded as in (16), completing the proof.882

Remark 2: The above theorem states that the bound on the883

relative optimality gap depends on the weighted ratio between884

the maximum unit turning cost and the minimum unit cost885

for traversing an edge and cost for servicing a node. This886

implies that the lower the relative cost of turning operations,887

the more convenient the service graph. Moreover, the bound888

on the absolute optimality gap in (19) shows that the lower the889

number of service nodes, |Vs |, the lower the optimality loss890

using the sub-optimal formulation, proving that the latter is891

particularly convenient when |V| � |Vs |. Note that, as shown892

in the numerical results in Section VI, the derived bound893

is rather conservative and comparable results in terms of894

optimality are generally achieved by the orientation-based and895

the service-based formulations.896

VI. SIMULATION RESULTS897

In this section, we provide simulation results to prove the898

effectiveness of the proposed formulations.899

A. Setup Description900

Inspired by the needs of employing robotics in PA set-901

tings, we considered a simulated orchard, shown in Figure 1,902

in which three aerial robots (m = 3) perform targeted903

inspection tasks. Such inspections can be aimed at monitoring904

any relevant field parameters, such as health status, soil905

condition and yield [57]. The following heterogeneous robots,906

shown in Figure 6, were deployed: 1) AscTec Hummingbird907

(Figure 6-left), with smallest size, 2) AscTec Firefly (Figure 6-908

middle), with medium size, 3) Neo11 (Figure 6-right), with909

largest size. Each aerial robot is equipped with the same910

camera mounted on the bottom part of the drone by means911

of a rotational joint.912

Each inspection task requires the assigned robot to navigate913

through the plants to reach the target one and to hover for914

a certain amount of time in correspondence of that plant915

to collect relevant agronomic data. In particular, during the916

hovering, a scan of the plant, from the bottom to its top917

part, is made through the camera sensor. Such a scan could918

be aimed, for example, to detect pest infestations on the919

TABLE III

TEMPORAL (ce
j , ct

j , cs
i, j ∀vi ∈ Vs ) AND ENERGY (εe

j , εt
j , εs

j ) COST

COEFFICIENTS AS WELL AS ENERGY CAPACITY (K j ) OF THE THREE

AERIAL ROBOTS HUMMINGBIRD, FIREFLY AND NEO11

Fig. 7. Representation of an inspection task. The respective portion of the
field graph is also shown in gray.

