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Abstract— This paper introduces a control architecture that
enables a robotic system to ensure the safety of human operators
entering its workspace. The proposed method utilizes an appro-
priate metric to measure safety levels and adjusts the robot’s
motion to maintain this metric above a minimum threshold.
To guarantee safety, the robot scales down and deviates from its
intended path. For redundant robots, internal motion is exploited
to enhance safety levels further. The approach is incorporated
into a Hierarchical Quadratic Programming control framework,
allowing the robot to address other control objectives simulta-
neously, such as handling joint limits. Experimental results with
a dual-arm mobile robot developed as part of the EU-funded
CANOPIES project demonstrate the effectiveness of the proposed
method.

Note to Practitioners—This paper was motivated by the prob-
lem of ensuring human safety in unstructured environments
shared with human operators. We propose a control architec-
ture that allows complex dual-arm robotic systems to operate
effectively in such scenarios. The devised architecture gives the
robot the capability to slow down a trajectory to follow as well as
to deviate from a nominal path to keep a human operator safe.
We tested the devised approach in a precision farming setting;
however, it can be adopted in any human-robot interaction
scenario.

Index Terms— Human–robot interaction, human safety, dual-
arm system, trajectory scaling, path modification, precision
agriculture.

I. INTRODUCTION

WITH the advancement of technology, robots are becom-
ing more and more prevalent in our daily lives. From
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Fig. 1. Example of robot sharing its workspace with a human operator in
an agriculture context.

factories [1] to operating rooms [2], from agricultural fields [3]
to homes [4], robots are increasingly used to perform various
tasks and make our lives easier. This means that robots can
perform tasks that are dangerous or tedious for human workers
while allowing humans to focus on more complex tasks. This
potentially leads to increased efficiency, productivity, and cost
savings for companies adopting collaborative robots. However,
as robots become more integrated into our society, there is
an important question to consider: how can we coexist in a
workspace shared with robots in a way that is safe and “low-
invasive” for everyone involved?

Regarding safety, current collaborative robots have numer-
ous integrated safety features, e.g., lightweight or emergency
stop procedures. However, additional safety strategies still
need to be designed to guarantee that robots do not pose any
risks to human workers in the shared workspace, especially
in unstructured, dynamic environments. In particular, it is
necessary to ensure that, in any operational condition of the
human operator and the robots, the human level of safety
can be identified and appropriate intervention is carried out if
human safety may be compromised. Such safety aspects have
also been addressed in several standards for industrial contexts.
Among these, the technical specification ISO/TS 15066:2016
“Robots and robotic devices - Collaborative Robots” specif-
ically focuses on the safety requirements for industrial robot
systems.

Although ensuring safety is of utmost importance, we also
recognize the value of allowing the robot to successfully carry
out the assigned tasks while adhering to its constraints. This
means that a balance should be found between preserving the
robot’s activity and implementing a human safety strategy,
i.e., the human safety strategy cannot be overly conservative;
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otherwise, it may prove unnecessarily invasive and detrimental
to the robot’s mission.

Motivated by the above considerations, in this work,
we propose a comprehensive architecture for safe human-robot
coexistence that modifies the robotic task by taking into
account human safety features as well as constraints or sec-
ondary objectives of the robotic platform. Figure 1 shows an
illustrative example of the considered setup, where a human
operator shares the workspace with a mobile dual-arm robot
in a precision agriculture setting. Specifically, we design a
safety planner that, based on an optimal formulation, allows
modulating the velocity and deviating from the planned nom-
inal path to ensure human safety. The proposed solution relies
on Control Barrier Functions (CBFs) and is integrated within
a Hierarchical Quadratic Programming (HQP) framework to
take into account possible constraints or general objectives
of the robotic platform. We validate the proposed solution
in an agricultural setting inspired by the H2020 European
project CANOPIES, where the robotic platform is involved
in a harvesting task in a table-grape vineyard shared with
human operators. This work is built on [5], where a CBF-based
approach was first presented to guarantee human safety in
human-multi-robot settings by modulating the velocity of the
robot team. Here, the approach is significantly extended by
i) introducing the possibility of altering the assigned robot
path, ii) integrating the strategy within an HQP framework to
handle several control objectives, iii) providing a formulation
for dual-arm systems, and iv) validating the approach within
a challenging real-world agricultural setting. The main contri-
butions of the paper can be summarized as follows:

• design of a comprehensive control architecture to define
the robot inputs aimed at ensuring that the human level of
safety is always above a certain threshold while satisfying
robot constraints;

• formulation for dual-arm systems exploiting the redun-
dancy to improve safety;

• extensive validation in both laboratory and real outdoor
agricultural settings;

• comparison with additional baselines for ensuring human
safety.

The remainder of the manuscript is organized as follows.
Relevant works are discussed in Section II. Preliminary notions
for the proposed methodology, including the robot kinematic
model and the human safety index, are presented in Section III.
Based on these, the main problem addressed in this work
is formally stated and a solution is designed in Section IV.
Experimental results, both in laboratory conditions and in real
outdoor settings, are reported in V, while conclusive remarks
are provided in VI.

II. RELATED WORKS

As mentioned in the Introduction, the main challenge in
a human-robot co-existence scenario lies in formulating a
strategy that not only guarantees continuous human safety
throughout all robotic operations but also optimizes the robot’s
efficiency in executing tasks. One of the most commonly
adopted methods to ensure safe coexistence is through the
implementation of reactive evasive strategies: when the human
is in the proximity of the robot, the latter moves away to

increase safety. In this context, the study in [6] has defined a
danger index based on distance, velocity, and inertia measures
and then produced a virtual force moving the robot away from
the human and with an intensity proportional to the danger
index. The human prediction based on neural networks has
also been introduced in [7] for the reactive control safety
strategy, while a fast method to compute the distance between
the robot and moving obstacles using RGB-D sensors has been
proposed in [8], and exploited to generate repulsive forces.
More recently, a method combining a 3D depth sensor and
robot position sensors has been developed in [9] to estimate
the human-robot distance more reliably. As for the previous
work, this has been used to generate the repulsive force driving
the robot away from the human. The problem of comput-
ing repulsive forces for collision avoidance actions even if
obstacles are moving faster than the robot has been addressed
in [10], where a quadratic programming optimization problem
has been formulated to minimize the deviation from the
reference trajectory. Repulsive and attractive forces have also
been exploited in [11], where an architecture based on Explicit
Reference Governor has been proposed. This generates the
robot trajectory, driving the robot towards a desired pose
while taking into account the input and state constraint of the
nonlinear robot dynamics.

A further approach to human safety relies on modulating the
robot’s velocity without deviating from the desired path while
guaranteeing speed and separation monitoring (SSM) [12].
This strategy has been pursued, for instance, in [13] where
robot links are represented as beams and an optimization
problem is formulated which provides the velocity scaling
factor and the joint velocity commands while guaranteeing a
minimum human-robot distance and the fulfillment of physical
robot constraints. This work has been recently extended in [14]
to include an efficient method to compute danger zones in
real-time, i.e., the 3D volumes corresponding to links of
the robot where safety constraints are violated. Computing
optimal smooth stop trajectories for collision avoidance has
been addressed in [15], where the dynamics and torque limits
of the robot are taken into account. A proactive optimization
framework has been proposed in [16] to find the path that
minimizes the expected overall execution time, obtained by
considering worst-case scenarios for human safety. In order
to determine the expected execution time, the human state
and possible slowing down of the trajectory for safety reasons
have been taken into consideration. A further human-safe
solution minimizing the overall execution time and modulating
the robot velocity, can be found in [17], where an online
replanning module has been included to optimally adapt the
trajectory in case of violations of safety constraints. A multi-
modal system integrating both depth and thermal cameras
has been developed instead in [18], where a fuzzy inference
method is presented to modulate the robot velocity to achieve
human safety. Additionally, the case of multiple mobile manip-
ulators has been addressed in [19], where a trajectory scaling
approach has been devised by taking into account the relative
distance and velocity information of the robotic team with
respect to the human operators.

