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Abstract—1In this work, we propose a route planning strategy
for heterogeneous mobile robots in Precision Agriculture (PA)
settings. Given a set of agricultural tasks to be performed
at specific locations, we formulate a multi-Steiner Traveling
Salesman Problem (TSP) to define the optimal assignment of
these tasks to the robots as well as the respective optimal paths
to be followed. The optimality criterion aims to minimize the total
time required to execute all the tasks, as well as the cumulative
execution times of the robots. Costs for travelling from one
location to another, for maneuvering and for executing the task
as well as limited energy capacity of the robots are considered.
In addition, we propose a sub-optimal formulation to mitigate the
computational complexity by leveraging the fact that generally
in PA settings only a few locations require agricultural tasks in a
certain period of interest compared to all possible locations in the
field. A formal analysis of the optimality gap between the optimal
and the sub-optimal formulations is provided. The effectiveness
of the approach is validated in a simulated orchard where three
heterogeneous aerial vehicles perform inspection tasks.

Note to Practitioners—This paper aims at providing an efficient
solution to PA needs by deploying a team of robots able
to perform agricultural tasks at given locations in large-scale
orchards. In particular, a novel general optimization problem is
proposed that, given a set of mobile and possibly heterogeneous
robots and a set of agricultural tasks to carry out, defines the
assignment of these tasks to the robots as well as the routes to
follow, while minimizing the total and the cumulative execution
times of the robots. Existing approaches for route optimization
in PA generally involves complete coverage of the field by one
or multiple robots and do not account for maneuvering costs
with general layouts of the field. We consider costs for travelling
from one location to another, for executing the task and for
maneuvering without any restriction on the layout of the plants
as well as we take into account the limited energy capacity of the
robots. We also provide a sub-optimal formulation which reduces
the computational burden by relaxing the optimization of the
maneuvering costs at the locations where agricultural tasks are
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carried out and formally derive the optimality gap. The proposed
approach is flexible and can be easily adapted to any PA setting
involving multiple mobile robots that are required to accomplish
given tasks in an area of interest. We validate its effectiveness in a
realistic simulated setup composed of three heterogeneous aerial
vehicles performing inspection tasks. In future research, we aim
to design algorithms to solve the proposed optimization problems
in an efficient manner as well as to validate the formulations on
real-world robotic platforms.

Index Terms— Multi-robot route

precision agriculture.

systems, optimization,

I. INTRODUCTION

ONTINUOUS plant-by-plant monitoring and targeted

interventions are key features of the Precision Agricul-
ture (PA) paradigm, that potentially enable increased crop pro-
ductivity while reducing waste. Although monitoring activities
can generally be carried out through remote sensing [1], close-
up operations, which we will refer to as agricultural tasks,
are typically required for intervention activities such as pesti-
cide [2], herbicide [3] and fertilizer [4] release, inspection [5],
weed detection [6], pruning [7], or harvesting [8]. Deploying
multiple, and possibly heterogeneous, mobile robots in the
field, which autonomously navigate among plants [9] and carry
out agricultural tasks, provides an effective solution to this
proximity need [10]. In this way, robots can reach out to the
different plants requiring intervention and perform the latter
in a parallel fashion. However, realistically, in large-scale PA
settings, agricultural tasks may be required in locations that are
sparse with respect to the size of the field and low in number
compared to the total number of plants. This is motivated
by the fact that the needs of the plants in the field can be
highly variable due to the varietal assortment, e.g., [11], and/or
different soil or climate conditions, e.g., [12]. Based on the
above, a fundamental question to be addressed is to define
which robot should treat which plants by wisely choosing the
respective path to be followed to reach them.

For this purpose, appropriate optimization metrics must be
defined which are capable of taking into account for the overall
execution times by the robots.

Moreover, it is also generally desirable to mitigate as
much as possible the occurrence of maneuvering or turning
operations in the planned paths since these are typically costly
in terms of both time and energy, requiring, for example,
high torques to the motors to be executed. Finally, the limited
energy capacity of the robots should also be taken into account
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since charging stations may be few and not always easily
accessible in agricultural environments.

Motivated by the reasons mentioned above and driven by the
needs of some research projects on the use of robotics in PA
settings, we devise a flexible planning strategy which, given
a set of heterogeneous mobile robots and a set of agricultural
tasks to be performed, defines the tasks that are assigned to
each robot and the respective paths to carry out the assigned
agronomic interventions. As envisioned in Supervisory Control
and Data Acquisition (SCADA) architectures, which can be
applied in PA settings as in the the H2020 PANTHEON
project, we consider that a central unit gathers data from the
field and is in charge of computing optimal routes for the
robots. In this work, firstly, we define a field graph model,
denoted as orientation graph, that accounts for turning costs
with any planting pattern, i.e., any layout of plants in the field.
Secondly, we formalize a multi-Steiner Traveling Salesman
Problem (TSP), which extends the Steiner TSP to the multi-
robot case. Turning costs as well as energy capacity constraints
are taken into consideration in the proposed formulation.
Thirdly, we provide an additional sub-optimal formulation
which is based on the observation that, in a large-scale field,
only few locations compared to the large number of possible
ones typically require agronomic interventions, as discussed
above due to the varietal assortment, e.g., [11], and/or different
soil or climate conditions, e.g., [12]. The optimization of the
turning costs is thus relaxed at these locations to reduce the
computational burden at the price of an optimality gap. This
gap has been theoretically investigated and a bound has been
formally derived. Finally, simulation results on a realistic PA
setting composed of three aerial robots show the effectiveness
of the proposed two formulations and the related behaviors.
An illustrative example of the envisioned PA setting is shown
in Figure 1 in which three aerial robots have to perform
inspection tasks on specific plants in a hazelnut orchard. Note
that the proposed formulation is not limited to inspection tasks
in PA settings, but could be applied to any setting where
optimal routes for multiple robots to perform tasks in assigned
locations of the environment must be computed. This includes,
for example, logistics applications. In addition, in PA-specific
settings, it can be adapted to carry out any agricultural task
in permanent crops, e.g., release of herbicide or pesticide,
pruning or harvesting.

This paper builds on [13] with respect to which the follow-
ing contributions are introduced:

« A novel field modeling is defined which allows to take
into account maneuvering costs with general field topol-
ogy. Moreover, three-dimensional orchards are modeled
in which also the height elevation is considered making
the formulation suitable for both aerial and ground robots.

« An extended optimization problem is formulated where
the maximum execution time and the cumulative execu-
tion times by the robots are minimized and possible lim-
ited operational capabilities of the robots over time, due to
the limited energy capacity, are taken into consideration.
Moreover, teams composed by heterogeneous robots, i.e.,
robots with different energy capacities and/or temporal
costs, are enabled.
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Fig. 1. Example of operating scenario in which three heterogeneous aerial
robots are deployed in a hazelnut orchard for targeted inspection tasks.

o A sub-optimal formulation is proposed boosting the solu-
tion computation and a formal analysis of the optimality
gap is provided.

o A greedy solution is designed and implemented to com-
pare the performance of the proposed formulations.

The remainder of the paper is organized as follows. First,
relevant works at the state of the art are discussed and
compared to the proposed approach in Section II. Then, the
multi-Steiner TSP for PA settings is formalized in Section IV
and a sub-optimal formulation to reduce the computational
load is proposed in Section V. Finally, simulation results with
three aerial vehicles are presented in Section VI.

II. RELATED WORK

A typical problem in PA settings is how to optimally per-
form complete coverage of the field by one or multiple mobile
robots, i.e., how to find the routes associated to each robot in
order to visit all the locations of the field while optimizing
a certain objective function. The field is generally modeled
as a set of parallel tracks, e.g., [33], [34], [35], [36]. In this
work, we are not interested in solving a coverage problem but
rather we aim to define optimal routes for multiple robots, with
limited energy capacity, to visit only a subset of all possible
locations, as pointed out in the Introduction. Moreover, we aim
to consider a general field topology, meaning that it can
accommodate any planting pattern, while taking into account
maneuvering costs and limited energy capacity.

In the context of route optimization, the Traveling Salesman
Problem [47] lays the foundation for performing coverage
when a single mobile agent is involved: given a set of target
locations, the TSP aims to find the shortest path that crosses
all of them, returning to the origin location. Note that the TSP
formulation and its variants presented in the following do not
fulfill the requirements of our work, since they focus on a
single robot scenario covering the entire field, instead of target
locations. As instance for TSP in PA contexts, a relevant work
can be found in [14] which considers a spraying application by
an Unmanned Aerial Vehicle (UAV). Stressed areas in the field
are first identified and, then, the shortest path for traversing
them is defined using a TSP-based solution. Similarly, the
identification of stressed areas is considered in [15] where
a TSP routing algorithm is combined with human inputs to
build a collaborative and adaptive framework. A TSP-based
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TABLE I

OVERVIEW OF PROBLEMS CONSIDERED BY STATE OF THE ART PAPERS:
TSP, STEINER TSP, MULTI-TSP, VRP, OP, GMDTSP AND
MULTI-STEINER TSP. THE WORKS IN THE TABLE ARE DESCRIBED
IN DETAIL IN SECTION I AND, FOR THE SAKE OF READABILITY,
THEY ARE INDEXED BY THEIR REFERENCE NUMBER

Related
work
[14][15]
[16][17]
[18][19]
[20][21] v
[22][23]
[24][25]
[26]
[27] v
[28][29]
[30][31] v
[32]
[33][34]
[35][36]
[37][38] v
[39][40]
[41][42]
[43][44] v