plants, which generally require inspections at heights between 920

1.5 and 3 meters [58]. Note that the proposed formulations 921

can be adapted to perform any agricultural task in permanent 922

crops, and the inspection task considered hereby is only a 923

representative example for demonstration purposes. 924

Numerical values for the robots’ cost coefficients ce
j , ct

j , cs
i, j , 925

εe
j , εt

j , εs
j , K j , j = 1, 2, 3 ∀vi ∈ Vs , defined in Section IV, 926

are reported in Table III. Costs cs
i, j were set equal for all 927

service nodes vi ∈ Vs and for all robots r j ∈ R as we 928

assume that each plant must be scanned for the same amount 929

of time. Temporal unit costs ce
j and ct

j are expressed in [s/m] 930

and [s/rad], respectively, while temporal service costs cs
i, j are 931

expressed in [s]. Energy unit costs εe
j , εt

j and εs
j are all 932

expressed in [1/s] and represent the percentage of consumed 933

energy in the time unit. We assume that every robot is fully 934

charged (K j = 100%, j = 1, 2, 3). The Hummingbird is the 935

smallest and fastest robot among the considered ones, leading 936

to the highest efficiency in terms of temporal unit costs (lowest 937

values for ce
j and ct

j ), but the lowest energetic efficiency 938

(highest values for εe
j , εt

j , εs
j ). In contrast, Neo11 is the biggest 939

and slowest robot, but relies on the most powerful battery 940

which provides it with the greatest autonomy. Intermediate 941

cost coefficients are considered for the Firefly robot. Weights 942

α = 1, β = 40, γ = 1 were used for the objective functions 943

to prioritize the minimization of the turning costs. 944

Concerning the field graph, we considered orchards with 945

N × N planting patterns, resulting in square grid topology, 946

in which the trees are distant 5 meters from one another and 947

with variable altitude. The location in the middle between four 948

trees is associated with a node vi ∈ V and the inspection is 949

made on the top left tree. An example is reported in Figure 7 950

where the robot’s location is associated with a node and it 951

is shown while performing an inspection task. The figure 952

also shows the respective portion of the field graph in gray. 953

Passages between these locations are associated with edges 954
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Fig. 8. Representation of the orchard in GAZEBO simulator (left) and the respective field graph in 3D (middle) and in 2D from the top view (right). Only
the depot node is highlighted in the middle figure for the sake of readability.

ek ∈ E . The depot node is labeled as 0 and is at zero altitude.955

From there, the field slopes up to reach a plain surface at956

3 meters of altitude, corresponding to the maximum altitude957

of the orchard, and then slopes down again to zero altitude.958

The altitude hk of node vk in row i and column j of the square959

grid is given by:960

hk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3

�N/3� ( j − 1), j ≤ �N/3�
3, �N/3� < j ≤ N − �N/3�
3− 3

�N/3�
× ( j−N + �N/3�), j > N − �N/3�.