To conclude, we can observe that the reactive evasive
method on the one hand allows for a rapid reaction to
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immediate proximity, potentially minimizing the risk of col-
lision; on the other hand, frequent reactive movements may
disrupt the robot task execution, leading to inefficiencies.
As far as the trajectory scaling approach is concerned, on the
one hand, it enables the robot to maintain a consistent path
and continue its task execution, contributing to operational
efficiency; on the other hand, depending on the velocity
modulation, there may be a risk of closer proximity between
the robot and the human, which requires careful calibration.
Furthermore, relying solely on velocity modulation could
potentially result in situations where the robot comes to a halt
and experiences stalls if the person stops directly along the
assigned path. In light of these considerations, we propose a
novel hybrid approach where we aim to find a combination of
velocity modulation and path modification to guarantee human
safety. Such a combination is modulated through the selection
of weights in the formulated optimization problem. In this way,
the system can benefit from the strengths of both strategies,
i.e., the robot can effectively avoid collisions with the human
by modulating the velocity and modifying the path as required
to continue the robot task operation. Moreover, we propose
a comprehensive framework that also takes into account the
robot’s physical limitations and exploits the redundancy of the
system to maximize human safety.

III. MATHEMATICAL BACKGROUND AND PROBLEM
FORMULATION

In this section, the basic theory of Control Barrier Functions,
robot modeling, and Hierarchical Quadratic Programming are
first presented. Then, the safety field concept employed to
assess the human safety is presented. Finally, we state the
formulation of the problem addressed in this paper.

A. Control Barrier Functions

In this section, we provide the basic theory of Control Bar-
rier Functions, which allows the formal handling of inequality
constraints [20], [21]. Let us consider a system with dynamics:

ξ̇ = f (t, ξ) + g(ξ)u, (1)

where f and g are Lipschitz-continuous vector fields,
ξ ∈ D ⊂ IRl and u ∈ U ⊂ IRq are state and input of
the system, respectively. Let the k th generic constraint be
expressed in the following general form: hk(ξ) ≥ 0, where
hk(·) is a continuous differentiable function in the domain D.
According to the CBF framework, let Ck ⊂ D be defined as:

Ck = {ξ ∈ IRl
: hk(ξ) ≥ 0},

∂Ck = {ξ ∈ IRl
: hk(ξ) = 0},

Int(Ck) = {ξ ∈ IRl
: hk(ξ) > 0}, (2)

implying that the state ξ is required to belong to the set Ck
in order to satisfy constraint k. Function hk is a CBF if an
extended class K∞ function αk exists such that, for a dynamic
system represented as in Eq. (1), it holds:

sup
u∈U

[
L f hk(ξ) + Lghk(ξ)u

]
≥ −φkαk(hk(ξ)), (3)

where φk > 0, and L f hk and Lghk are the Lie derivatives of
function hk with respect to f and g, respectively. Then, the
following theorem holds [20].

Theorem 1: Let function hk : D ⊂ IRl
→ IR be a

continuously differentiable function and the corresponding set
Ck defined as in Eq. (2). If hk is a CBF on D and ∂hk

∂ξ
(ξ) ̸= 0

∀ξ ∈ ∂Ck , then any Lipschitz continuous controller u(ξ)

for system in Eq. (1) satisfying Eq. (3) renders the set Ck
asymptotically stable.

Since Eq. (3) is affine in the control input u, the latter can
be computed as the result of a convex optimization problem
subject to the constraint:

u⋆
= arg min

u
1
2

(
u − u(·)

)T Q
(
u − u(·)

)
s.t. sup

u∈U

[
L f hk(ξ) + Lghk(ξ)u

]
≥ −φkhk(ξ), ∀ k (4)

where u(·) is any nominal input for the system and Q ∈ IRq×q

is a positive definite weight matrix.

B. Robot Kinematics

Let us consider a mobile robot equipped with a mov-
able torso and a dual arm system (see Figure 1),
in which each end effector configuration is denoted by
x y = [ pT

y oT
y ]

T
∈ IR7, (y = L , R, Left and Right, respec-

tively) where py ∈ IR3 is the position part, and

oy =
[
oy,1 oy,2 oy,3 oy,4

]T
=

[
κoy ρ

T
oy

]T
∈ IR4 represents the

unit quaternion expressing the orientation, being κoy the scalar
component and ρoy ∈ IR3 the vector component. We use the
symbol ∗ to indicate the product of two quaternions and the
vector o0 =

[
1 0 0 0

]T to represent the quaternion relative to
R = I3 (corresponding to a null rotation), where Im denotes
the m ×m identity matrix. We denote by x = [xT

L xT
R]

T
∈ IR14

the vector collecting all end effector configurations. Moreover,
let the joint vector q ∈ IRn defined as:

q =
[
qT

B qT
T qT

L qT
R
]T

,

where q B =
[

pT
B, oT

B
]T

∈ IRnb is the vector describing the
mobile base configuration in terms of position and orientation
expressed as a quaternion, qT ∈ IRnt gathers the joint variables
of the torso, while qL , q R ∈ IRnm are the vectors of joint
variables relative to the manipulator arms, and n = nb + nt +

2nm is the total number of degrees of freedom (DoFs). The
collective vector of end effector linear/angular velocities is
described by v =

[
vT

L v
T
R
]T

∈ IR12 and its relationship with
the velocity vector can be expressed as:

v =

[
vL
vR

]
= J(q)q̇ , (5)

with the Jacobian J(q) ∈ IR12×n partitioned as follows:

J(q) =

[
J B,L(q B) J T,L(qT ) J L(qL) O6×nm

J B,R(q B) J T,R(qT ) O6×nm J R(q R)

]
,

(6)

where Ox×y represents the x × y null matrix. The structure
of Eq. (6) highlights that the joint velocities of the common
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base and torso contribute to the velocities of both end effectors,
while q̇L (q̇ R) only contributes to the velocity of the left (right)
end effector. Furthermore, we assume the robot is subject to
the following joint-space kinematic constraints:{

¯

q ≤ q ≤ q̄,

¯

q̇ ≤ q̇ ≤ ¯̇q,
(7)

where
¯

q (
¯

q̇) and q̄ ( ¯̇q) are the minimum and maximum joint
configuration (velocity) values, respectively.

C. Hierarchical Quadratic Programming

In addition to the control of the end-effectors position
and orientation, there might be several other tasks that any
robot has to fulfill to guarantee safety and efficiency dur-
ing the operations in complex and dynamic environments,
e.g., joint position/velocity limits, self-collisions, and obstacle
avoidance. In order to handle possible conflicts that can arise
among tasks, it is recommended to set priority orders among
them, obtaining a hierarchy. This is usually implemented by
projecting the joint velocity related to the fulfillment of a
lower-priority task onto the null space of the higher-priority
tasks, leading to different kinds of Task-Priority (TP) control
frameworks [22], [23].

A popular alternative is to exploit the Hierarchical Quadratic
Programming (HQP) control framework [24], [25], in which
the task hierarchy is implemented by solving a cascade of
Quadratic Programming (QP) problems in which the solution
of a task with a given priority is obtained by considering the
solutions of all higher-priority tasks as additional constraints.

More in detail, let us consider a task σ 1 ∈ IRm1 with
associated Jacobian J1(q) ∈ IRm1×n , and minimum and
maximum desired task velocities

¯
b1 ∈ IRm1 and b̄1 ∈ IRm1 ,

respectively. The respective QP problem can be formulated
as:

min
w1,q̇

1
2
wT

1 Qw,1w1

s.t.
¯
b1 ≤ J1(q)q̇ + w1 ≤ b̄1, (8)

where Qw,1 ∈ IRm1×m1 is a weighting matrix, and w1 ∈ IRm1 a
slack variable associated with task σ 1, that is used to relax the
constraint in case of a non-feasible task. It is worth noticing
that in case

¯
b1 = b̄1 = b1, the bilateral constraint in Eq. (8)

is equivalent to an equality constraint. In the case of a second
task σ 2 ∈ IRm2 with Jacobian matrix J2(q) ∈ IRm2×n and
minimum and maximum task velocities

¯
b2 ∈ IRm2 and b̄2 ∈

IRm2 , respectively, to be performed with strict lower priority
with respect to task 1, the solution can be computed by solving
a second QP problem:

min
w2,q̇

1
2
wT

2 Qw,2w2

s.t.
¯
b1 ≤ J1(q)q̇ + w⋆

1 ≤ b̄1,

¯
b2 ≤ J2(q)q̇ + w2 ≤ b̄2, (9)

where, as before, Qw,2 ∈ IRm2×m2 is a weighting matrix and
w⋆

1 is the solution of the QP problem reported in Eq. (8). The
minimization of the slack variable w2 ∈ IRm2 allows finding a

solution even if the two tasks are in conflict, minimizing the
secondary task error without affecting the primary one.