[45] v
[13][46]
Ours

GMD

TSP TSP

STSP  mTSP  VRP OP mSTSP

approach is also devised in [16] for releasing pesticides in
pests-ridden areas. Possible obstacles between the field areas
are taken into account. Pesticide application is additionally
addressed in [17] where a TSP-based formulation is designed
relying on a Model Predictive Control-based demand man-
agement to define the optimal amount of pesticide to release
in each location. Furthermore, the work in [18] combines the
TSP with the coverage path planning to survey several regions
that are spatially distributed by a UAV. Finally, path planning
for a UAV in PA wireless sensor networks is also addressed
in [19] where a heuristic model for the TSP is exploited.
Variants of the TSP have been studied to address monitoring
problems for a UAV in contexts beyond PA [20], [21], [22],
[23], [24], [25], [26]. In these problems, particular attention is
generally paid to the UAV’s energy supply, which is necessary
for the success of the mission. More in detail, in [20] the UAV
can recharge in dedicated depots and the route minimizing the
fuel consumption, while visiting all the locations and comply-
ing with energy constraints, is computed. The possibility of
recharging on Unmanned Ground Vehicles (UGVs), moving
with same or lower velocity than the UAYV, is introduced in
[21] and efficient solving algorithms are provided in [22].
A similar scenario is also considered in [23], tackling different
velocities for the aerial and ground robots. A particular model
of the field using boustrophedon cells is used in [24], where a
coverage problem using a UAV, which can land on a UGV to
refuel, is addressed. In the context of PA, a boustrophedon
cell can represent a row of a crop. Differently from the
above methods, the work in [25] considers a coverage problem
with a UAV-UGV team acting as a unique entity: the UAV
travels on the UGV and leaves only to reach locations that
are inaccessible to the UGV. Persistent monitoring is studied
instead in [26] which defines a min—max weighted latency

walk problem, where the robot is required to repeatedly carry
out a closed walk in a graph with weighted vertices.

An extension of the classical TSP is the Steiner TSP in
which only a subset of all the possible locations is required
to be visited. However, as per the TSP, also this formulation
only considers a single robot and thus it is not appropriate
for our setting. As instance of Steiner TSP, the study in [27]
generalizes the Steiner TSP to visit each target location twice
and requires that a human operator provides instructions
about the agricultural tasks before their execution. Possible
communication limitations are tackled.

A further extension of the TSP enables the inclusion of
multiple robotic platforms. In this case, a multi-TSP [48] is
formulated, which however does not foresee to only visit target
locations in the field, as we require, and does not take into
account limited energy capacity of the robots. An application
of multi-TSP to harvesting in PA settings can be found in [28]
in which travel distance and workload balancing among the
vehicles are optimized. A monitoring problem using UAVs or
UGVs is addressed in [29] where two path planning problems
to visit all the possible locations are defined for UAVs and
UGVs, respectively. In both problems, the robots in the team
are heterogeneous and each robot can visit different subsets of
nodes. Persistency in coverage problems with multiple robots
is addressed in [30], [31], [32]. In particular, in [30], multiple
UAVs are in charge of monitoring the environment while
multiple UGVs are in charge of providing recharge to the
UAVs. The authors assume that the paths of the UAVs are
assigned and the objective is to plan the routes for the UGVs
accordingly. An extension with efficient algorithms is provided
in [31]. A team composed of homogeneous UAVs only is
considered instead in [32] to realize persistent coverage of
target nodes. The goal of this work is to determine cycles for
UAVs such that the data of all target nodes is collected and
sent to a control station within a desired frequency and with
a maximum delivery time.

More commonly, when multiple mobile robots are involved
in the system, a Vehicle Routing Problem (VRP) [49] is set-up
in which also limited capacities of the robots are taken into
account compared to the multi-TSP. However, as for the multi-
TSP, all the locations of the field are visited in a VRP which is
not appropriate to our setup. Works in [33] and [34] formulate
a VRP in PA settings in which the field is modeled through
parallel tracks and each track is associated with a node in a
graph. All the nodes are required to be crossed by exactly
one vehicle, while not exceeding the vehicle capacity. Routes
are obtained minimizing the headland turning costs from the
end of one track to the start of the following one. Similar
formulations can be found in [37], where intra- and inter-row
orchard operations are possible, in [38], where the presence of
possible obstacles in the tracks is introduced, in [36], where
two kinds of turns are characterized, in [39], where VRP-based
solutions are compared to traditional routes performed by
expert human drivers, in [40], where an Evolutionary Hybrid
Neighbourhood Search algorithm is proposed to solve the
VRP, and in [35], where no turning costs are taken into account
but an adaptive large neighborhood search-based solution is
provided to find the robots’ routes in an efficient manner.
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A more general topology of the field is then considered in [41]
where the latter is modeled as a square grid graph. A VRP with
turning penalties is formulated and a minimum cost network
flow problem is defined to improve the computational times.
Persistency in coverage problems for heterogeneous UAVs,
having limited energy capacity, and UGVs with restricted
visibility is then studied in [42].

An Orienteering Problem (OP), that is a variant of the
TSP, is then formulated in [43] where a UAV is exploited
to retrieve aerial measurements near points that are poten-
tially mislabeled. The problem of maximizing the number of
points visited by the UAV while complying with the limited
capacity is addressed. A Team OP, that is a variant of the
VRP, is considered in [44] where an irrigation application
in vineyards is considered. Multiple ground robots need to
traverse a planar graph where nodes, associated with water
emitters, have rewards, and edges have costs and are associated
with possible paths between emitters. The paths maximizing
the sum of rewards for visited nodes while complying with
limited capacities of the robots are found and heuristics are
defined.

Another extension of the TSP is the Generalized multi-depot
TSP (GMDTSP) [45], in which the target locations are
partitioned into clusters and the overall shortest paths for
the salesmen to visit at least one target location for each
cluster, starting from distinct depots, are found. However, the
GMDTSP does not allow to visit only specific locations as we
require.

Differently from the papers described above, we propose
a multi-Steiner TSP extending the Steiner TSP to i) multiple
heterogeneous mobile robots and ii) allowing to visit only a
subset of all possible locations within the field, as typical
for PA settings. To summarize, as reported above, existing
formulations do not provide a viable solution accounting for
both points i) and ii), i.e., the simple TSP requires a single
robot to visit all the possible locations, the Steiner TSP
requires a single robot to visit a subset of locations, the multi
TSP requires multiple robots to visit all possible locations, the
vehicle routing requires multiple robots with limited capacity
to visit all the locations, while the GMDTSP requires multiple
robots to visit all clusters, so that at least one node for each
cluster is visited by at least one robot. It is worth mentioning
that a multi-Steiner TSP is also addressed in [46]. However,
a fundamental difference compared to our contribution is that
the work in [46] assumes that the set of nodes to serve is pre-
assigned to each robot. In contrast, we here aim to determine
the optimal set of nodes to assign to each robot as an output
of the optimization problem.

Table I summarizes the above mentioned works at the state
of the art, categorizing them according to the addressed prob-
lems, i.e., TSP, Steiner TSP, multi-TSP, VRP, OP, GMDTSP
and multi-Steiner TSP. This paper advances the state of the
art on the following aspects:

i) A comprehensive multi-Steiner TSP formulation is pro-
posed;

ii) A novel field model is devised which allows to tackle
turning costs with any field topology, i.e., orchards are
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TABLE II

MAIN NOTATIONS INTRODUCED IN THE PAPER

Variable Meaning

B Binary set {0, 1}

g=0W¢E) Field graph with vertices VV and edges &

R Set of robots

Vs Set of vertices to serve

6i+ (0;) Set of edges having vertex v; as head (tail)

Ee Set of consecutive edges

Di 3-dimensional location of the i th vertex

©p.q Angle between consecutive edges e, and eq

I Length of the edge ey

g = gf/, £) Orientation graph with vertices V and edges £

f;r (.fj) Set of edges in £ which flow into (originate
from) v; € V of the field graph

Tk, Decision variable which is 1 if robot r; passes
through edge ey, O otherwise

Si,j Decision variable which is 1 if robot r; serves
node v; € Vs, 0 otherwise

K; Energy capacity of robot r;

cje.(c;) Unit temporal cost for traversing an edge (turn-
ing) by robot r;

5. Temporal cost for serving node v; by robot r;

eje.(a;, 5?) Unit energy cost of robot 7; when traversing an
edge (turning, serving a node)

fr,j Commodity variable for robot r; through edge
€k

G = (\A), g‘f) Service graph with vertices V and edges é

0 Variables referred to the service graph G

Lp,; = (Lf, ;, f_”) Tuple associated with edge &), = (vs,v¢) € E
and robot r; comprising the overall temporal
costs to traverse the edges from vs to vt (LZ, j)
and for turning operations (Li,ﬂ

Qg h,j Decision variable for the local problem which is
1 if edge €, € & belongs to the shortest path
from vs to vt for robot 75, 0 otherwise

Ph.j Path associated with edge &, = (vs,v¢) € &
and robot r; minimizing the temporal costs from
Vs tO vt

T, j Decision variable for the sub-optimal problem
which is 1 when robot 7; traverses the edge
én = (vs,vt) € & and serves node v¢, 0O
otherwise

Up,a,j Decision variable for the sub-optimal problem
which is 1 if the consecutive edges (ép,éq) €
E. are traversed by robot r;, O otherwise

not restricted to exhibit only parallel tracks or regular
planting pattern;

iii) A sub-optimal formulation is proposed and formally
analyzed to reduce the computational burden.