961

Figure 8 shows an example of the simulated hazelnut962

orchard (left) and the respective field graph with N = 14963

(middle). The same topology in a two dimensional per-964

spective from above is also shown (right). Without loss965

of generality, this perspective will be used to show the966

robots’ routes. Concerning the selection of the plants to967

inspect, different subsets Vs of V with varying size have been968

considered as detailed in the following. We considered the969

case in which |Vs | � |V| is verified, which is typical for970

PA applications.971

All software components were developed in MATLAB972

interfaced with IBM CPLEX 12.10 solver and with ROS973

middleware. The latter was then interfaced with GAZEBO974

simulator to reproduce realistic aerial vehicles motion as well975

as the orchard. In accordance with the vision of PANTHEON976

project aiming at building an agricultural equivalent of an977

industrial SCADA system, a central unit was in charge of978

computing the solutions of the optimization problems. The979

input for both optimal and sub-optimal formulations consists980

of: i) the field graph G, modeling the topology of the orchard,981

ii) the set of vertices Vs , where inspection tasks are required,982

and iii) the temporal and energy coefficients for each robot.983

The output of each optimization problem consists of: i) the984

sequence of edges to traverse for each robot, and ii) the set985

of locations to inspect. These sequences are sent to a ROS986

controller node [59] generating the motion control commands987

for the simulated aerial vehicles. A workstation with processor988

Intel Xeon E5-2650L v4 with 35 MB cache and 1.70 GHz was989

used for computation.990

B. Comparative Results 991

We carried out an extensive simulation campaign composed 992

of several tests involving fields of various dimensions and dif- 993

ferent numbers of nodes to serve. Moreover, a greedy solution 994

and two optimization-based solutions to solve the multi-Steiner 995

TSP problem were implemented for a comparative analysis. 996

The greedy algorithm is summarized in Algorithm 2. 997

Briefly, the basic idea is to iteratively assign the service nodes 998

to the robots that are the most efficient in reaching and serving 999

them, while ensuring to travel back to the depot, until all 1000

service nodes are assigned or the energy of the robots is 1001

exhausted. To build the greedy solution, the minimum cost 1002

paths between service nodes, contained in the service graph Ĝ, 1003

are exploited. The first phase of the algorithm consists in 1004

initializing the sets Ṽs and Q j , ∀r j ∈ R (lines 2.1-2.2), 1005

comprising the unassigned service nodes and the edges in the 1006

route of robot r j , as well as the residual energy K̃ j (line 2.3) of 1007

each robot r j . A flag variable denoting if any feasible solution 1008

is found is also initialized (line 2.4). The second phase of the 1009

algorithm focuses on assigning the service nodes to the robots 1010

and building their routes Q j ,∀r j ∈ R. This is achieved in 1011

an iterative manner (line 2.1) until all nodes are assigned, 1012

i.e., Ṽs = ∅, or no node can be assigned due to a lack of 1013

energy. In the latter case, the algorithm terminates and returns 1014

unfeasible solution. At each iteration, the feasible solution flag 1015

is set to false (line 2.2) and, for all the couples composed 1016

of a remaining node to visit vh ∈ Ṽs and a robot r j ∈ R, 1017

the energetic costs to reach the node to visit vh and then to 1018

return to the depot v0 are computed (lines 2.4-2.6). If the robot 1019

residual energy is sufficient to cover such costs, the solution 1020

feasibility is set (line 2.8) and the cost Ch, j for robot j to 1021

serve vh is stored. At this point, the couple composed of 1022

robot r j and node to serve vh with minimum cost is assigned 1023

and the solution is updated accordingly (lines 2.12-2.15). 1024

Finally, all the robots are required to travel back to the depot 1025

(lines 3.1-3.5). 1026

As far as the optimization-based solutions are concerned, 1027

as in [46], these consist in pre-assigning the subset of nodes to 1028

visit to each robot. In particular, they are based on the follow- 1029

ing steps: i) partition of the set of vertices to visit Vs in m sets, 1030

which differ for the two baselines, ii) assignment of each of the 1031

m subsets to a robot and iii) solution of a single-Steiner TSP 1032

problem for each robot. If all single-Steiner TSP problems are 1033
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Algorithm 2 Greedy Algorithm

Require: Service graph Ĝ, Service nodes Vs , Set of robots R,
coefficients α, β, γ , ck

j , cs
i, j with k = e, t , ∀vi ∈ Vs , εk

j with
k = e, t, s ∀r j ∈ R
Phase 1 - Initialization
1: Ṽs ← Vs

2: Q j ← ∅, ∀r j ∈ R
3: K̃ j ← K j , ∀r j ∈ R
4: feasible solution ← true

Phase 2 - Compute routes Q j , ∀R j ∈ R
1: while Ṽs �= ∅ ∧ feasible solution do
2: feasible solution ← f alse
3: for each vh ∈ Ṽs, r j ∈ R do
4: vl ← get last node(Q j)
5: Eh, j ← energy between nodes(r j , vl , vh)
6: E0, j ← energy between nodes(r j , vh, v0)
7: if Eh, j + E0, j ≤ K̃ j do
8: feasible solution ← true
9: Ch, j ← cost between nodes(r j, vh, v0)

10: end if
end for

11: vh∗ , r j∗ ← argmin(Ch, j)
12: if feasible solution then
13: (Q j∗ , K̃ j∗)← update robot(r j∗, vh∗ , Eh∗, j∗)
14: Ṽs ← Ṽs \ {vh}
15: end if
16: end while
Phase 3 - Return to depot
1: if Ṽs ≡ ∅ then
2: for each r j ∈ R do
3: Q j ← add edge to node(v0)