The approach can be generalized for a hierarchy composed
of l arbitrary tasks by solving the cascade of l QP problems,
leading to a sequence of optimal variables {w⋆

1, w
⋆
2, · · · , w⋆

l }

that is minimal with respect to a lexicographic order. In detail,
the i-th QP problem has the following structure:

min
wi ,q̇

1
2
wT

i Qw,iwi

s.t.
¯
bk ≤ Jk(q)q̇ + w⋆

k ≤ b̄k, ∀k ∈ 1, . . . , i − 1

¯
bi ≤ J i (q)q̇ + wi ≤ b̄i , (10)

where Qw,i ∈ IRmi ×mi and wi ∈ IRmi are the weighting matrix
and slack variables relative to the i th task, respectively, while

¯
bi ∈ IRmi and b̄i ∈ IRmi are the minimum and maximum
desired task velocities.

D. Considered Tasks

In this section, we describe the tasks adopted in the present
work and the respective constraints in the HQP formulation.

1) Joint Limits Tasks: Let us consider the first constraint
in Eq. (7). It can be expressed by exploiting the CBF frame-
work described in Section III-A by introducing the following
functions:{

¯
hi (qi ) = qi −

¯

qi ≥ 0, i = 1, · · · , n
h̄i (qi ) = q̄i − qi ≥ 0, i = 1, · · · , n

(11)

that, based on Eq. (3), lead to:{
q̇i ≥ −

¯

φi
¯
hi (qi ) i = 1, · · · , n

−q̇i ≥ −φ̄i h̄i (qi ) i = 1, · · · , n.
(12)

with φ̄i ,
¯

φi > 0. Let us define vector functions
¯
h = [

¯
h1,

¯
h2 · · · ,

¯
hn]

T and h̄ = [h̄1, h̄2 · · · , h̄n]
T , and matrices

¯
8 = diag{

¯

φ1,
¯

φ2, · · · ,
¯

φn} and 8̄ = diag{φ̄1, φ̄2, · · · , φ̄n}.
It is straightforward to verify that Eq. (12) can be more
conveniently expressed as:

¯
8

¯
h(q) ≤ q̇ ≤ 8̄h̄(q). (13)

By combining Eq. (13) with the second of constraints in
Eq. (7), it holds:

¯
bc =

[
−

¯
8

¯
h(q)

¯

q̇

]
≤ Jc q̇ ≤

[
8̄h̄(q)

¯̇q

]
= b̄c, (14)

where Jc =
[
In In

]T is the constraints Jacobian.
2) Operational Task: As in [26], the robot operational task

is specified by means of absolute and relative task variables:

σ =

[
σ a
σ r

]
=


σ ap

σ ao

σ rp

σ ro

 =


β pL + (1 − β) pR

oa
pR − γ pL

or

 , (15)

where oa is the quaternion related to the absolute rotation
matrix Ra = RL RL

R(r L
RL , (1 − β)ϑL R), with r L

L R and ϑL R
expressing the axis-angle representation of the relative ori-
entation matrix RL

R between the two end effectors and or
is the quaternion extracted from the relative rotation matrix
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Rr = RL
T(r L , γ ϑL)RR , with r L , ϑL being the axis-angle

representation expressing the orientation of the left end effec-
tor. Regarding the variables β and γ , the first is a balance
parameter in the range [0 1] expressing the level of symmetry
in the arms cooperative motion, while the latter is a binary
coordination parameter to select the arms coordination level.
In detail, for γ = 1, the parameter β ∈ [0, 1] provides
the possibility to modulate the degree of symmetry between
the two end effectors during cooperative operations; namely,
β = 0 or β = 1 (with γ = 1) result in a leader-follower
approach where either the right end effector is the leader,
and the left end effector is the follower (β = 0) or vice-
versa (β = 1), while β = 0.5 results in a fully symmetric
approach. For β = 1 and γ = 0, the arms result in mutually
independent movements. In virtue of Eq. (5), the task velocity
ν ∈ IR12 depends on the collective end effector velocities v as
follows [26]:

ν =

[
β I6 (1 − β)I6

−γ I6 I6

]
v = J t J(q)q̇ = Jσ (q)q̇, (16)

where Jσ = J t J(q) ∈ IR12×n is the task Jacobian matrix
that can be used to formalize a variety of multi-robot tasks of
general interest, like a cooperative transportation task [27].

It is worth remarking that parameters β and γ might be
time-varying, which means that the robot might change in
real-time the cooperation mode. Moreover, we assume that
a continuous and differentiable desired trajectory:

σ d(t) =


σ d

ap

σ d
ao

σ d
rp

σ d
ro

 ∈ IR14, νd(t) =


σ̇ d

ap

ωd
a

σ̇ d
rp

ωd
r

 ∈ IR12, (17)

coherent with the cooperation mode is made available.
The operational task introduces the following equality con-

straint in the QP problem:

Jσ (q)q̇ = bσ , (18)

with bσ the desired task velocity.
Finally, let qr (t) ∈ IRn (q̇r (t)) be the reference joint position

(velocity) of the robot controller. We make the following
assumption.

Assumption 1: The robot is provided with an inner motion
control loop ensuring the tracking of a reference joint trajec-
tory, i.e., qr ≈ q (q̇r ≈ q̇).
The above assumption states that the robot is equipped with an
inner motion control loop ensuring the tracking of reference
joint trajectories generated by the devised safety strategy. Such
an assumption increases the applicability of the approach since
almost all commercial robots offer the possibility to track
externally generated joint reference trajectories, while they
usually do not provide a torque control interface. Based on
the above assumption and the kinematic model in Eq. (5), the
following virtual model is considered:

v = J(q)q̇r = J(q)q̇. (19)

E. Human Safety Field

In [19], a safety field to account for the human-robot relative
position is defined. The field takes into consideration the
overall robotic structure as well as an arbitrary number nh
of significant human points, e.g., the endpoints of the links
composing the human skeleton, as in [28]. To derive the overall
safety field, a local index to assess the human safety in the
case of single point P of the robot structure and single point
Ph of the human operator is first analyzed. Let p ∈ IR3 be
the position vector of the robot point P , ph ∈ IR3 the position
vector of the human point Ph , and d = ∥ p− ph∥ the Euclidean
distance between the points P and Ph . The following local
safety index is defined:

f ( p, ph) = χ(d), (20)

where χ represents any non-negative continuous monotoni-
cally increasing Lipschitz function. Based on this local index,
the overall safety field can be derived by integrating the local
index in Eq. (20) along the robot links and then evaluating it
for each human point. As in [19], we approximate each robot
link l as a segment starting at p0

l and ending at p1
l . Thus, let

s ∈ [0, 1] represent the curvilinear abscissa variable along the
segment l and ps

l ∈ IR3 the segment point corresponding to
the abscissa s, i.e., computed as ps

l = p0
l + ( p1

l − p0
l )s. The

respective link safety index is defined as:

Fl( p0
l , p1

l , po) =

∫ 1

0
f ( ps

l , ph)ds. (21)

At this point, let us consider all the links of the robotic
platform and the j-th human point ph, j . The safety field taking
into account the j-th human point and the entire robot structure
is obtained as:

F j (q, ph, j ) =

n∑
l=1

Fl( p0
l , p1

l , ph, j ). (22)

By considering all the nh human points, the overall safety field
is computed as

F =
1

nh

nh∑
j=1

F j (q, ph, j ). (23)

The above formulation allows accounting for multiple human
operators by simply adding the respective points in Eq. (23).
Note that to compute the safety field, we assume the robot
can detect and localize the human operator within the shared
workspace. To this aim, several approaches existing in the
literature can be exploited, such as [29] and [30].