III. PRELIMINARIES

We model the orchard field by means of a directed graph
G = (V,E), referred to as field graph, with set of vertices
(or nodes) V = {vg, vy,...,0,} and set of edges (or arcs)
E C{(vi,vj)|v;,0; € V,i # j}. Bach vertex v; is associated
with a possible location where an agricultural task can be
carried out and we denote its position in the field with respect
to a common frame X, by p; € R3. As instance, a location
close to each plant can be selected for tasks involving harvest-
ing, pruning or applications of herbicide, pesticide or fertilizer.
An edge (v;,v;) is associated with a possible passage, e.g.,
line-of-sight, from location v; to v; for which we make the
following assumption.
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Fig. 2. Example of field graph associated with a field. Nodes are represented
by circles and edges by arrows.

Assumption 1: The physical passages in the field, associ-
ated with edges in the field graph, do not require maneuvering
operations.

The above assumption implies that the physical passages
can be approximated as straight paths. This is only assumed
to simplify the mathematical analysis in the following. In case
non-straight curves need to be associated with the edges, the
additional information about the orientation to enter and exit
each node as well as possible turns in the path should be
integrated within the formulation.

Without loss of generality, we order the set of edges and
denote the kth one by ¢; € £. As instance, we sort the
edges in increasing order with respect to the left vertex of
the pair. An example of field graph associated with a given
field is provided in Figure 2. Nodes are represented by circles
and edges by arrows. Each edge e; = (v;, v;) is labeled with
its physical length Iy = || pi—p;ll, where | - || denotes the
Euclidean norm. The graph is defined complete if all the
possible edges (v;,v;) Yv;,v; € V with v; # v; exist, ie.,
no self-loops are allowed. We introduce the following sets:

5;"_ = {(l)j,l),') Egll)j eV}
51_ = {(l)i,l)j) Egll)j GV}

where J; is the set of edges having v; as head, while J; is
the set of edges having v; as tail. Based on these, the set &,
of all the pairs of consecutive edges in the graph is defined:

E=A{(ep,eg) e, €5 ,e€6 0, €V} CEXE.

Given a pair of consecutive edges (e,,e,) € & where
e, = (v;,0,) and e; = (v,,v;), with {v;,0,,0,} € V, the
vectors u, = p; — p, and u, = p, — p, are introduced.
Based on these, the angle ¢, , between e, and e, in the plane
containing the respective segments, is computed as follows:

T
U,y
9,4 = arccos] —2—— ). (1)
lluep Il 1latg |

The maximum value of ¢, , is equal to 7 in case the edges e,
and e, are parallel and with opposite directions, meaning that
the robot has to completely turn back along its path to traverse
e, and e,, while the minimum value is equal to 0 in case the
edges are parallel and with same directions, meaning that the

Field graph G

Orientation graph G

Fig. 3. Example of field graph (left) and respective orientation graph (right).
The sets of edges él"' s éz"' N 5;' are marked with dashed, dotted and solid lines,
respectively.

robot does not have to perform any steering to cross the edges.
We consider that a depot location is present in the field which,
without loss of generality, is associated with the vertex vg € V.
Moreover, we consider that a subset V; C V \ {vo} of vertices
must be served, i.e., agricultural tasks must be carried out only
in the respective locations of the field. This set excludes the
depot vertex vo. Note that large-scale orchards are generally
characterized by a high number of nodes, i.e., |V| > 1 with |-|
denoting the cardinality of the set (-), where only few of them
must be processed with agricultural tasks, i.e., it generally
holds [Vs| < [VI.

Given the field graph, we build an additional graph
G = (V, &), called orientation graph which models the rela-
tions between couples of edges in £. These relations are
needed to handle turning costs with generic field topologies.
In detail, each vertex #; € V is associated with an edge e
of the field graph, ie, o = e = (v;,v;) Ver € &, and
each edge &, € & is associated with consecutive edges of
the field graph, ie., & = (,,0,) exists if (e,,e;) € E..
An edge &, = (0, b,) is labeled with a tuple (., ®p.q), Where
Iy =1, +1, is the overall length of the edges e, and e, and
®p.q 1s the angle between the edges computed according to (1).
Moreover, we introduce the following sets:

EF = (e = (8,,0,) |5y € 05, & € E) 2
& = 1o =0y, 0)) |0y €6, 8 € E) 3)

where &' is the set of edges in € which eventually flow into
node v; € V of the field graph, and & is the set of edges
in £ which originate from node v; € V of the field graph.
Figure 3 reports another illustrative example of a field graph
G (left), composed of three nodes and five edges and respective
orientation graph G (right). The sets of edges &, &, & are
highlighted with dashed, dotted and solid lines, respectively.

A set R = {ry,...,r,} of m robots is available to perform
agricultural tasks in the field. As it occurs in real-world
contexts, we consider that each robot r; has a limited energy
capacity denoted by K;. Moreover, for each robot r;, the
following temporal costs are defined:

o ¢} € R: unit temporal cost for traversing an edge, i.e.,

average amount of seconds to travel one meter along an
edge;
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. c; € R: unit temporal cost for turning, i.e., average
amount of seconds needed to make a turn of one radian;
o+ ¢;; €R, Vo; € V;: temporal service cost for performing
an agricultural task on node v;. Note that the dependency
on the node v; is required as the different agricultural
tasks may require different times to be executed.
Similarly, we introduce the respective unit energy costs for
each robot, representing the consumed energy in the time
unit. These unit energy costs for traversing an edge, turning
and serving a node by robot r; are denoted by €, e;, €
respectively. We make the following assumptions.
Assumption 2: Robots are equipped with a navigation con-
troller that enables traveling through the assigned routes.
Assumption 3: All the robots depart from a depot station
vo and must return to it.
Assumption 2 can be easily satisfied by resorting to existing
navigation architectures, e.g., [9], [50], which are out of the
scope of this paper, while Assumption 3 is realistic, for
example, in typical PA settings where all the robots are usually
stored in a warehouse. Table II summarizes the main notations
of the paper.

R
j?

IV. MULTI-STEINER TSP
In this section, we define the main problem addressed in
this paper and describe the proposed formulation to solve it.

A. Problem Statement

Let B be the binary set, ie., B = {0,1}. We intro-
duce the following binary decision variables: x;; € B,
Ve, € &, rj € R, encoding the route assigned to robot rj,
which is 1 if robot r; has to traverse the edge & of the
orientation graph, 0 otherwise, and s; ; € B, Yv; € V,,r; € R,
encoding the nodes to serve by robot r; along the assigned
route, which is 1 if robot r; serves the vertex v; belonging
to V, i.e., it performs an agricultural task on node v; €
Vs, 0 otherwise. Note that the condition x;; = 1, with
ex = (0, 0,) implies that robot r; has to traverse both edges
e, € £ and ¢, € £ of the field graph. Finally, we define
the aggregate decision vectors x; = [x1; ... x5 ;1" € B!
and s; = [s1,; ... sjy,,;17 € BY! collecting the variables x; ;
Ve, € £ and si,j Yv; € Vs for robot r;, respectively.

Problem 1: Consider a set R of (possibly) heterogeneous
robots with energy capacity K;, j € R. Let G = (V, £) be the
field graph, with orientation graph G = (V, £), and V; C V be
the subset of nodes where agricultural tasks must be carried
out. We aim to optimally determine for each robot r;:

i) which agricultural tasks it has to perform, i.e., s;;,

Yo, € Vy,

ii) its route, i.e., x¢ j, Ve, € &,

while complying with energy capacity constraints. The opti-
mality is intended to minimize the maximum temporal cost
as well as the cumulative temporal costs by all the robots,
comprising costs to traverse the edges, to turn and to perform
agricultural tasks.
As discussed in the following, the optimality notion in
Problem 1 provides a good compromise between balancing
the workload among the robots, within the energy constraints,
and minimizing the overall execution time.
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B. Problem Formulation

We are now ready to present the proposed multi-Steiner
TSP formulation for solving Problem 1. Let us introduce the
following aggregate temporal costs for each robot r;:

Co(xj) = D> ¢S I xuj 4)
Ekeé'

Citx) = D chppg-xij )
& =(0,.0,)€€

Ci(sj) = D¢l sij (6)
Ul'EVA

where C;? in (4) represents the overall temporal cost of robot r;
to traverse the edges, C; in (5) is the overall temporal cost of
robot r; to turn, and C‘; in (6) is the overall service time for
agricultural tasks performed by robot r;. Note that the turning
costs are easily computed in (5) thanks to the orientation graph
model which allows to preserve the information of which
consecutive edges are crossed and the respective turn to transit
from one to the next. We define the overall temporal cost of
robot j as follows

Cj(xj,sj):aCj(xj)—f-ﬁC;(xj)—}-yC‘;(sj) (7)

with a, B,y € R" positive weights, and denote the maximum
cost among the robots by

Cinax = max C(x;, s;). (8)
rieR

As common in multi-objective optimization problems [51]
with weighted sum, the weights a, £,y in (7) influence the
priority assigned in minimizing the temporal cost of traversing
edges, turning, and serving nodes in the solution, respectively,
i.e., the higher a weight compared to the others, the more the
optimal solution will aim to minimize the respective cost.