end for
4: end if

feasible, a feasible solution for the multi-Steiner TSP problem1034

is built. Two partitioning algorithms were considered for the1035

two methods: i) k-means [60] and ii) random.1036

From here on, the described baseline approaches with1037

k-means and random partitioning algorithms will be referred1038

to as k-means and random methods, respectively, while we1039

will refer to the optimization problems in (9a) and in (15) as1040

optimal and sub-optimal methods, respectively. We selected1041

these methods for comparison as k-means naturally tries to1042

group together points of interest that are spatially close to each1043

other, while random is a basic baseline which is necessarily1044

required to be overcome by the proposed approaches.1045

Plots in Figure 9 summarize the results of the simulation1046

campaign. We considered field sizes ranging from 10× 10 to1047

14×14, and for each size we considered an increasing percent-1048

age of trees to be inspected, ranging from 2% to 5%, of the1049

total number. In case the percentage does not lead to an integer1050

value, we round up to the closest integer. For all the methods,1051

each simulation case was executed 10 times, considering a1052

different random selection of trees to be inspected at each1053

execution. For example, in the 14× 14 field, an inspection of1054

3% of trees means that 6 trees (|Vs | = 6) are randomly selected 1055

from the field 10 times, defining 10 different scenarios; the 1056

same 10 scenarios were used for each of the five methods. 1057

In all the plots the results related to optimal, sub-optimal, 1058

greedy, k-means and random methods are represented in light 1059

blue, green, red, yellow and purple, respectively. Average 1060

values are given by the heights of the bars, while black lines 1061

represent standard deviations. In the figure, the top left plot 1062

shows the average temporal costs C∗, Ĉ∗, C∗g , C∗k and C∗r 1063

along with the standard deviation achieved by the optimal, sub- 1064

optimal, greedy, k-means and random methods, respectively. 1065

The top right plot reports the average relative optimality gaps 1066

of the temporal costs evaluated for the non-optimal methods 1067

(i.e., sub-optimal, greedy, k-means and random) with respect 1068

to the optimal solution. We denote with (Ĉ∗ − C∗)/C∗, 1069

(C∗g−C∗)/C∗, (C∗k −C∗)/C∗, (C∗r −C∗)/C∗, the relative opti- 1070

mality gap for the sub-optimal, greedy, k-means and random 1071

methods, respectively. The bottom left plot depicts the number 1072

of times the proposed methods failed to find a solution for 1073

the simulation cases. Only k-means and random are reported 1074

since the others always succeed in finding feasible solutions. 1075

The bottom right plot shows the average computational times 1076

�, �̂, �g, �k and �r along with the standard deviations 1077

for the optimal, sub-optimal, greedy, k-means and random 1078

methods, respectively. In particular, the top left plot shows 1079

that, as expected, the average temporal cost for all methods 1080

increases with the field size and percentage of plants to inspect. 1081

Moreover, the plot highlights that similar average temporal 1082

costs are achieved by the sub-optimal method compared to 1083

the optimal one, while higher costs are obtained when using 1084

the remaining sub-optimal approaches. This trend is particu- 1085

larly evident in the top right plot where the average relative 1086

optimality gap is shown to be stable across different field 1087

sizes and nodes to inspect with the sub-optimal method (in 1088

green) and always lower than 4.83%. In particular, the sub- 1089

optimal method achieved the lowest optimality gap compared 1090

to the other methods. These results confirm the effectiveness 1091

of the proposed sub-optimal formulation against the baseline 1092

solutions. Moreover, by comparing the actual relative gap 1093

of the sub-optimal solution with the relative upperbound 1094

(362.81%), it can be also noticed that the bound is largely 1095

satisfied, confirming its conservativeness. This is motivated 1096

by the fact that the upperbound is obtained considering an 1097

unrealistic scenario in which the optimal solution i) only 1098

deploys the robot with lowest edge traversing and service costs 1099

to inspect all nodes in Vs , ii) does not form a cycle, iii) involves 1100

zero turning costs at the service nodes and iv) has each path 1101

from an inspected node to the subsequent one composed of 1102

a single, minimum cost, edge. As far as the greedy method 1103