F. Problem Formulation

We are now ready to present the main problem addressed
in this work:

Problem 1: Let us consider a dual-arm robotic system
performing a cooperative task encoded by a task function σ
as in Eq. (15), for which a nominal desired trajectory σ d(t)
is assigned by a Trajectory Generation module. Let us also
consider a human operator that shares the same workspace
as the robot, that is monitored through a Perception System,
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Fig. 2. Overall control architecture. A Trajectory Generation module
generates a nominal trajectory that is then modified by a Safety Planner
in function of the Perception System outputs in order to obtain a reference
trajectory. Finally, the latter is given in input to a controller that computes the
control input to be sent to the robot.

and that the level of human safety is assessed by the index
F(t) in Eq. (23), for which a time-varying minimum value

¯
F(t) is assigned. The objective is to design a Safety Planner
capable of:

1) scaling down the nominal trajectory σ d(t);
2) modifying the nominal path of σ d(t);
3) exploiting the redundancy of the system generating an

internal joint motion;
so as to generate a safe trajectory σ s(t) as in Eq. (27) which
maximizes the fulfilment of the safety condition:

F(t) ≥
¯
F(t), (24)

with
¯
F(t) > 0 a time-varying threshold while taking into

account the kinematic constraints of the robot.
The above formulation requires the definition of the safety
time-varying threshold

¯
F(t). In [19], it is proven that

¯
F(t)

can be chosen in such a way as to ensure a minimum safety
distance between the human operator and the robot. However,
this threshold could also be experimentally set by assessing,
for instance, how stressed the human operator is and how much
risk he/she perceives. To this aim, several human biological
reactions could be exploited as reported, for instance, in [31].

IV. PROPOSED SOLUTION

Figure 2 shows the proposed architecture for solving Prob-
lem 1. In particular, this is composed of four modules: (i)
the Perception System; (i i) the Trajectory Generation module;
(i i i) the Safety Planner; and (iv) the Low-level Controller.
The Perception System is responsible for detecting humans as
further detailed in Section V, while the Trajectory Generation
module defines the desired task trajectory σ d(t) (νd(t)). Based
on the outputs of these modules, the Safety Planner generates
a safe trajectory, which is finally sent as a reference to the
Low-level Controller module. In the following, we focus on the
Safety Planner and Low-level Controller modules. Specifically,
we first present the parameterization of the nominal trajectory
and the variables for its modification. Then, we describe the
low-level controller and the derivative of the safety field.
Finally, we detail the proposed safety planner.

A. Trajectory Modification

Let us assume that the desired nominal trajectory σ d(t) in
Eq. (17) is parameterized with respect to a time parameter

c(t), i.e., σ d(c(t)), such that c : [t0, t f ] ∈ IR → [t0, t f ] ∈ IR,
with t0 and t f being the starting and final time instants of the
nominal trajectory, respectively. In the following, we omit the
time dependency of the variables if it is not strictly necessary.
Note that by modifying the time parameter c(t), the time law
of the nominal trajectory can be modulated without modifying
the nominal path. The time derivative of the scaled trajectory
σ d(c(t)) can be expressed as:

νd(c(t), ċ(t)) = η (c(t)) ċ(t), (25)

with

η(c)=


∂σ d

ap
∂c

2E(oa)
∂σ d

ao
∂c

∂σ d
r p

∂c

2E(or )
∂σ d

ro
∂c

,

E(oy)=

−oy,2 −oy,1 −oy,4 oy,3
−oy,3 oy,4 oy,1 −oy,2
−oy,4 −oy,3 oy,2 oy,1

.

Additionally, we introduce the time-varying term

1σ =

[
1σT

ap
1σT

ao
1σT

rp
1σT

ro

]T
∈ IR14 that allows

deviating from the nominal path such that a safe trajectory
σ s(t) (νs(t)) can be generated. Specifically, 1σ ap and 1σ ao

represent the variations applied to the absolute position and
orientation variables, respectively, while 1σ ar and 1σ ar

represent the variations applied to the relative position
and orientation variables, respectively. By denoting with
1ν ∈ IR12 the vector of the deviation velocities defined as:

1ν=

[
1̇σT

ap
1ωT

a 1̇σT
rp

1ωT
r

]T
, (26)

the safe trajectory is computed as follows:

σ s(t)=


σ s

ap

σ s
ao
σ s

rp

σ s
ro

=


σ d

ap
+ 1σ ap

σ d
ao

∗ 1σ−1
ao

σ d
rp

+ 1σ r,p

σ d
ro

∗ 1σ−1
ro

,

νs(t)=


σ̇ s

ap

ωs
a

σ̇ s
rp

ωs
r

= νd(c(t), ċ(t)) + 1ν, (27)

which is the actual trajectory to be tracked by the robot.
Let 1ϵ ∈ IR12 be the vector of position and orientation

deviations defined as:

1ϵ =

[
1σT

ap
ρT

1σ ao
1σT

rp
ρT

1σ ro

]T
, (28)

where ρ1σ ao
and ρ1σ ro

are the vector parts of 1σ ao and
1σ ro , respectively, the path modification obeys the following
law:

1ν = −T1ϵ + ζ , 1ϵ(t0) = 012 (29)

where 0m denotes the m dimensional zero vector,
T = diag{τap I3, τao I3, τrp I3, τro I3}, with τ(·) > 0, and

ζ =

[
ζT

ap
ζT

ao
ζT

rp
ζT

ro

]T
∈ IR12, with ζ (·) ∈ IR3 input vectors

to be designed. Specifically, the positive gains τ(·) can be
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interpreted as stiffness parameters of a virtual spring pushing
the safe trajectory towards the nominal one. It is worth
noticing that if all the input vectors ζ (·) are zero-vectors, i.e.,
ζ (·) = 03, the safe trajectory σ s asymptotically converges to
σ d . These inputs are designed as:

ζ =


ψap 03 03 03

03 ψao 03 03
03 03 ψrp 03

03 03 03 ψro




uαap

uαao
uαr p

uαro

 = 9(t)uα, (30)

where 9 ∈ IR12×4 is any matrix that allows deviating the
nominal trajectory along proper directions ψ (·) ∈ IR3 which
can be chosen depending on the specific operation to accom-
plish, and the components of uα (uαap , uαao , uαr p and uαro ) are
scalar inputs that modulate the amount of deviation. A possible
choice for matrix 9(t) will be presented in Sec. V.

It is worth noticing that the case c(t) = t, 1ϵ = 012
implies σ d(c(t)) = σ d(t) and that ċ = 1 implies νs(t) =

νs(c(t)) = νd(c(t)), meaning that we are tracking the nominal
reference velocity. The rationale behind this design choice is
that, by modulating the scaling parameter c(t), the nominal
trajectory σ d(t) can be online scaled while, by modifying 1σ ,
the path is modified.

B. Low-Level Controller for Safe Trajectory Tracking

In this work, the low-level controller exploits the HQP
formulation described in Sec. III-C and includes the tasks
listed in Sec.III-D. More specifically, it considers three pri-
ority levels among the tasks: 1) joint position/velocity limits,
2) operational task, and 3) null-space joint velocity. According
to Eq. (14), the first QP problem to solve in order to fulfil the
joint limits tasks is:

min
w1,q̇

1
2
wT

1 Qw,1w1

s.t.
¯
bl ≤ J l(q)q̇ + w1 ≤ b̄l , (31)

with Qw,1 ∈ IRn×n a positive definite weight matrix and
w1 ∈ IRn a slack variable. The operational task is executed
in the null space of the joint limit tasks by solving the second
QP problem:

min
w2,q̇

1
2
wT

2 Qw,2w2

s.t. Jσ (q)q̇ + w2 = bσ

¯
bl ≤ J l(q)q̇ + w⋆

1 ≤ b̄l , (32)

with Qw,2 ∈ IR12×12 a positive definite weight matrix,
w2 ∈ IR12 a slack variable, and bσ = νs

+ Kσ σ̃ , where Kσ is
a positive-definite matrix of gains and:

σ̃ =


σ s

ap
− σ ap

ρσ̃ao
σ s

rp
− σ rp

ρσ̃ro

 , (33)

where ρσ̃ao
is the vector part of the quaternion σ s

ao
∗σ−1

ao
, ρσ̃ro

is the vector part of the quaternion σ s
ro

∗ σ−1
ro

, and it allows
to track the safe trajectory σ s (νs) obtained as output of the

Safety Planner. Finally, a null-space motion is considered by
solving the following final QP problem:

min
w3,q̇

1
2
wT

3 Qw,3w3

s.t. q̇ + w3 = q̇n

Jσ (q)q̇ + w⋆
2 = bσ

¯
bl ≤ J l(q)q̇ + w⋆

1 ≤ b̄l , (34)

where Qw,3 ∈ IRn×n is a positive definite weight matrix,
w3 ∈ IRn is a slack variable, and q̇n is the joint velocity
vector that refers to point 3) of Problem 1. This term will
be computed by the Safety Planner to increase the safety
field value without affecting the operational tasks. It is worth
noticing that other control objectives might be introduced
in the same control framework, such as requiring minimum
distance from obstacles in the scene or defining virtual walls.