At this point, we can formally state our novel multi-Steiner
TSP formulation which is expressed as an Integer Linear
Programming (ILP) problem:

mln Cmax +Z CJ(XJ, SJ) (93)
Xj>Sj rieR
Vrj S
S.t. Z Si,j = 1, VDi (= Vs (9b)
r;eR
Z Xpj = Sij, Yo €V, Vrj € R (9¢)
eped
Z Xg,j = Si,j, Y0 €V, Vrj€R (9d)
e ey
Z Y Z Xg,j, Yvi €V,Vrj € R (9e)
e,est e,ecr
> fri=D foi=sij Vo€V, VrjeR (9f)
eyl g est
Z I = Z Ja.j» Yoi € V\{Vs},0; # v, Vr; €R
Zped; egest
%)

eje-Cj(xj)—i—e;-C;(xj) +6;Cj(sj) <Kj;, VrjeR (%)
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Si,j € B, Vov; €V, Vrj eER (91)
Xk,j € B, Ve, e g, Vl”j eR 9
0< fo; <Vl xij, Vex €&, Vrj € R. (9k)

The objective, according to (9a), is to determine the decision
vectors x;,s;, Yr;j € 'R while minimizing the maximum
temporal cost Cpmax and the cumulative weighted temporal
cost of the robotic platforms, i.e., ereR Cj(xj,s;). In this
way, we aim to minimize the total time to perform all the
agricultural tasks, while avoiding unnecessary motions by all
the robots. Indeed, in the case only Cy,y is considered in the
objective function, the other robots r; € R are allowed to
arbitrarily move within the constraints as long as C; < Cpax
even if these motions are not aimed to serve nodes. On the
other hand, if only the cumulative temporal cost ereR C;is
considered in the objective function, a solution may allocate
most of the work to one robot without balancing the load
and leading to a higher Cp,.. Note that practical benefits
result from encouraging load-balancing. In particular, the more
balanced the load, the more uniform the robots’ wear and tear
in the long run and, therefore, the longer their lifetime. More-
over, considering the typical presence of uncertainties during
execution in terms of times and energy, such as in [52], work
distribution provides increased robustness if these measures
are underestimated at allocation time. This motivates why a
combined objective function is considered. However, in case
one only wants to optimize the time efficiency, the proposed
formulation can be adapted to the purpose in a straightforward
manner by excluding the term zrj «r Cj(xj,s;) in the cost
function in (9a).

As far as the constraints are concerned, the following are

defined:

« Equation (9b) implies that each node v; € Vs is served
by exactly one robot. However, this constraint does not
prevent other robots or the same serving robot from
transiting on node v; multiple times if needed.

« Equation (9c) states that, in order for a robot to serve a
node v; € V; and thus perform agricultural tasks on it, the
node must be entered by the robot, i.e., if 5; ; = 1 then
the robot v; must traverse an edge &, = (D, ;) € ff
which eventually enters the node.

« Equation (9d) implies that, if a robot r; has to serve
at least one node, i.e., it exists s;; = 1 for v; € Vi,
then the robot has to exit the depot vg. In this way, if a
robot is not supposed to carry out any agricultural tasks,
no unnecessary motion is performed.

« Equation (9e) states that each time a robot r; enters a
node v;, i.e., it exists x, ; = 1 for &, € ff, the same
robot must also exit it, i.e. it must hold x,; = 1 for
e, ¢ .

o Equations (9f)-(9g) refer to the single commodity flow
formulation [53] which allows avoiding the generation of
disjoint loops in the robots’ routes. In detail, each robot
virtually transports commodities through edges: a com-
modity is released when the robot serves a node, while
no commodity change occurs when the robot only transits
on a node. Equation (9f) imposes the flow adaptation if a
node v; € Vg, which can be potentially served, is traversed

by robot r;: if the node is served, i.e., if it holds s; ; =1,
then the amount of commodities is reduced by one unit,
otherwise no commodities are released. Equation (9g)
imposes the flow conservation on transit nodes, i.e., nodes
that should not be served. When these nodes are transited,
the number of commodities must be unaffected. With this
formulation, even if a node is served by a certain robot,
the remaining ones are still allowed to pass through it,
without modifying their flow.

o Equation (9h) bounds the overall energy consumption of
a robot r; to its capacity K;. The energy costs for edge
traversing, turning and serving operations are taken into
account.

« Equations (91)-(9j) impose the binary nature of the deci-
sion variables x ;, s; ; Vi, j, k;

o Equation (9k) regulates the commodity flow variables
S, j» imposing that, for each edge &, and for each robot ;,
the amount of commodities f; ; passing through the edge
i) does not exceed the number of nodes to be visited |V|
if the edge is traversed, and ii) is equal to O otherwise.
This guarantees that an edge is present in the robot’s route
if a commodity is passed through this edge by the same
robot.

Notably, the proposed formulation allows to easily specify
different locations where agricultural tasks should be carried
out by a heterogeneous team of robots, while minimizing
the maximum and the cumulative temporal costs. Moreover,
the formulation is completely flexible in regards to the field
topology, allowing turning costs to be included in any case.

Concerning the problem complexity, it can be proven that
the formulated multi-Steiner TSP is NP-hard, i.e., it cannot be
solved by a polynomial algorithm if P # NP. More specifically,
by recalling that the TSP is NP-hard [54] and is a special
case of the single Steiner TSP in which all the nodes must
be served, i.e., V; =V, the NP-hardness of the single Steiner
TSP follows [54]. This NP-hardness is thus inherited also by
the multiple robots case addressed in this paper [46]. Notably,
heuristics like in [35] and [40] could be designed to cope
with the NP-hardness of the problem and make the solution
computation more affordable. However, this is beyond the
scope of this paper, which focuses on the problem formulation
aspects to perform agricultural tasks by multiple robots in
realistic PA settings, rather than the algorithmic aspects for
efficiently solving the problem. Nevertheless, in the following
we propose a sub-optimal formulation which reduces the
problem dimensionality thus mitigating its computational load,
as validated in Section VL.

V. SUB-OPTIMAL FORMULATION

In order to properly account for the turning costs, the
entire orientation graph must be considered as in (9a) and
all the maneuvering costs associated with turns must be
counted. However, in case the number of agricultural tasks
to perform is significantly lower than the number of possible
field locations, i.e., |Vs| < [|V|, as typical for PA settings,
a sub-optimal formulation for addressing Problem 1 which
relaxes the turning costs at the service nodes only may be
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convenient. Algorithm 1 summarizes the two-phase procedure
to set-up and solve the sub-optimal problem starting from
the orientation graph G. The basic idea is to decompose
the original formulation into multiple polynomial problems
which require overall substantially less computational time
to be solved. This enables involving a reduced number of
variables in the final optimization problem at the cost of
sub-optimality, for which we characterize a bound in the
following.

Algorithm 1 Procedure to Solve Sub-Optimal Formulation

Require Service nodes V, Orientation graph G, coefficients
ck c; w1thk—e t, Yo; GVA,G withk =e,t,s Vr; € R
Phase 1 - Build service graph g

1V <V, Uf{oo)

2: é <~

3: for each vy, v, € v do

4: én = (vg, vy)

5 for each r; € R do

6: Ly.j < local optimum(G, vy, v;, c’J‘-) [eq. (10)]
7: end for

8. & « £ U {é,with label L}

9: end for

Phase 2 - Find sub-optimal solution in Q
1: £, j < global sub-optimum(G, ¢, ¢} ;, €%) [eq. (15)]

As first step, we build an additional graph G = (V, &)
(Phase 1 of Algorithm 1), called service graph, which embeds
the information of minimum cost paths between service nodes.
The set of vertices V only comprises the nodes to serve Vs
and the depot vy, i.e., V =V, U{oo} (line 1.1). Concerning
the edges, a complete graph is built, i.e., £ =V x V (lines
1.2-1.9), in which each edge é, = (v, v;) € & represents the
paths with minimum cost from the start node v, to the target
one v, for each robot. In detail, a m-dimensional cost vector
ﬁh = [ih I Lh m] 1s associated with edge ¢, whose jth
component is a tuple Ly o= (Lh o L;l ;) (line 1.6), where
L _j 1s the overall temporal cost for robot r; to traverse
the edges from o, to v;, while Lh j is the overall temporal
cost for robot r; for turning operations at the transit nodes.
Additionally, the sets 3;’ ,3; are defined for each node v; € f)
which, similarly to the sets 5;’ , 0; of the field graph, are
composed of the edges in £ entering and exiting vertex v;,
respectively. Furthermore, the set & of consecutive edges in
£ is defined.

To optimally define the cost vector L, for each edge
ép = (vg,v;) € &, we resort to the orientation graph G. Let
us introduce the decision variable ay j ; which is 1 if the edge
&, € £ belongs to the path from v, to v, with minimum cost for
robot r;, O otherwise, and the respective collective vector ay, ;
obtained by considering all &, € €. The following optimization
problem is solved Vé, = (vs,v,) € g, rj € R

min a C¢(ay, ;) + B C'(an,;) (10a)

an,j
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Field graph G

Service graph G

Fig. 4. Example of field graph (left) and respective service graph (right).
Nodes v; and vs, highlighted in gray, are required to be visited. The shortest
paths between pairs of nodes v and v5 and the depot node v are highlighted
with colored arrows in the field graph.

1 ifo, =o4

zal’sh’f_zaq’h’f: ifo,=0v, Vo, eV
e et e €& 0 otherwise,
(10b)
axnj € B, Ve, e £ (10c)

where o and f are selected as in (9a). Based on the solu-
tion ay,; to the above problem, it holds L Ce(ah i)
L;l J= C’ (an, ;). The optimization problem i 1n (15) is formu—
lated as a shortest path problem [55] which can be thus solved
through polynomial algorithms [55]. More specifically, accord-
ing to the objective function (10a), it minimizes the overall
temporal cost for robot r; to traverse edges and to execute the
respective turnings from og to v,. As far as the constraints are
concerned, equation (10b) regulates the value of the decision
variable ay j ; imposing that exactly one edge is selected to
exit the start node v, and one is selected to enter the target node
vy, as well as that all the other edges comprising the optimal
path are selected. Finally, equation (10c) defines the binary
nature of the decision variables ay j, ;.

