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Guest Editorial
Special Issue on Learning From Imperfect Data

for Industrial Automation

WITH the rapid development of advanced sensing,
communication, and the industrial Internet of Things,

it has become much easier to obtain, transmit, and, store a
massive amount of real-world data. However, imperfect data
is inevitable in real-world systems, such as the existence
of outliers, contaminated, incomplete, inaccurate, and even
missing information in the data. This phenomenon is called
data imperfection, which usually makes traditional data-
driven modeling and automation methods either unfeasible
or ending at undesired inaccuracies. This has been a well-
known challenge to data-driven methods when applied to
real-world systems, such as process industry, manufacturing,
energy networks, and transportation systems.

The central theme of this Special Issue is on challenges
and responses in automation science and engineering for
learning from imperfect data, with the purpose of providing
a forum to share the state of art, new theories, and methods
in dealing with imperfect data for industrial automation, as
well as the achievements and lessons learnt. We received
47 submissions (excluding several invalid submissions) that
cover a broad range of topics relevant to automation
science and engineering for learning from imperfect data.
Through a rigorous peer-review process, 18 articles have
been accepted, which assemble the latest cross-industry
and multidisciplinary research in academic and industrial
communities on automation science, data science, artificial
intelligence, and control engineering. The contributions in this
Special Issue can therefore be divided into the following three
categories.

1) Learning from imperfect data for modeling and
optimization.

2) Learning from imperfect data for control.
3) Learning from imperfect data for process monitoring and

fault diagnosis.
Specifically, the main contributions of the accepted articles,

listed in the appendix, are highlighted in the following.

A. Learning From Imperfect Data for Modeling and
Optimization

In [A1], a modeling and operation optimization strategy
based on feedstock property and production features is
presented to enhance the production performance of a
distillation unit. One of the challenges is how features can be
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uncovered from high-dimensional and imperfect data, where
imperfect data refers to product quality data that is unavailable
online. In the proposed strategy, the authors inject the inherent
characteristic of the process into the data-driven method to
extract the feedstock property in a data-based and knowledge-
oriented manner. Similarly, the work in [A2] develops a
multiline rescheduling framework for data-driven surrogate
modelling and networkwise optimal rescheduling of multiple
lines by overcoming the difficulties of data incompleteness,
imbalance, and lack of comprehensiveness.

To mitigate the impact of prediction errors on downstream
production decisions, Gong et al. [A3] propose a predic-
tion model that minimizes the decision error. Meanwhile,
to enhance the adaptability to imperfect data, the prediction
model is extended to a distributionally robust version, which
takes into account of the worst-case formulation in the feature
space. Likewise, the work in [A4] examines the worst-case
scenario. The authors investigate the recovery of blackout
missing data, which is essentially the interpolation of industrial
time series data. A hierarchical imputation framework is
developed to recover missing values under different operating
conditions for incomplete datasets.

In order to realize accurate modeling of industrial process
with nonstationary characteristics, two different algorithms are
presented in [A5] and [A6], respectively. The work in [A5]
proposes an interval type-2 fuzzy neural network based on
active semi-supervised learning, which can actively identify
the occurrence moments of concept drift and learn from
samples with partial labels. In [A6], Wen et al. propose a novel
online sequential sparse robust neural networks with random
weights for imperfect industrial streaming data to achieve
highly reliable online modeling of time-variant dynamic
systems. This work considers the widespread outlier problem
in the input and output data and thus enhances the robustness
of the model by Schweppe generalized M-estimation.

B. Learning From Imperfect Data for Control

For the sintering process with various imperfect data,
An et al. [A7] propose an intelligent control strategy of
ignition temperature based on working-condition recognition
to stabilize the ignition temperature. This work uses clustering
algorithm to identify the different working conditions caused
by the large variation and fluctuation of gas calorific value,
which avoids the influence of the fluctuation and instability
of the imperfect data in the system. The challenge of
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obstacle avoidance of prostheses is that the recognition
of environments by the human–robot interaction between
amputees and prostheses is not accurate enough because of the
presence of noise and individual differences. Hence, the work
in [A8] develops a vision-locomotion coordination control
method with imperfect data learning to help the powered lower
limb prosthesis fulfill several obstacle avoidance tasks.

In addition, there are two works on data-driven robust
control. Ding et al. [A9] develop an event-triggered online
learning fuzzy-neural robust controller which is applied to
the furnace temperature control of municipal solid waste
incineration process with outliers and noise. The outliers are
eliminated by the box-plot method, and the data are denoised
with a Gaussian filter. The robust optimal control problem
is investigated in [A10] based on data-driven robust policy
iteration. This work allows for dynamic uncertainties resulted
from the interconnected dynamic system, as well as unknown
bounded disturbances throughout the learning process.

C. Learning From Imperfect Data for Process Monitoring
and Fault Diagnosis

Aiming at the problem of less labeled and multisource
heterogeneous data of plate shape quality, a self-supervised
learning framework based on multisource heterogeneous
contrast learning is developed in [A11]. The self-supervised
feature learning phase is responsible for training the encoder
with massive unlabeled data. A classifier followed by the
encoder is built with less labeled data in the supervised
fine-tuning phase. In [A12], Quan et al. use deep dilated
causal convolutional neural network combined with logistic
regression to detect and predict the stall inception using
the imperfect time-series data of axial compressors with
the rotating stall. The method can detect the irregular and
imperfect stall inception and capture the small fault features
when the characteristics of stall inception signals or data are
not unobvious, irregular, and imperfect. Similarly, a fuzzy
C-means-based algorithm is presented in [A13] for outlier
detection of the real-world industrial data collected from a
wire arc additive manufacturing pilot line.

Wind turbines (WTs) usually work in harsh environments
and complex operating conditions, which easily leads to
nonstationary, randomness, and multiple outliers in operating
data. Aiming at solving this problem, Zhang et al. [A14]
propose a fault diagnosis method for WT generators based
on multitask learning. In this work, the imperfect operating
data are divided into different conditions and each condition
is constructed as a task. Through parameter sharing between
different tasks, it overcomes the deficiency of data and realizes
fault diagnosis under complex working conditions. Likewise,
Lu et al. [A15] address the fault diagnosis of an offshore
WT. As the collection and transmission of offshore WT
data is severely restricted, the work in [A15] adopts the
event-triggered federated learning to maintain high diagnostic
performance while reducing communication costs.

In [A16], Wang et al. develop a well-behaved superheat
degree identification model. To deal with labeled data scarcity
and high annotation costs, a contrastive anchors-based-label
propagation algorithm is used to predict the pseudo-labels

and adopt a variational information domain adaption module
and mini-batch incremental learning strategy to enhance the
accuracy of model identification. In [A17], Vantilborgh et al.
correlate the expert labelling with measurement data to
construct a generic prognostic tool for probabilistic condition
monitoring of mechatronic systems. Likewise, Xiao et al.
[A18] report a work on the power consumption monitoring
with imperfect data. In this work, a prediction-based approach
using an interpretable data-driven model is developed and
achieves satisfactory monitoring accuracy.

As guest editors, we hope that the collection of the papers
in this Special Issue can reflect the current works in the area
and thus promote the research information exchanges of the
relevant research communities.
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