In case none of the kinematic constraints is active, i.e., the
joint positions and velocities are within the specified limits,
and the matrix Jσ is full-rank, the input q̇ can be computed
in closed-form by resorting to a standard closed-loop inverse
kinematic law [32]:

q̇ = J†
σ

(
νs

+Kσ σ̃
)
+ Nσ q̇n, (35)

where Nσ = I − J†
σ Jσ is a null space projector of Jσ .

C. Time Derivative of the Safety Field F

To design the safety planner, we first derive the time
derivative of the safety field F in Eq. (23). Specifically,
in the remainder of the section, we prove it to be linear with
respect to the derivative of the scaling parameter, i.e., ċ(t),
the path modification input uα , and the input q̇n in Eq. (35).
This property is exploited to implement the scaling and path
modification procedure presented in Section IV-D.

The time derivative Ḟ is computed from the derivative of
f in Eq. (20). In particular, ḟ can be computed as:

ḟ =
∂χ(ds

i,l)

∂ds
i,l

ḋs
i,l , (36)

being ds
i,l = ∥ ps

l − ph∥, i.e., the distance between the point
ps

l and the human operator ph . The time derivative of the
distance is computed as follows:

ḋs
i,l =

( ps
l − ph)T( ṗs

l − ṗh)

ds
i,l

, (37)

with ds
i,l ̸= 0. At this point, the relationship between the linear

velocity of the point ps
l and the joint variables of the robot is

taken into account, that is:

ṗs
l = J s

l (q)q̇, (38)

where J s
l (q) ∈ IR3×n is the positional Jacobian matrix associ-

ated with the point ps
l , i.e., the first three rows of the Jacobian

matrix that relates the joint velocities to the linear/angular
velocity of the point ps

l . By considering the input in Eq. (35)
and omitting the dependency of the Jacobian matrices from q
for sake of readability, Eq. (38) can be rewritten as:

ṗs
l =J s

l J†
σ

(
νs

+ Kσ σ̃
)
+ J s

l Nσ q̇n . (39)
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By folding Eqs. (25)-(30) in Eq. (39), it holds:

ṗs
l = γ 1ċ + 02uα + 03q̇n + γ 4, (40)

that is linear with respect to ċ, uα , and q̇n and where the
coefficients γ 1,γ 4 ∈ IR3 and 02 ∈ IR3×4, 03 ∈ IR3×n are
defined as: 

γ 1 = J s
l J†

ση

02 = J s
l J†

σ9

03 = J s
l Nσ

γ 4 = J s
l J†

σ

[
Kσ σ̃ − T1ϵ

]
.

By virtue of Eq. (36) and Eq. (40), the derivative of the safety
index ḟ can be rewritten as:

ḟ = λ1ċ + λT
2 uα + λT

3 q̇n + λ4, (41)

where λ1, λ4 ∈ IR and λ2 ∈ IR4, λ3 ∈ IR3 are obtained as:

λ1 =
∂χ

∂ds
i,l

( ps
l − ph)T

ds
i,l

γ 1

λT
2 =

∂χ

∂ds
i,l

( ps
l − ph)T

ds
i,l

02

λT
3 =

∂χ

∂ds
i,l

( ps
l − ph)T

ds
i,l

03

λ4 =
∂χ

∂ds
i,l

( ps
l − ph)T

ds
i,l

γ 4 −
∂χ

∂ds
i,l

( ps
l − ph)T

ds
i,l

ṗh .

In light of Eqs. (21)-(23), the derivative of the local safety
index is extended to the entire structure of the dual-arm robot
and all the relevant human points as:

Ḟ(t) = µ1(t) ċ(t) + µ2(t)
Tuα + µ3(t)

Tq̇n + µ4(t) (42)

with µ1, µ4 ∈ IR and µ2 ∈ IR4, µ3 ∈ IR3 defined as:

µ1 =
1

nh

nh∑
j=1

n∑
l=1

∫ 1

0
λ1( ps

l , ph, j , qi , c) ds

µ2 =
1

nh

nh∑
j=1

n∑
l=1

∫ 1

0
λ2( ps

l , ph, j , qi , c) ds

µ3 =
1

nh

nh∑
j=1

n∑
l=1

∫ 1

0
λ3( ps

l , ph, j , qi , c) ds

µ4 =
1

nh

nh∑
j=1

n∑
l=1

∫ 1

0
λ4( ps

l , ph, j , ṗh, j , qi , c) ds

(43)

that, as ḟ in Eq. (41), is linear with respect to ċ, uα , and q̇n .

D. Safety Planner Design

We are ready to present the proposed solution to Problem 1.
By setting ċ = uc and q̇n = un , the overall system dynamics
is: ċ

1ν

Ḟ

 =

 0
−T1ϵ

µ4

 +

 1 0T
4 0T

n
012 9 O12×n
µ1 µT

2 µT
3

 uc
uα

un

 , (44)

that, by defining the overall state variable ξ =
[
c 1σT F

]T,
can be rewritten as:

ξ̇ = f (t, ξ) + g(t, ξ)

uc
uα

un

 = f (t, ξ) + g(t, ξ)uξ , (45)

which is in the same form as in Eq. (1).
Let us recall the effect of each component of the overall

input uξ ∈ IRn+5 vector:
• uc allows scaling down the nominal trajectory σ d ;
• the components of uα =

[
uαap uαao uαr p uαro

]T
allow

modulating the amount of deviation from σ d
ap

, σ d
ao

, σ d
rp

and σ d
ro

, respectively;
• un allows generating an internal joint motion that

increases the safety field value without affecting the
operational task value σ .

The objective is to find an input uξ such that the safety field
value is above a certain lower threshold

¯
F while satisfying

other input constraints on uc and uα , which are detailed in
the following and included in a dedicated QP problem to be
solved. In detail, by expressing a CBF as:

¯
h f = F −

¯
F, (46)

the constraint on the decision variables that implements
Eq. (24) can be formulated as:

J f uξ ≥ −k f
¯
h f − µ4 (47)

where, in virtue of Eq. (42), it holds:

J f =
[
µ1 µ2 µ3

]
, (48)

and k f > 0 is a scalar gain.
At this point, the Safety Planner has to solve the following

constrained optimization problem:

minuξ

1
2
(uξ − uξ,n)T Qξ (uξ − uξ,n)+

1
2

qww2
f (49)

s.t. 0 ≤ uc ≤ 1, (50)

¯
uα ≤ uα ≤ ūα, (51)
J f uξ + w f ≥ −k f

¯
h f − µ4. (52)

Each constraint is detailed in the following:

• Eq. (50) constrains the time scaling parameter uc = ċ to
belong to the interval [0, 1]. Specifically, the condition
ċ ≥ 0 results in the time parameter c never decreasing,
thus ensuring that the trajectory is not travelled back-
wards; the condition ċ ≤ 1 guarantees that the trajectory
is not travelled with a velocity higher than the nominal
one.