We denote the path in the field graph G associated with
the solution a; ; by Pp; = {e,[ll’]j, .. eh J} where e,[l j € &
denotes the ith edge of the path 7?;,, ; with cardinality .
To transition from the orientation graph to the field graph and
thus define the path P, ;, we consider, as in Section IV, that,
if arp; =1, with & = (9, 0,), then both edges ¢, € £ and
e, € & belong to the path. Note that different optimal paths
from v, to v, can be found for the different robots r; € R
due to their heterogeneity, i.e., to their different unit costs for
turning and for traversing an edge.

Remark 1: In the case of homogeneous robots, the costs
cj., c; are coincident for each robot r; € R, therefore a unique
path for all the robots is found that connects v, and v,. This
implies that problem (10) can be solved only once for each
edge ¢, € € and a single label L, is generated.

Figure 4 depicts an example of service graph (on the right)
obtained from a field graph (on the left). In the example,
homogeneous robots are assumed and two nodes (highlighted
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in gray) are required to be visited, namely V; = {01, vs}. The
service graph is composed of the set of nodes V= {vo, v1, 05}
and the set of edges &= {é1, ..., &} obtained by the shortest
paths connecting the respective origin and destination nodes.
Colored arrows in the figure are used to denote the shortest
paths used in the service graph. For example, edges é; =
(vo,v1) and &, = (vy,vp) correspond to the shortest paths
P1,j = {e1} and P, ; = {e;} (blue arrows) from nodes vy to
vy and vy to vo, respectively, for a generic robot r;, while edges
é3 = (v1, vs) and &4 = (vs, v1) correspond to the shortest paths
Ps3,j = ez, e3, e4} and Py ; = {e4, e3, e2} (green arrows) from
nodes v; to vs and vs to v, respectively.

At this point, we are ready to exploit the service graph
to define a sub-optimal solution to (9a) (Phase 2 of Algo-
rithm 1). Let us introduce the binary decision variable % ;
ve, € &, rj € R which is 1 when robot r; traverses the edge
én = (vg,v;) and serves node v,, and is O otherwise, and the
variable $,,; Y(,,2,) € &, rj € R which is 1 if the con-
secutive edges (é,, é,) are traversed by robot r;, 0 otherwise.
Note that no service is made if v, = vg. Moreover, we define
the angle between two consecutive edges of the service graph
é,,¢, € & traversed by robot r; as follows

Y

meaning that it represents the angle between the last edge

e'”ly of the path Pp,; associated with &, and the first edge

(

(651];) of the path P, ; associated with &,. Note that the angle
?p.q,j depends on the robot r; since, as mentioned above,
different paths P, ; may be associated with different robots r;.

Similarly to egs. (4)-(6), the following costs are introduced

Pp.g.j = Plel,, [,

¢ = Z I:i,j Rk, (12)
ékEE
é; = Z E,Q,j Xk
A 1 Al ¢ Eé
C; = Cj +C} with érx_k N )
= Cji Ppa.j Ypa.j
(@p.eq)€€,
=3 S0, 9

where C‘j in (12) is the overall temporal cost of robot r; to
traverse the edges, CA'; in (13) is the one for turning made
up of the component C;’, related to transit nodes, and the
component C;?, related to nodes to serve, and Cj in (14) is
the overall service time of robot r;. Moreover, we introduce
the following aggregate cost for robot r;

Ci=alCi+pC;+yC

with a, f and y as in (9a), whose maximum value is
denoted by

Cinax = max C;.
ri€R
The following optimization problem is formulated on the
basis of the service graph G (Phase 2 in Algorithm 1, line 2.1):

min Conax + Z éj (15a)
Ak, js Yp.q,i rieR
vk, j.p.q

st D> xp =1, Wy eV, (15b)
ri€R ¢,ebt
DD k=1 VoieV (15¢)
rieR ¢ ed;
PIDIEINED I IE WA IR (15d)
ri€R ¢ €0, ri€R ¢, e8"
> &y =ISI-1, VSCV.S#D (15e)
ék S é :
ék = (DS’DI)’
v5,0; €S
FpjF R i <1494 Y@y e, €l (15f)
eCl+eiCi+eC <K, VrjeR (159)
M eB, Ve el, VrieR (15h)
$pai €B, Y(@,.e,)€é,, VrieR. (15i)

By analogy with the formulation in Section IV, we here aim

to minimize in (15a) the maximum weighted temporal cost
Crmax and the cumulative weighted temporal costs of all the
robotic platforms, resorting to the service graph. The following
constraints are defined:

« Equations (15b)-(15c) require that each node to serve v; €
V; is entered and exited by exactly one robot.

« Equation (15d) states that each time a robot enters a node
v; € f), the robot must also exit the same node.

o Equation (15e¢) allows avoiding sub-tours [56]. More
specifically, for each non-empty subset S of V, the
inequality in (15e) forces the selection of a number of
edges with vertices in S lower than |S], thus preventing
the creation of sub-tours of length |S]|.

o Equation (15f) determines the behavior of the variables
Vp.a.j Y€y, ey) € c‘:'C,Vrj € R needed for the turning
costs at the service nodes CA'; in (13). More specifically,
if a robot r; traverses the paths associated with the
consecutive edges &, and &,, ie., £,; =£%,; =1, the
inequality forces the variable $, , ; to be greater than or
equal to 1. On the contrary, if the consecutive edges are
not both assigned to robot r;, the variable y,, ; can be
equal to 0. Note that, as we minimize the turning costs,
these variables will be equal to O in the latter case.

o Equation (15g), similar to (9h), bounds the overall energy
consumption of robot r; to its capacity K.

o Equations (15h)-(15i) impose the binary nature of the
variables %; ; and 9,4.;, Vi, j, P, q.

Based on the solution to (15), the nodes that each robot r; has
to serve are determined by the variables %, ;, ie., s;; =1 if
edge ¢, terminates in v;, i.e., &, = (vy, v;), with v; # vy and
it is assigned to robot rj, ie., £, ; = 1, 5;; = 0 otherwise.
Concerning the route assigned to each robot r;, it is determined
by the shortest paths associated with the variables %5, ; = 1,
ie, xp; = 1 with ¢ € £if %; = 1 and ay; = 1,
xk,j = 0 otherwise.

Concerning the problem complexity, it inherits the
NP-hardness of the orientation graph-based formulation
in (9a), where the P problems for finding the shortest paths
in (10) are negligible if P # NP. However, the number
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Fig. 5. Example of optimal (in red) and sub-optimal (in blue) solutions. The
angles at the service nodes are highlighted by dotted lines.

of variables which are involved in the service graph-based
formulation in (15) is significantly reduced compared to the
previous one since it focuses only on the nodes to serve,
for which it generally holds |V;| < |V|. The sub-optimality
of the solution arises from the fact that, when solving the
local problem (10) for each edge (vy, v;), the turning costs to
exit node v, are not considered, i.e., the turning costs to the
subsequent part of the path are not taken into account. This
is mitigated by the turning costs CA'; in (13) which, however,
do not ensure that the optimal path in the orientation graph is
obtained.

Figure 5 shows the sub-optimal and optimal solutions for
the example scenario in Figure 4. The considered sub-optimal
and optimal solutions correspond to cycles {ey, ez, e3, es, €7}
(highlighted with red arrows) and {ej, es, eg, €4, €7} (high-
lighted with blue arrows), respectively. In the figure, the dotted
lines, colored in red and blue, represent the turning angles
at service nodes for the optimal and sub-optimal solutions,
respectively. We can notice that the turning angle at node
vy is higher (37 /4) for the sub-optimal solution compared
to the optimal one (x/2), while it is the same (37 /4) at
node vs for both solutions. This is due to the fact that
the sub-optimal method selects the shortest paths ignoring
the turning costs at the service nodes, while the optimal
solution, which in general does not consist of solely shortest
paths, compromises between minimizing the path cost and the
turning angle at the service nodes. This is the case for the
optimal solution depicted in the figure, which, from node v; to
vs follows a different, slightly longer, path than the shortest
one (chosen by the sub-optimal solution in blue), but com-
promises with a much smaller turning angle at node v, thus
minimizing the overall cycle cost. We now formally provide
a bound on the optimality gap with respect to the formulation
in (9a).

Theorem 1: Consider the multi-Steiner TSP formulation
based on the orientation graph in (9a) with optimal cost C* and
the formulation based on the service graph in (15) with optimal
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cost C*, then the relative optimality gap can be bounded as
follows

é* —C* —t
<2z pe ,
cr act+yc’

(16)

with ¢ = max, er c; the maximum turning unit cost,
= min, er ¢} the minimum edge traversing unit cost, and
= min, eRr eV, €}, j the minimum service cost.

Proof: A bound on the relative optimality gap can
be obtained by maximizing the difference at numerator
C=C"—cC *, while minimizing the denominator term C*.
Let us define the following variables related to the solution
of (9a)

ge
QS

E*=aCh +a > C
ri€R

Tr=BCh+B D CF
r;eR

= BB Sl
ri€R

S =y Caxt7 D CF
ri€R

where C{)* is the respective component in C¥, ., and the
equivalent variables £*, T;*, T*, $* for the solution of (15).