is concerned, relative optimality gap lower than 30.06% is 1104

obtained, but the numerical analysis indicates that this gap 1105

increases as the field size and nodes to inspect increase. 1106

This is motivated by the fact that the higher the number of 1107

service nodes to be assigned to the robots, the higher the 1108

chances that the greedy approach builds an inefficient solution. 1109

High optimality gaps are obtained instead in all cases by 1110

k-means and random methods. Note that the low optimality 1111

performance of these methods was expected, as they are not 1112
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Fig. 9. Simulation results for the optimal (light blue), sub-optimal (green), greedy (red), k-means (yellow) and random (purple) methods considering fields
sizes from 10 × 10 to 14 × 14 and increasing percentage of trees to be inspected (%|V s|), from 2% to 5% of the total number. Top left plot shows average
and standard deviation of temporal costs C∗, Ĉ∗, C∗g , C∗k and C∗r . Top right plot shows the average relative optimality gaps of the temporal costs. Bottom
left plot shows the number of unfeasible solutions. Bottom right plot shows average and standard deviation of computational times �, �̂, �g , �k and �r .

specialized for the problem at hand and, therefore, fail to1113

solve it efficiently. In fact, the node pre-allocation performed1114

by the partitioning algorithms does not take into account1115

either the objective function in (9a) or the energy constraints1116

of the robots. However, we would had to resort to these1117

comparison methods since, as discussed in the Related work1118

section, no other method exists at the state of the art that can1119

efficiently address our problem. The observations regarding1120

the optimality performance of the different methods are also1121

confirmed by the number of unfeasible solutions in the bottom1122

right plot. More specifically, the sub-optimal and greedy1123

methods managed to find a solution for each execution, while,1124

for the random and k-means methods, the higher the field size1125

and nodes to serve, the higher the number of failures recorded,1126

achieving 9/10 unfeasible solutions with field sizes 13×13 and1127

14 × 14 and 5% of nodes to visit, respectively. Regarding1128

the computational aspects, the bottom left plot demonstrates1129

the significant difference in computational time of the optimal1130

solution compared to the non-optimal ones. In particular, the1131

computational time � for the optimal method increases rapidly1132

as the field size and the number of nodes to serve increase,1133

passing from the order of seconds for the 10 × 10 field case1134

to tens of minutes for the 14 × 14 field. Zoomed views for1135

each field size are provided to clearly show the computational1136

time for the non-optimal methods. Computational time �̂1137

in the order of seconds is always recorded for the sub-1138

optimal method, achieving maximum average value equal to1139

18.01 s for 14× 14 field with 5% of nodes to serve. Similar1140

computational times are generally recorded by k-means and1141

Fig. 10. Temporal costs C∗, Ĉ∗, C∗g for the optimal (light blue), sub-
optimal (green), greedy (red) methods considering fields sizes from 20×20 to
50× 50 with 3% of the total number of trees to be inspected.

random baselines, achieving on average computational times 1142

equal to 2.90 s and to 6.93 s, respectively, against 3.05 s for the 1143

sub-optimal method. Finally, much lower computational times 1144

equal to 0.09 s on average are obtained for the greedy method, 1145

which, as opposed to the others, does not need to solve any 1146

NP-hard optimization problem. To summarize, the simulation 1147

campaign allows to numerically corroborate the effectiveness 1148

of the proposed formulations against three baseline solutions 1149

and show the trade-off between optimality and computational 1150

time of the sub-optimal formulation. 1151

Based on the same methods as in the above, we performed 1152

a scalability analysis with field sizes ranging from 20× 20 to 1153

50× 50 and requiring 3% of the total number of trees to be 1154

inspected. Figure 10 shows the results obtained in this analysis. 1155
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Fig. 11. Examples of solutions obtained by the optimal (a), sub-optimal (b), greedy (c), k-means (d), and random (e) methods.
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The average (heights of the bars) temporal costs C∗, Ĉ∗, C∗g1156