• Eq. (51) constraints the minimum (
¯
uα) and maxi-

mum (ūα) deviation velocity. Such constraints might
be required in practice to avoid abrupt deviation from
the nominal trajectory. Moreover, if a constraint on the
maximum path deviation 1σ is needed by the applica-
tion, it can be considered as well by our framework by
resorting to the CBF approach;

• Eq. (52) handles the human-robot safety according to
Problem 1. The slack variable w f is needed to relax the
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constraint when the input uα reaches the limits imposed
by the constraints in Eq. (51).

Concerning the objective function in Eq. (49), it aims at find-

ing inputs uξ =
[
uc uT

α uT
n
]T closest to ud

ξ =

[
uc ud

α
T ud

n
T
]T

,
where: 

ud
c = 1,

ud
α = 04,

ud
n = kn

∂ F
∂q

,

(53)

with kn > 0. Having uc = ud
c implies ċ = 1, i.e., the

cooperative task executed at nominal speed (see Sec. III-F),
having uα = ud

α implies 1ϵ = 012, i.e., the nominal path
is followed without modifications, and having un as close as
possible to ud

n proportional to the gradient of the safety field
allows exploiting the possible redundancy of the system to
increase the safety.

Concerning qw ∈ IR, it is a positive scalar weight
related to the scalar slack variable w f , while Qξ ∈

IR(n+5)×(n+5) is a positive-definite weight matrix that can
be tuned to modulate the relative usage of the three vir-
tual inputs. For example, a higher value on the component
corresponding to uc means that the trajectory deviation and
the internal motion have to be preferred with respect to
the trajectory scaling.

After having solved the QP problem in Eq. (49), the
Safety Planner makes use of its solutions in Eq. (27)
to build the reference trajectory σ s(t)(νs(t)). Algorithm 1
describes the algorithmic steps of the proposed Safety Planner.
In detail, at first, the Safety field value F is computed
by resorting to Eq (23); then, the QP problem (49) is
solved having in input the computed F and the nomi-
nal trajectory; the solutions of the QP problem are then
exploited to compute the reference trajectory following these
steps:

• uc is integrated over time in order to obtain c,
• c and uα are used in Eq. (29) to compute the deviation

velocity 1ν, which is then integrated over time to obtain
1σ ,

• finally, 1σ , c, uc are used in Eq. (27) to compute the
reference trajectory σ s(νs) that is sent to the specific
employed controller, together with the vector un = q̇n
in Eq. (34), as described in Section IV-B.

At this point, the output of the Safety Planner is included in
the HQP low-level controller described in Sec. IV-B in order to
take into account also the higher-priority tasks in the hierarchy
(joint position and velocity limits in this case). In detail, the
reference trajectory tracking is performed by properly using νs

and σ s in the expression of bσ in Eq. (32) and by specifying
the internal motion as q̇n in Eq. (34). It is worth noticing that
in this final step, it is mandatory to adopt slack variables, as the
null space of the higher-priority tasks is possibly different with
respect to the one used inside the Safety Planner for computing
q̇n , since other constraints relative to higher-priority tasks can
be activated.

Algorithm 1 Safety Planner Algorithm
Data:

• Nominal trajectory σ d(νd)

• Joint position vector q
• Human point positions ph,1, · · · , ph,nh

Result:
• Safe trajectory σ s(νs)
• Null-space velocity vector un

begin
F = SafetyField (q, ph,1, · · ·, ph,nh

)→ Eq. (23)uc
uα

un

 = SolveQP (F̄, σ d , νd ) → Eq. (49)

c = Integration (uc)

1ν= DeviationVelocity (uα,c,uc)→Eq. (29)

1σ = Integration (1ν)[
σ s

νs

]
= SafeTrajectory (1σ ,1ν,c)→ Eq. (27)

return σ s, νs, un

end

V. APPROACH VALIDATION

A. Experiments

In this section, we show the experimental results obtained
validating the proposed architecture. The robot taken into
consideration is the one shown in Figure 1, which has been
designed for the EU-funded project CANOPIES,1 focusing
on human-multi-robot collaboration paradigm for precision
agriculture settings. The robotic system consists of a tracked
mobile base (nb = 7), a 2-DOFs torso (nt = 2), and two 7-
DOFs manipulators (nm = 7). The torso has a rotational joint
and a prismatic joint that allows its height to be changed.
Additionally, as the robot is supposed to operate within table-
grape vineyards, the left-end effector includes a mechanism
with scissors that can be used for cutting the bunch peduncle,
while the right-end effector is a standard gripper that can be
used to grasp and hold the bunch to harvest. Finally, the robot
incorporates a head equipped with a RealSense D435 RGB-D
sensor, positioned internally to serve as the robot’s “eyes”.
For the sake of clarity, despite our framework being able to
handle all DOFs of the system, we do not move the base in
the real experiments since the low-level controller of the base
and the arms are not fully integrated yet. Furthermore, for a
similar reason, we do use the two torso DOFs, as the robot
manufacturer is still developing their low-level controllers.

Table I reports the robot kinematic constraints in terms of
maximum/minimum joint positions and velocities. The control
software is designed and developed under the ROS Noetic
Ninjemys2 framework, while the QP problems described above

1www.canopies-project.eu
2http://wiki.ros.org/noetic
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TABLE I
CANOPIES ROBOT JOINT POSITION LIMITS (IN [RAD]) AND JOINT

VELOCITY LIMITS ([RAD/S])

are solved by using the GUROBI solver software3 freely
available under Academic Licence. A commercial laptop with
Intel Core i7 − 8750H CPU at 2.20GHz and 16GB RAM
is used for all validation results. Average execution time of
≈ 1e−3 s (over 1000 tests with different system states) is
obtained by considering the pipeline composed of the safety
planner and low-level controller, largely meeting the real-time
computation requirement (that is 1e−2 s for our robot). Note
that, whenever required to improve the computational burden,
more advanced optimization frameworks, such as in [33],
could be employed with respect to the HQP, but they are
out of the scope of this work. Moreover, the maximum RAM
occupancy recorded is equal to about 100 MB, which amply
adheres to the space constraints commonly encountered in
commercial PCs and robot-embedded computers.

In the following, we show experimental results obtained
both within an indoor laboratory environment, where the robot
performs a predefined periodic movement in a cooperative
and symmetric manner with the two end effectors, and within
an actual vineyard, where the robot performs a harvesting
operation using a single end effector. In all the experiments,
the robot operates alongside a human operator in a shared
workspace, each carrying out distinct tasks. For instance,
in our precision agriculture setting, the human might either
closely inspect the quality of harvested fruits or perform par-
allel harvesting activities nearby while the robot is harvesting
grape bunches. Therefore, ensuring safety is a critical aspect
in this co-existence scenario, particularly because the end
effectors are equipped with scissors. The inputs for the path
deviation in terms of orientations are set to zero (ψao = 03 and
ψro = 03 in Eq. (30)), meaning that the Safety Planner will
not modify the orientation, while the deviations in terms of
positions will be specified in the descriptions of the specific
experiments.

Regarding the human points position estimation by the
Perception System in Figure 2, we make use of Open-
Pose [34], which is a popular software that allows tracking
the human skeleton in the image plane. These 2D points are
then projected in Cartesian 3D space by exploiting the depth
information of the RealSense D435 sensor that is mounted

3https://www.gurobi.com

Fig. 3. Representation of the robot and the human skeleton in the
Rviz environment. The red spheres represent the human points taken into
consideration for the safety field value computation.

TABLE II
CONTROL GAINS AND SAFETY PLANNER PARAMETERS

inside the head of the robot [35]. Then, regarding the safety
field value computation, we consider three relevant points
representing the chest of the human and left/right wrists,
and the function χ in Eq. (20) is set as d. Figure 3 shows
the robot and the human skeleton recognized by OpenPose
in the Rviz environment, highlighting with red spheres the
human points taken into consideration for the experiments
presented in this section. Finally, the gains employed in the
HQP controller and the Safety Planner parameters used in
the described experiments are reported in Table II, where the
variables

¯
uα(·)

and ūα(·)
are used to denote any generic element

of the corresponding vectors
¯
uα and ūα .

All the experiments described in this Section are included
in the video provided as supplementary material.