The costs C* and C* can be rewritten as
C*ZE*‘FTZ*‘FTS*"‘S*, C*ZEA‘*—FTI*—F]/\?—FS*

Since the service based-formulation in (15) does not globally
optimize for the turning costs f‘s* at the nodes to serve,
we consider its worst case scenario to characterize the bound
on C. In particular, the worst case arises when the angle ¢, , ;
between subsequent paths P, ; and P, ; (obtained according
to (10)) is always maximum, ie., §,4; = 7w V(é,,8;) €
éc,rj € R, and the maximum cycle serves all the nodes
v; € Vy with maximum unit turning cost ¢’. It follows

T <2zBe |Vl

Moreover, by construction it holds that the orientation-based
formulation achieves lower or equal performance than the
service-based one, i.e., C* < C*, implying that

E*+ T+ T+ S <2zpc' V| +E*+T*+85" (17)

At this point, we can observe that, when ¢, , ; =7 Vp,q, j,
no optimization is made by the service-based formulation on
the turning costs at the service nodes. This implies that the
latter formulation will only minimize the remaining terms in
the cost function and will achieve their minimum possible
values, i.e., by construction the following inequality is verified

EX 4T+ 8 > E*4+T"+ 8" (18)
Considering (18) in (17), it follows 7 < 2z B¢ |V;|. The
difference C is thus maximized when T =0, i.e., no turning
costs on the service nodes are present in the orientation graph-
based solution, leading to

C <2z B¢ V. (19)
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Fig. 6. Aerial vehicles involved in the simulation setup. From the left:
Hummingbird, Firefly, Neoll.

As far as the minimization of C* is concerned, we observe that
its lower bound is obtained when there are no turning costs at
the service nodes, i.e., 7, = 0, and the robot with lowest edge
traversing and service costs is chosen for each service node,
leading to C* > (ac® + y c*)|Vs|. The relative optimality gap
is thus bounded as in (16), completing the proof. [ ]

Remark 2: The above theorem states that the bound on the
relative optimality gap depends on the weighted ratio between
the maximum unit turning cost and the minimum unit cost
for traversing an edge and cost for servicing a node. This
implies that the lower the relative cost of turning operations,
the more convenient the service graph. Moreover, the bound
on the absolute optimality gap in (19) shows that the lower the
number of service nodes, |Vs|, the lower the optimality loss
using the sub-optimal formulation, proving that the latter is
particularly convenient when |)| > |V;|. Note that, as shown
in the numerical results in Section VI, the derived bound
is rather conservative and comparable results in terms of
optimality are generally achieved by the orientation-based and
the service-based formulations.

VI. SIMULATION RESULTS

In this section, we provide simulation results to prove the
effectiveness of the proposed formulations.

A. Setup Description

Inspired by the needs of employing robotics in PA set-
tings, we considered a simulated orchard, shown in Figure 1,
in which three aerial robots (m = 3) perform targeted
inspection tasks. Such inspections can be aimed at monitoring
any relevant field parameters, such as health status, soil
condition and yield [57]. The following heterogeneous robots,
shown in Figure 6, were deployed: 1) AscTec Hummingbird
(Figure 6-left), with smallest size, 2) AscTec Firefly (Figure 6-
middle), with medium size, 3) Neoll (Figure 6-right), with
largest size. Each aerial robot is equipped with the same
camera mounted on the bottom part of the drone by means
of a rotational joint.

Each inspection task requires the assigned robot to navigate
through the plants to reach the target one and to hover for
a certain amount of time in correspondence of that plant
to collect relevant agronomic data. In particular, during the
hovering, a scan of the plant, from the bottom to its top
part, is made through the camera sensor. Such a scan could
be aimed, for example, to detect pest infestations on the

TABLE III
TEMPORAL (c§, c§ ¢i; Yui € Vy) AND ENERGY (¢, e;, €;) Cost
COEFFICIENTS AS WELL AS ENERGY CAPACITY (K ;) OF THE THREE
AERIAL ROBOTS HUMMINGBIRD, FIREFLY AND NEO1 1

ct ct cs g€ et es K

Robot | o | (smad) | 191 | 1ty | ussicony | pusicany | @)
Humm. | 048 | 009 | 30 | 0.05 0.005 35 100
Firef. | 059 | 0.12 | 30 | 0.01 0.001 21 100

Neoll | 0.89 | 044 | 30 | 0.001 | 0.0001 5 100

Fig. 7. Representation of an inspection task. The respective portion of the
field graph is also shown in gray.

plants, which generally require inspections at heights between
1.5 and 3 meters [58]. Note that the proposed formulations
can be adapted to perform any agricultural task in permanent
crops, and the inspection task considered hereby is only a
representative example for demonstration purposes.

Numerical values for the robots’ cost coefficients cj., cl, ¢t

Jr g
e;, E;, e‘;, Kj, j =1,2,3 Yo; € V;, defined in Section IV,
are reported in Table III. Costs ¢;; were set equal for all
service nodes v; € V; and for all robots r; € R as we
assume that each plant must be scanned for the same amount
of time. Temporal unit costs cj and c3 are expressed in [s/m]
and [s/rad], respectively, while temporal service costs ¢; ; are
expressed in [s]. Energy unit costs €, E; and €} are all
expressed in [1/s] and represent the percentage of consumed
energy in the time unit. We assume that every robot is fully
charged (K; = 100%, j = 1,2, 3). The Hummingbird is the
smallest and fastest robot among the considered ones, leading
to the highest efficiency in terms of temporal unit costs (lowest
values for ¢ and c;), but the lowest energetic efficiency
(highest values for e;? ) e}, ej). In contrast, Neol1 is the biggest
and slowest robot, but relies on the most powerful battery
which provides it with the greatest autonomy. Intermediate
cost coefficients are considered for the Firefly robot. Weights
o =1, =40, y =1 were used for the objective functions
to prioritize the minimization of the turning costs.
Concerning the field graph, we considered orchards with
N x N planting patterns, resulting in square grid topology,
in which the trees are distant 5 meters from one another and
with variable altitude. The location in the middle between four
trees is associated with a node v; € V and the inspection is
made on the top left tree. An example is reported in Figure 7
where the robot’s location is associated with a node and it
is shown while performing an inspection task. The figure
also shows the respective portion of the field graph in gray.
Passages between these locations are associated with edges
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Fig. 8.
the depot node is highlighted in the middle figure for the sake of readability.

e; € €. The depot node is labeled as 0 and is at zero altitude.
From there, the field slopes up to reach a plain surface at
3 meters of altitude, corresponding to the maximum altitude
of the orchard, and then slopes down again to zero altitude.
The altitude /; of node vy in row i and column j of the square
grid is given by:

3. .
LN/3J(J_1)’ J=LN/3]
3, IN/3] <j =N —LN/3]
hk = 3
Q JE e —
LN/3]

x (j=N+1IN/3]), j>N-—LN/3].

Figure 8 shows an example of the simulated hazelnut
orchard (left) and the respective field graph with N = 14
(middle). The same topology in a two dimensional per-
spective from above is also shown (right). Without loss
of generality, this perspective will be used to show the
robots’ routes. Concerning the selection of the plants to
inspect, different subsets V; of )V with varying size have been
considered as detailed in the following. We considered the
case in which |Vs| <« |V] is verified, which is typical for
PA applications.

All software components were developed in MATLAB
interfaced with IBM CPLEX 12.10 solver and with ROS
middleware. The latter was then interfaced with GAZEBO
simulator to reproduce realistic aerial vehicles motion as well
as the orchard. In accordance with the vision of PANTHEON
project aiming at building an agricultural equivalent of an
industrial SCADA system, a central unit was in charge of
computing the solutions of the optimization problems. The
input for both optimal and sub-optimal formulations consists
of: i) the field graph G, modeling the topology of the orchard,
ii) the set of vertices Vs, where inspection tasks are required,
and iii) the temporal and energy coefficients for each robot.
The output of each optimization problem consists of: i) the
sequence of edges to traverse for each robot, and ii) the set
of locations to inspect. These sequences are sent to a ROS
controller node [59] generating the motion control commands
for the simulated aerial vehicles. A workstation with processor
Intel Xeon E5-2650L v4 with 35 MB cache and 1.70 GHz was
used for computation.
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Representation of the orchard in GAZEBO simulator (left) and the respective field graph in 3D (middle) and in 2D from the top view (right). Only

B. Comparative Results

We carried out an extensive simulation campaign composed
of several tests involving fields of various dimensions and dif-
ferent numbers of nodes to serve. Moreover, a greedy solution
and two optimization-based solutions to solve the multi-Steiner
TSP problem were implemented for a comparative analysis.