(obtained over 5 instances) along with the standard deviation1157

(black lines) achieved by the optimal (light blue), sub-optimal1158

(green), and greedy (red) methods, respectively, are shown.1159

No results concerning k-means and random methods are1160

provided since they did not manage to find solutions in the1161

considered cases, as coherent with the results obtained for1162

field size equal to 13 × 13 and 14 × 14. On the contrary,1163

the optimal, sub-optimal and greedy methods always found a1164

solution. The obtained results confirm the behavior observed1165

with smaller field graphs, i.e., i) the average temporal cost for1166

all methods increases with field size and ii) the sub-optimal1167

method always achieves a better cost, i.e., closer to the optimal1168

one, than the greedy solution. To cope with the NP-hardness1169

of the optimal and sub-optimal methods, in these simulations1170

we relaxed the search of the solver for the exact optimum and1171

allowed 10% optimality margin.1172

C. Illustrative Example1173

We now illustrate the behaviour of the five implemented1174

methods to an example scenario. We considered a 14×14 field1175

with 5% of nodes to be inspected, implying |Vs | = 10. For1176

this example, Vs = {5, 26, 37, 39, 79, 82, 105, 128, 133, 169}.1177

The accompanying video shows the execution of the optimal1178

plans for the three aerial robots according to architecture1179

described in Section VI-A. Figure 11 reports the solutions1180

obtained by the optimal (Figure 11-a, first row), sub-optimal1181

(Figure 11-b, second row), greedy (Figure 11-c, third row),1182

k-means (Figure 11-d, fourth row) and random (Figure 11-e,1183

fifth row) methods. Each column is associated with a robot,1184

i.e., from the left there are Hummingbird, Firefly and Neo11.1185

The route planned for each robot (red edges) as well as the1186

set of nodes to serve (red labeled dots) are reported. In the1187

figures, only the depot and the inspected trees are labeled for1188

the sake of readability. The optimal solution achieves overall1189

cost C∗ = 1068.40 s and requires Hummingbird to inspect1190

nodes 79 and 82 in 158.56 s using 78.52% of its energy1191

capacity; Firefly to inspect nodes 105, 128, 133 and 169 in1192

269.80 s using 85.91% of its total energy capacity; Neo111193

to inspect 5, 26, 37 and 39 in 320.00 s using 20.14% of its1194

total energy capacity. The figure makes evident that robots are1195

deployed to inspect groups of trees which are relatively close1196

to one another. Moreover, the optimal solution maximizes1197

the number of nodes that the fastest robots (Hummingbird1198

and Firefly) inspect, given their total energy capacity K j and1199

energy consumption. In this regard, Hummingbird and Firefly1200

can inspect at most two and four nodes, respectively, since1201

they require 35% and 21% of the total energy to inspect a1202

single node, respectively. The rest of the nodes to inspect1203

are assigned to the slowest (but with the longest autonomy)1204

robot, Neo11, which requires only 5% of its total energy1205

to inspect a single node. As far as the sub-optimal method1206

is concerned, cost Ĉ∗ = 1129.71 s is obtained. In particular,1207

it assigns Hummingbird to inspect nodes 37 and 39 in 150.67 s1208

using 78.52% of its energy; Firefly to inspect nodes 105,1209

128, 133 and 169 in 269.80 s using 85.91% of its total1210

energy; Neo11 to inspect 5, 26, 79 and 82 in 354.24 s using1211

20.14%. The sub-optimal solution maximises the number of1212

nodes assigned to the fastest robots (i.e., Hummingbird and 1213

Firefly), but unlike the optimal solution, some robots may 1214

follow sub-optimal routes. The non optimalility of this method 1215

is a consequence of the fact that this method disposes of 1216

pre-assigned shortest paths that do not necessarily belong to 1217

the an optimal solution of the problem. 1218

Regarding the greedy algorithm, it achieves cost C∗g = 1219

1363.87 s. In particular, it assigns Hummingbird to inspect 1220

nodes 5 and 26 in 145.02 s using 77.76% of its energy; 1221

Firefly to inspect nodes 37, 39, 79 and 82 in 273.08 s using 1222

86.14% of its total energy; Neo11 to inspect 105, 128, 133 and 1223