1) Laboratory Experiments: Here, we show two indoor
experiments in which the two end effectors perform a coop-
erative motion to track a nominal segment with the absolute
frame. In both of them, the motion is realized in a symmetrical
manner, thus setting β = 0.5 and γ = 1 in Eq. (15). In this
configuration, the task function σ a represents the absolute
pose, while σ r represents the relative pose. The difference
between the two experiments lies in the relative weights set
for the virtual inputs uc and uα , to highlight both the effects in
the nominal trajectory scaling and modification separately. The
absolute frame orientation is kept at the initial value, while the
relative position between the two end effectors is required to
reach:

σ d
rp

=
[
0 −0.30 0

]T
, (54)

keeping the relative orientation constant at its initial value.
In both experiments, a human operator enters the scene and
gets close to the robot while it is following the nominal
trajectory. This motion leads the safety field value to decrease
and results in the Safety Planner deviating and scaling down
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the trajectory. In particular, in the experiments, the input ζ rp
is set to 03, meaning that the Safety Planner does not modify
the relative position between the two end effectors, while the
input related to the absolute position deviation is set to:

ζ ap = n̂a
o uαap =

ph − σ ap

|| ph − σ ap ||
uαap ,

where ph is the average position of the considered human
points and n̂a

o is the unit vector connecting this average point
and the absolute frame position.

In the first experiment, we adjust the value in the Qξ matrix
in Eq. (49) to deviate more from the nominal trajectory rather
than scale it down to keep the safety field value above the
minimum threshold. This is obtained by lowering the weight
components in Qξ related to the virtual input uαap with respect
to the ones related to uc.

Figure 4 shows the obtained results. Figure 4.a) reports the
evolution of the safety field value over time (solid blue line)
during the experiment, compared to the imposed minimum
threshold

¯
F (horizontal red-dashed line). In the first 25 seconds

of the experiment, the human operator stays far from the
robot while it performs twice the requested movement; then,
he extends the right arm toward the robot, and the safety field
value decreases. When the robot tries reaching the waypoint
closer to the human for the third time, the safety field value
gets close to the imposed threshold, triggering the activation
of the constraints in the QP problem in Eq. (49). The Safety
Planner computes a deviation from the nominal trajectory
that keeps the safety field to a value equal to or greater
than the minimum threshold. This is especially evident from
Figure 4.b) and Figure 4.c). Specifically, the former shows
both the nominal (in blue) and safe (in red) trajectories, while
the latter shows the computed virtual input uαap (bottom
part) together with the corresponding 1σ (top part) that
quantifies the deviation from the nominal path. At the same
time, Figure 4.d) shows the evolution of the virtual input
uc (bottom part) and the corresponding c value (top part),
from which it is possible to understand that the scaling input,
in this case, is barely used by the Safety Planner, given the
relative weight that we have set to that virtual input. Finally,
Figure 4.e) and Figure 4.f) show the normalized joint positions
and velocities and the corresponding normalized minimum
and maximum thresholds (red-dashed lines), from which it
is possible to notice that the high-priority tasks in the HQP
controller are successfully performed. After about 10s, the
human operator retracts his arm, allowing the robot to reach
the desired waypoint. Then, the same operation is repeated
one more time, and the human operator extends his left arm,
triggering once again the activation of the constraint on the
safety field value in the QP problem. After about 10s, the
human operator retracts his arm, and the robot keeps following
the desired segments freely. During the entire experiment (the
same applies to the following ones), the Safety Planner also
computes the virtual input q̇n in Eqs. (34) and (45) to generate
internal motions aimed at increasing the safety field value.

In the second experiment, we choose instead to scale down
the trajectory rather than deviate from the nominal path. This is
obtained by increasing the weight components in Qξ related

to the virtual input uαap with respect to the ones related to
uc. The desired waypoints for the absolute position and the
human operator’s movements are the same as in the previous
experiments, easing the comparison between the two robot’s
behaviors. The results are reported in Figure 5. Even in this
case, looking at Figure 5.a) it is possible to observe that the
safety field value never goes below the imposed minimum
threshold. In this case, differently from the previous experi-
ment, the Safety Planner makes much more use of the virtual
input uc, as can be seen from Figure 5.d) where ċ decreases
its value until completely stopping the nominal trajectory
(ċ = 0 at t = 27s and t = 47s). Figure 5.b) and Figure 5.c)
show that, in this case, the deviation from the nominal path is
smaller compared to the previous experiment, given the chosen
relative weights, while Figure 5.e) and Figure 5.f) show that
the joint kinematic constraints are still respected.

2) Outdoor Environment: In the following, we report the
results obtained during one of the harvesting experiments
conducted during one of the experimental campaigns of the
CANOPIES project, held in Aprilia (Italy) in February 2023.
In particular, we provide results relative to harvesting opera-
tions performed with a single arm. It is worth noticing that
harvesting operations have also been demonstrated in dual-
arm mode, as can be seen in the accompanying video, but
it is not reported here for the sake of brevity. The position
of the peduncle to cut has been obtained in real-time by the
perception software developed by one of the partners of the
project [36], which recognizes the bunches to be harvested and
gives in output the 3D coordinates of the point to be cut. The
RGB-D camera mounted on the head of the robot is used for
this purpose.

In this experiment, the parameters in Eq. (15) are set as
β = 1 and γ = 0 to choose the right end effector to perform
the harvesting operation. In this configuration, indeed, the
task variable σ r represents the right end effector pose. The
corresponding path deviation input ζ rp is set as:

ζ rp = n̂r
o uαr p =

ph − σ rp

|| ph − σ rp ||
uαr p ,

where ph is the average position of the considered human
points and n̂r

o is the unit vector connecting this average point
and the right end effector position.

The Trajectory Generation module outputs the nominal right
end effector position and orientation trajectories obtained by
connecting a series of proper waypoints through trajectories
characterized by trapezoidal velocity profiles. The waypoints
list is the following:

• a pre-grasp configuration placed at a predefined distance
from the point of the peduncle to be grasped;

• a grasp configuration that allows to cut the peduncle and
grasp the bunch;

• a pre-release configuration at a certain distance from the
box placed on the mobile base;

• a release configuration over the box.
In the experiment described below, a human operator shares

the workspace with the robot while it performs the harvesting
operation. Initially, the robot follows the nominal trajectory
until the human operator gets closer, triggering the activation
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Fig. 4. First experiment, uc weighted more than uαap . a) Safety field value over time and imposed minimum threshold (red-dashed horizontal line). The
safety field value stays above the minimum threshold during the experiment; b) Nominal (blue) and safe (red) trajectories for the absolute frame. The proposed
Safety Planner changes the nominal path in order to keep the safety value above the imposed minimum threshold; c) Deviation from the nominal path and
virtual input uα . The value of uα resulting from the QP problem in Eq (49) is used to compute the deviation from the nominal trajectory. d) Parameter
c and virtual input uc . e) Normalized joint position with the imposed thresholds. f) Normalized joint velocities with the imposed thresholds. The value of
uc resulting from the QP problem in Eq (49) is used to scale down the nominal trajectory. In this case, this virtual input is weighted more than uα , and
consequently, the nominal trajectory is not scaled down much.

of the constraint in Eq. (52). The relative weight between the
two inputs uαr p and uc is chosen to make use of both of them,
and the results are reported in Figure 6.

Figure 6.a) shows the evolution of the safety field value
over time. The human operator gets close to the robot twice
during the experiment. Specifically, around t = 10s, the human
approaches the robot and the safety field value reaches the
proximity of the minimum threshold. This results mainly in
a deviation from the nominal trajectory (Figures 6.b)-6.d))
for about 10s. Then, the human operator steps back, and the
robot resumes the tracking of the nominal trajectory without
modifications. Around t = 50s, the operator gets close again to
the robot, leading to a further phase, with a duration of about
20s, where the path is modified. In this case, the virtual input
uαr p reaches its maximum value, and the other virtual input
uc is used to scale down the trajectory. It is worth noticing
that in this phase, the safety field value exceeds the minimum
threshold because both the virtual inputs have reached their
respective maximum and minimum values. In this condition,
the algorithm maximizes the safety field value, but there is
no guarantee of respecting the minimum threshold. It is worth

noticing that, even in this situation, the safety of the human
operator is still preserved as ċ = 0 implies that the Safety
Planner stops the nominal trajectory. Finally, at t = 69s, the
human operator steps back, allowing the robot to finish the
harvesting operation. Figures 6.e) and 6.f) demonstrate that
the joint limits are respected during the entire experiment.