The greedy algorithm is summarized in Algorithm 2.
Briefly, the basic idea is to iteratively assign the service nodes
to the robots that are the most efficient in reaching and serving
them, while ensuring to travel back to the depot, until all
service nodes are assigned or the energy of the robots is
exhausted. To build the greedy solution, the minimum cost
paths between service nodes, contained in the service graph G,
are exploited. The first phase of the algorithm consists in
initializing the sets V, and Qj, Vrj € R (lines 2.1-2.2),
comprising the unassigned service nodes and the edges in the
route of robot 7, as well as the residual energy K ;j (line 2.3) of
each robot r;. A flag variable denoting if any feasible solution
is found is also initialized (line 2.4). The second phase of the
algorithm focuses on assigning the service nodes to the robots
and building their routes Q;,Vr; € R. This is achieved in
an iterative manner (line 2.1) until all nodes are assigned,
i, Vy = @, or no node can be assigned due to a lack of
energy. In the latter case, the algorithm terminates and returns
unfeasible solution. At each iteration, the feasible solution flag
is set to false (line 2.2) and, for all the couples composed
of a remaining node to visit v, € Y, and a robot ri € R,
the energetic costs to reach the node to visit v, and then to
return to the depot vy are computed (lines 2.4-2.6). If the robot
residual energy is sufficient to cover such costs, the solution
feasibility is set (line 2.8) and the cost Cj ; for robot j to
serve v, is stored. At this point, the couple composed of
robot r; and node to serve v, with minimum cost is assigned
and the solution is updated accordingly (lines 2.12-2.15).
Finally, all the robots are required to travel back to the depot
(lines 3.1-3.5).

As far as the optimization-based solutions are concerned,
as in [46], these consist in pre-assigning the subset of nodes to
visit to each robot. In particular, they are based on the follow-
ing steps: i) partition of the set of vertices to visit Vs in m sets,
which differ for the two baselines, ii) assignment of each of the
m subsets to a robot and iii) solution of a single-Steiner TSP
problem for each robot. If all single-Steiner TSP problems are
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Algorithm 2 Greedy Algorithm

Require: Service graph G , Service nodes V, Set of robots R,
coefficients a, 8, 7, c’J‘-, ¢ ; withk = e, 1, Yo; €V, ejf with
k=e,t,sVrjeR
Phase 1 - Initialization

1: f)s <~ Vs

2: Qj <~ @, VI"J'ER

3: kj <—Kj, Vl”j eR

4: feasible solution < true

Phase 2 - Compute routes Qj, VR, e R
1: while V, # ¢ A feasible solution do
2 feasible solution < false

3. for each v, € Vs, r; € R do

4 v; < get last node(Q;)

5: E) j < energy between nodes(r;, v;, v)
6

7

8

9

Ey,;j < energy between nodes(r;, vp, o)
if £+ Eo; < Kj do
feasible solution <« frue
: Cp,j < cost between nodes(r;, vy, vg)
10: end if
end for
1 vy, rje < argmin(Cy ;)
12:  if feasible solution then

13: (Qj-, Igj*) <— update robot(rj«, v+, Eps j+)
14: Vs < Vi \ {on}
15:  end if

16: end while

Phase 3 - Return to depot

1. if V; = ¢ then

2:  for eachr; € R do

3: Q; < add edge to node(vo)
end for

4: end if

feasible, a feasible solution for the multi-Steiner TSP problem
is built. Two partitioning algorithms were considered for the
two methods: i) k-means [60] and ii) random.

From here on, the described baseline approaches with
k-means and random partitioning algorithms will be referred
to as k-means and random methods, respectively, while we
will refer to the optimization problems in (9a) and in (15) as
optimal and sub-optimal methods, respectively. We selected
these methods for comparison as k-means naturally tries to
group together points of interest that are spatially close to each
other, while random is a basic baseline which is necessarily
required to be overcome by the proposed approaches.

Plots in Figure 9 summarize the results of the simulation
campaign. We considered field sizes ranging from 10 x 10 to
14 x 14, and for each size we considered an increasing percent-
age of trees to be inspected, ranging from 2% to 5%, of the
total number. In case the percentage does not lead to an integer
value, we round up to the closest integer. For all the methods,
each simulation case was executed 10 times, considering a
different random selection of trees to be inspected at each
execution. For example, in the 14 x 14 field, an inspection of

3% of trees means that 6 trees (|V;| = 6) are randomly selected
from the field 10 times, defining 10 different scenarios; the
same 10 scenarios were used for each of the five methods.
In all the plots the results related to optimal, sub-optimal,
greedy, k-means and random methods are represented in light
blue, green, red, yellow and purple, respectively. Average
values are given by the heights of the bars, while black lines
represent standard deviations. In the figure, the top left plot
shows the average temporal costs C*, Ccr, C;j, C; and C;
along with the standard deviation achieved by the optimal, sub-
optimal, greedy, k-means and random methods, respectively.
The top right plot reports the average relative optimality gaps
of the temporal costs evaluated for the non-optimal methods
(i.e., sub-optimal, greedy, k-means and random) with respect
to the optimal solution. We denote with (C* — C*)/C*,
(C;—C*)/C*, (C;—=C")/C*, (C;—C™)/C*, the relative opti-
mality gap for the sub-optimal, greedy, k-means and random
methods, respectively. The bottom left plot depicts the number
of times the proposed methods failed to find a solution for
the simulation cases. Only k-means and random are reported
since the others always succeed in finding feasible solutions.
The bottom right plot shows the average computational times
A, A, Ay, Ay and A, along with the standard deviations
for the optimal, sub-optimal, greedy, k-means and random
methods, respectively. In particular, the top left plot shows
that, as expected, the average temporal cost for all methods
increases with the field size and percentage of plants to inspect.
Moreover, the plot highlights that similar average temporal
costs are achieved by the sub-optimal method compared to
the optimal one, while higher costs are obtained when using
the remaining sub-optimal approaches. This trend is particu-
larly evident in the top right plot where the average relative
optimality gap is shown to be stable across different field
sizes and nodes to inspect with the sub-optimal method (in
green) and always lower than 4.83%. In particular, the sub-
optimal method achieved the lowest optimality gap compared
to the other methods. These results confirm the effectiveness
of the proposed sub-optimal formulation against the baseline
solutions. Moreover, by comparing the actual relative gap
of the sub-optimal solution with the relative upperbound
(362.81%), it can be also noticed that the bound is largely
satisfied, confirming its conservativeness. This is motivated
by the fact that the upperbound is obtained considering an
unrealistic scenario in which the optimal solution i) only
deploys the robot with lowest edge traversing and service costs
to inspect all nodes in V, ii) does not form a cycle, iii) involves
zero turning costs at the service nodes and iv) has each path
from an inspected node to the subsequent one composed of
a single, minimum cost, edge. As far as the greedy method
is concerned, relative optimality gap lower than 30.06% is
obtained, but the numerical analysis indicates that this gap
increases as the field size and nodes to inspect increase.
This is motivated by the fact that the higher the number of
service nodes to be assigned to the robots, the higher the
chances that the greedy approach builds an inefficient solution.
High optimality gaps are obtained instead in all cases by
k-means and random methods. Note that the low optimality
performance of these methods was expected, as they are not



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
4000 120
[ Optimal - C* — [ Sub-optimal - (C* — C*)/C*
[ Sub-optimal - C* 100 I Greedy - (C; - C')/C* )
B Crecdy - C & [ ]K-means - (C; —C")/C
- 3000 - [ ]K-means - gC,: 13 I Random - (CF — C*)/C
] I Random - C; Z 80
z i
o g
= 2000 é 60
g o
g £
= 5]
1000 <
& 90
2345 2345 2345 2345 2345 2 3 45 2 3 45 2 3 45 2 3 45 2 3 45
10 x 10 11 x 11 12 x 12 13 x 13 14 x 14 10 x 10 11 x 11 12 x 12 13 x 13 14 x 14
%|Vs|, ¥ Field Size %]|Vs|, ¥ Field Size
9
. 20
gl [JK-means [ Optimal - A 15 10[!!!!]
I Random 3000 - p] Sub-optimal - A 10[!!!!] 0 1
a7k = I Creedy - A, s 1243 415:1
;% i 8 2500 - [ |K-means - Ag 2345 x b
% 6L 5 Random - A, 13 x 13
G5l = 2000 | 10 i
2 L ) - B 0
=3t Z 0 12 x 12
=) g 1000 2345 B
ol 5 10 x 10 T
L 500
0 0 = — = == B 1 || =
2 345 2345 2345 23 45 23 45 2345 23435 2345 2345 2345
10 x 10 11 x11 12 x 12 13 x 13 14 x 14 10 x 10 11x11 12 %12 13 x 13 14 x 14

%|Vs|, V Field Size

%|Vs|, ¥ Field Size

Fig. 9. Simulation results for the optimal (light blue), sub-optimal (green), greedy (red), k-means (yellow) and random (purple) methods considering fields
sizes from 10 x 10 to 14 x 14 and increasing percentage of trees to be inspected (%|Vs|), from 2% to 5% of the total number. Top left plot shows average
and standard deviation of temporal costs C*, C*, Cs, C{ and Cj. Top right plot shows the average relative optimality gaps of the temporal costs. Bottom
left plot shows the number of unfeasible solutions. Bottom right plot shows average and standard deviation of computational times A, A, A ¢» Ag and A,

specialized for the problem at hand and, therefore, fail to
solve it efficiently. In fact, the node pre-allocation performed
by the partitioning algorithms does not take into account
either the objective function in (9a) or the energy constraints
of the robots. However, we would had to resort to these
comparison methods since, as discussed in the Related work
section, no other method exists at the state of the art that can
efficiently address our problem. The observations regarding
the optimality performance of the different methods are also
confirmed by the number of unfeasible solutions in the bottom
right plot. More specifically, the sub-optimal and greedy
methods managed to find a solution for each execution, while,
for the random and k-means methods, the higher the field size
and nodes to serve, the higher the number of failures recorded,
achieving 9/10 unfeasible solutions with field sizes 13x 13 and
14 x 14 and 5% of nodes to visit, respectively. Regarding
the computational aspects, the bottom left plot demonstrates
the significant difference in computational time of the optimal
solution compared to the non-optimal ones. In particular, the
computational time A for the optimal method increases rapidly
as the field size and the number of nodes to serve increase,
passing from the order of seconds for the 10 x 10 field case
to tens of minutes for the 14 x 14 field. Zoomed views for
each field size are provided to clearly show the computational
time for the non-optimal methods. Computational time A
in the order of seconds is always recorded for the sub-
optimal method, achieving maximum average value equal to
18.01 s for 14 x 14 field with 5% of nodes to serve. Similar
computational times are generally recorded by k-means and

15000
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Fig. 10.  Temporal costs C*, C*, Cy for the optimal (light blue), sub-

optimal (green), greedy (red) methods considering fields sizes from 20 x 20 to
50 x 50 with 3% of the total number of trees to be inspected.

random baselines, achieving on average computational times
equal to 2.90 s and to 6.93 s, respectively, against 3.05 s for the
sub-optimal method. Finally, much lower computational times
equal to 0.09 s on average are obtained for the greedy method,
which, as opposed to the others, does not need to solve any
NP-hard optimization problem. To summarize, the simulation
campaign allows to numerically corroborate the effectiveness
of the proposed formulations against three baseline solutions
and show the trade-off between optimality and computational
time of the sub-optimal formulation.