169 in 472.78 s using 20.25%. The greedy solution, alike the 1224

sub-optimal one, maximizes the number of nodes assigned 1225

to the fastest robots, i.e., Hummingbird and Firefly (first and 1226

second columns), within their energetic limitations and assigns 1227

sub-optimal routes to the Firefly and Neo11 (second and third 1228

columns), showing intersecting routes. 1229

For the K-means solution, cost C∗k = 1401.29 s is obtained. 1230

In this case, Hummingbird inspects node 5 in 65.31 s using 1231

37.51% of its energy; Firefly inspects nodes 128, 133 and 1232

169 in 232.26 s using 64.90% of its total energy; Neo11 1233

inspects nodes 26, 37, 39, 79, 82 and 105 in 551, 73 s 1234

using 30.22% of its total energy. K-means method deploys 1235

robots to inspect nodes which are relatively close to one 1236

another. This feature alone, although in common with the 1237

optimal solution, does not generally guarantee the optimality 1238

of the solution, as it can be seen comparing the k-means 1239

solution cost with the optimal one. This is due to the fact 1240

that the partitioning algorithm does not take into account the 1241

objective function in (9a) (as shown by the results in Figure 9). 1242

Furthermore, the number of nodes assigned to each robot is 1243

randomly determined, meaning that the fastest robots could be 1244

energetically underutilized or overutilized. In the figure, both 1245

Hummingbird and Firefly are underused because they inspect 1246

a single node and three nodes, respectively, instead of two and 1247

four nodes as done in the optimal case, leading to overusing 1248

the slowest robot, Neo11. 1249

Finally, with regard to the random method, it obtains 1250

cost C∗r = 1484.12 s and requires Hummingbird to inspect 1251

nodes 5 and 133 in 153.76 s using 78.02% of its energy; 1252

Firefly to inspect nodes 37, 79 and 169 in 236.52 s using 1253

65.10% of its total energy; Neo11 to inspect 26, 39, 82, 1254

105 and 128, in 546.86 s using 25.23% of its total energy. 1255

The random pre-assignment strategy generally leads robots to 1256

inspect groups of nodes that are scattered on the field, as it 1257

can be observed from the figure. Similarly to the k-means 1258

method, the Firefly is energetically underused, inspecting three 1259

nodes instead of four and resulting in an overuse of the slowest 1260

robot, Neo11. We reiterate that k-means and random methods 1261

were only selected as baselines for comparison, since no other 1262

method is available at the state of the art to deal with the 1263

problem at hand. For this reason, low performance in terms 1264

of optimality was expected. 1265

VII. CONCLUSION 1266

In this work, we proposed a novel formulation to plan 1267

optimal routes for multiple mobile robots to perform agri- 1268

cultural tasks in large-scale PA settings. Differently from 1269
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existing works, we introduced a field model able to account1270

for maneuvering costs with general topologies. Building on1271

this, we formalized a multi-Steiner TSP problem in which1272

turning costs on arbitrary field topologies as well as energy1273

capacity constraints are taken into account. The total time to1274

execute all the tasks, as well as the cumulative execution times1275

of the robots have been minimized. Moreover, we proposed a1276

sub-optimal formulation to mitigate the computational load1277

by relaxing the optimization of the maneuvering costs at1278

the locations where agricultural tasks are carried out and1279

provided a formal analysis on the optimality gap. Simula-1280

tion results with three aerial robots performing inspection1281

tasks in a orchard corroborated the proposed formulations.1282

Remarkably, the proposed formulations can be easily adapted1283

to any operational setting where multiple mobile robots need1284

to perform tasks in assigned locations of the environment.1285

As future work, we plan to overcome the inherent compu-1286

tational issues of the proposed formulations by designing effi-1287

cient algorithms for solving the proposed problems. Moreover,1288

we plan to validate the formulations on real-world robotic1289

platforms.1290
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