B. Comparison With Other Algorithms

In this section, we compare our algorithm with two baseline
methods: an evasive motion baseline and an emergency stop
baseline. In the following, we denote with A1 our proposed
approach, A2 the evasive motion baseline and A3 the emer-
gency stop method.

Algorithm A2 is inspired by the work in [37], where the
control input is modified based on the danger field. Here,
we use the safety field, following the same policy:

q̇ = m q̇σ +

[
I − m J† J

]
q̇0 , (55)
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Fig. 5. Second experiment, uc weighted less than uαap . a) Safety field value over time and imposed minimum threshold (red-dashed horizontal line). The
safety field value stays above the minimum threshold during the experiment; b) Nominal (blue) and safe (red) trajectories for the absolute frame. The proposed
Safety Planner changes the nominal path in order to keep the safety value above the imposed minimum threshold; c) Deviation from the nominal path and
virtual input uα . The value of uα is smaller with respect to the previous experiment given the chosen relative weights. d) Parameter c and virtual input uc .
e) Normalized joint position with the imposed thresholds. f) Normalized joint velocities with the imposed thresholds. The value of uc resulting from the QP
problem in Eq (49) is used to scale down the nominal trajectory. In this case, this virtual input is weighted less than uα . Thus, the trajectory is scaled down
until it is completely stopped.

where:

m =


1 if F ≥ (1 + ϵ)

¯
F

0 if F ≤ (1 − ϵ)
¯
F

1
2

+
1
2

sin
π(F −

¯
F)

2ϵ
¯
F

otherwise,
(56)

with q̇σ is the joint velocity input for achieving the operational
task, which can be computed by resorting to the CLIK
algorithm as q̇σ = J†

σ (νs
+ Kσ σ̃ ), q̇0 the gradient of the

safety field and ϵ < 1 a design constant that enables a smooth
control command.

Algorithm A3 is a simple emergency stop algorithm in
which the desired trajectory for the robot is stopped when
the value of the safety field goes below a certain threshold

¯
F .

In the formulation devised in Section IV, this is achievable by
changing the value of uc as follows:

uc =

{
0 if F ≤

¯
F

1 if F >
¯
F

(57)

while keeping all the components of the virtual input uα = 03.
The metrics taken into consideration for the comparison are
(M1) Average safety field value, (M2) Average path error, that
is the average deviation from the nominal path, and (M3)

Robot idle time, that is the amount of time in which the
robot task is interrupted. The three algorithms are employed
in the same simulation scenario, in which the robot has to
reach two waypoints with the absolute position connected by a
trapezoidal velocity profile in a periodic manner while keeping
the absolute orientation and the entire relative pose equal to
the initial value. A human operator moves from the right side
to the left side of the robot, getting close to the safety field
threshold, which is set as

¯
F = 0.9. It is worth noticing that

in all three simulations, the mobile base DoFs are taken into
account. Figure 7 shows the obtained results.

The top plot shows the safety field value over time for
the three algorithms during the simulation. We can observe
that Algorithm A3 reaches the lowest value compared to
Algorithm A1 and A2; this is because the human operator
gets closer to the robot after it is stopped, and the algorithm
does not foresee any deviation from the nominal trajectory.
On the other hand, Algorithm A2 drives the end effectors
away from the human operator, achieving better results but
still exceeding the chosen threshold. This is unavoidable since
there is no formal constraint on the safety field value in
the formulation. Finally, Algorithm A1 manages to keep the
safety field value always over the specified threshold, given
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Fig. 6. Field experiment. a) Safety field value over time and imposed minimum threshold (red-dashed horizontal line); b) Nominal (blue) and safe (red)
trajectories for the absolute frame. The nominal trajectory is composed of a sequence of waypoints suitable for performing a harvesting operation. The
proposed Safety Planner changes the nominal path in order to keep the safety value above the imposed minimum threshold; c) Deviation from the nominal
path and virtual input uα . d) Parameter c and virtual input uc . e) Normalized joint position with the imposed thresholds. f) Normalized joint velocities with
the imposed thresholds.

Fig. 7. Conducted comparison, A1 denotes our proposed approach, A2
the evasive motion and A3 the emergency stop. Top: safety field value over
time during the simulation. Bottom: path error norm over time during the
simulation.

the presence of the constraint on the minimum value of the
safety field in the QP problem. The middle left plot shows the
path error norm over time for the three algorithms. Algorithm
A3 does not introduce any error on the path, since it only
modifies the reference velocity, preserving the nominal path.
Regarding the other two algorithms, A1 deviates less from

TABLE III
COMPUTED METRICS FOR THE COMPARISON. A1: PROPOSED APPROACH;

A2: EVASIVE MOTION; A3: EMERGENCY STOP. M1: AVERAGE SAFETY
FIELD VALUE; M2: AVERAGE PATH ERROR; M3: PERCENTAGE

ROBOT IDLE TIME

the nominal path than A2. This is motivated by the fact that
our algorithm has the additional degree of freedom of the
trajectory scaling to exploit (as shown in the middle right)
with respect to the evasive motion, which can only modify the
path. Table III summarizes the metrics values obtained by the
different algorithms during the simulations, showing that our
approach additionally minimizes the robot’s idle time. Joint
limits are fulfilled in all cases as shown in the bottom plots.

VI. CONCLUSION

In this paper, we have proposed an architecture for handling
human safety in a human-robot interaction scenario. In detail,
a Safety Planner allows modifying the nominal desired tra-
jectory for a dual-arm robotic system in terms of velocity
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scaling and deviation from the nominal path for human-robot
interaction settings. The level of human safety is quantified
by defining a safety field, and the devised strategy finds the
optimal trajectory modification parameters by solving a QP
problem. The output of the Safety Planner has been integrated
within an HQP control framework that allows to perform
several other tasks simultaneously. Finally, the effectiveness of
the proposed approach has been experimentally validated on a
dual-arm robot both in indoor and realistic outdoor scenarios.

Future efforts will be devoted to i) integrating human
motion and intention prediction modules in the devised
strategy to increase the level of safety further and situ-
ation awareness in collaborative settings; i i) investigating
human-robot task allocation strategies to properly perform
complex operations by assigning elementary tasks to the avail-
able agents (human and/or robots) while guaranteeing a certain
level of safety; i i i) including subjective bio-metric parameters
in the field assessment such as heart rate or sweating, iv)
including methodologies to increase the planner robustness
during periodic motions such as in [38] and [39], and v) in
the case of humans interacting with multiple robots, tackling
the multi-robot nature of the system. In this case, the safety of
the human operators has to be assessed by taking into account
the degree of cooperation of the robots and controlled by
increasing the overall redundancy of the system; furthermore,
a distributed setting in order to avoid the bottleneck of a central
unit has been devised in such a scenario.

REFERENCES

[1] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot
interaction in industrial collaborative robotics: A literature review of
the decade 2008–2017,” Adv. Robot., vol. 33, nos. 15–16, pp. 764–799,
Aug. 2019.

[2] A. E. Abdelaal, P. Mathur, and S. E. Salcudean, “Robotics in vivo:
A perspective on human–robot interaction in surgical robotics,” Annu.
Rev. Control, Robot., Auto. Syst., vol. 3, no. 1, pp. 221–242, May 2020.

[3] J. P. Vasconez, G. A. Kantor, and F. A. A. Cheein, “Human–robot
interaction in agriculture: A survey and current challenges,” Biosyst.
Eng., vol. 179, pp. 35–48, Mar. 2019.

[4] K. S. Jones and E. A. Schmidlin, “Human–robot interaction: Toward
usable personal service robots,” Rev. Hum. Factors Ergonom., vol. 7,
no. 1, pp. 100–148, Sep. 2011.

[5] M. Lippi and A. Marino, “A control barrier function approach to human-
multi-robot safe interaction,” in Proc. 29th Medit. Conf. Control Autom.
(MED), Jun. 2021, pp. 604–609.
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