Based on the same methods as in the above, we performed
a scalability analysis with field sizes ranging from 20 x 20 to
50 x 50 and requiring 3% of the total number of trees to be
inspected. Figure 10 shows the results obtained in this analysis.
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(a) Optimal, C* = 1068.40 s: (left) Hummingbird: C7 = 158.56 s, (center) Firefly: C5 = 269.80 s, (right) Neoll: C3 = 320.00 s.
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(b) Sub-optimal, C* = 1129.71 s: (left) Hummingbird: C} = 150.67 s (center) Firefly: C5 = 269.80 s, (right) Neoll: C = 354.24 .
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(d) K-means, Cj; = 1401.29 s: (left) Hummingbird: C}, ; = 65.31 s, (center) Firefly, C}; 5 = 232.26 s, (right) Neoll, C} 3 = 551,73 s.
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(e) Random, C = 1484.12: (left) Hummingbird: C;; = 153.76 s, (center) Firefly: C: 5 = 236.52 s, (right) Neoll:

Fig. 11.

Crs = 546.86 s.

Examples of solutions obtained by the optimal (a), sub-optimal (b), greedy (c), k-means (d), and random (e) methods.
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The average (heights of the bars) temporal costs C*, C*, O
(obtained over 5 instances) along with the standard deviation
(black lines) achieved by the optimal (light blue), sub-optimal
(green), and greedy (red) methods, respectively, are shown.
No results concerning k-means and random methods are
provided since they did not manage to find solutions in the
considered cases, as coherent with the results obtained for
field size equal to 13 x 13 and 14 x 14. On the contrary,
the optimal, sub-optimal and greedy methods always found a
solution. The obtained results confirm the behavior observed
with smaller field graphs, i.e., i) the average temporal cost for
all methods increases with field size and ii) the sub-optimal
method always achieves a better cost, i.e., closer to the optimal
one, than the greedy solution. To cope with the NP-hardness
of the optimal and sub-optimal methods, in these simulations
we relaxed the search of the solver for the exact optimum and
allowed 10% optimality margin.

C. Illustrative Example

We now illustrate the behaviour of the five implemented
methods to an example scenario. We considered a 14 x 14 field
with 5% of nodes to be inspected, implying |V,| = 10. For
this example, V, = {5, 26, 37, 39,79, 82, 105, 128, 133, 169}.
The accompanying video shows the execution of the optimal
plans for the three aerial robots according to architecture
described in Section VI-A. Figure 11 reports the solutions
obtained by the optimal (Figure 11-a, first row), sub-optimal
(Figure 11-b, second row), greedy (Figure 11-c, third row),
k-means (Figure 11-d, fourth row) and random (Figure 11-e,
fifth row) methods. Each column is associated with a robot,
i.e., from the left there are Hummingbird, Firefly and Neoll.
The route planned for each robot (red edges) as well as the
set of nodes to serve (red labeled dots) are reported. In the
figures, only the depot and the inspected trees are labeled for
the sake of readability. The optimal solution achieves overall
cost C* =1068.40 s and requires Hummingbird to inspect
nodes 79 and 82 in 158.56 s using 78.52% of its energy
capacity; Firefly to inspect nodes 105, 128, 133 and 169 in
269.80 s using 85.91% of its total energy capacity; Neoll
to inspect 5, 26, 37 and 39 in 320.00 s using 20.14% of its
total energy capacity. The figure makes evident that robots are
deployed to inspect groups of trees which are relatively close
to one another. Moreover, the optimal solution maximizes
the number of nodes that the fastest robots (Hummingbird
and Firefly) inspect, given their total energy capacity K; and
energy consumption. In this regard, Hummingbird and Firefly
can inspect at most two and four nodes, respectively, since
they require 35% and 21% of the total energy to inspect a
single node, respectively. The rest of the nodes to inspect
are assigned to the slowest (but with the longest autonomy)
robot, Neoll, which requires only 5% of its total energy
to inspect a single node. As far as the sub-optimal method
is concerned, cost C* =1129.71 s is obtained. In particular,
it assigns Hummingbird to inspect nodes 37 and 39 in 150.67 s
using 78.52% of its energy; Firefly to inspect nodes 105,
128, 133 and 169 in 269.80 s using 85.91% of its total
energy; Neoll to inspect 5, 26, 79 and 82 in 354.24 s using
20.14%. The sub-optimal solution maximises the number of
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nodes assigned to the fastest robots (i.e., Hummingbird and
Firefly), but unlike the optimal solution, some robots may
follow sub-optimal routes. The non optimalility of this method
is a consequence of the fact that this method disposes of
pre-assigned shortest paths that do not necessarily belong to
the an optimal solution of the problem.

Regarding the greedy algorithm, it achieves cost C; =
1363.87 s. In particular, it assigns Hummingbird to inspect
nodes 5 and 26 in 145.02 s using 77.76% of its energy;
Firefly to inspect nodes 37, 39, 79 and 82 in 273.08 s using
86.14% of its total energy; Neoll to inspect 105, 128, 133 and
169 in 472.78 s using 20.25%. The greedy solution, alike the
sub-optimal one, maximizes the number of nodes assigned
to the fastest robots, i.e., Hummingbird and Firefly (first and
second columns), within their energetic limitations and assigns
sub-optimal routes to the Firefly and Neoll (second and third
columns), showing intersecting routes.

For the K-means solution, cost C; = 1401.29 s is obtained.
In this case, Hummingbird inspects node 5 in 65.31 s using
37.51% of its energy; Firefly inspects nodes 128, 133 and
169 in 232.26 s using 64.90% of its total energy; Neoll
inspects nodes 26, 37, 39, 79, 82 and 105 in 551,73 s
using 30.22% of its total energy. K-means method deploys
robots to inspect nodes which are relatively close to one
another. This feature alone, although in common with the
optimal solution, does not generally guarantee the optimality
of the solution, as it can be seen comparing the k-means
solution cost with the optimal one. This is due to the fact
that the partitioning algorithm does not take into account the
objective function in (9a) (as shown by the results in Figure 9).
Furthermore, the number of nodes assigned to each robot is
randomly determined, meaning that the fastest robots could be
energetically underutilized or overutilized. In the figure, both
Hummingbird and Firefly are underused because they inspect
a single node and three nodes, respectively, instead of two and
four nodes as done in the optimal case, leading to overusing
the slowest robot, Neoll.

Finally, with regard to the random method, it obtains
cost C = 1484.12 s and requires Hummingbird to inspect
nodes 5 and 133 in 153.76 s using 78.02% of its energy;
Firefly to inspect nodes 37, 79 and 169 in 236.52 s using
65.10% of its total energy; Neoll to inspect 26, 39, 82,
105 and 128, in 546.86 s using 25.23% of its total energy.
The random pre-assignment strategy generally leads robots to
inspect groups of nodes that are scattered on the field, as it
can be observed from the figure. Similarly to the k-means
method, the Firefly is energetically underused, inspecting three
nodes instead of four and resulting in an overuse of the slowest
robot, Neol1l. We reiterate that k-means and random methods
were only selected as baselines for comparison, since no other
method is available at the state of the art to deal with the
problem at hand. For this reason, low performance in terms
of optimality was expected.

VII. CONCLUSION

In this work, we proposed a novel formulation to plan
optimal routes for multiple mobile robots to perform agri-
cultural tasks in large-scale PA settings. Differently from
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existing works, we introduced a field model able to account
for maneuvering costs with general topologies. Building on
this, we formalized a multi-Steiner TSP problem in which
turning costs on arbitrary field topologies as well as energy
capacity constraints are taken into account. The total time to
execute all the tasks, as well as the cumulative execution times
of the robots have been minimized. Moreover, we proposed a
sub-optimal formulation to mitigate the computational load
by relaxing the optimization of the maneuvering costs at
the locations where agricultural tasks are carried out and
provided a formal analysis on the optimality gap. Simula-
tion results with three aerial robots performing inspection
tasks in a orchard corroborated the proposed formulations.
Remarkably, the proposed formulations can be easily adapted
to any operational setting where multiple mobile robots need
to perform tasks in assigned locations of the environment.
As future work, we plan to overcome the inherent compu-
tational issues of the proposed formulations by designing effi-
cient algorithms for solving the proposed problems. Moreover,
we plan to validate the formulations on real-world robotic
platforms.
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