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Abstract— Unmanned aerial vehicles (UAVs), commonly known
as drones, are being increasingly deployed throughout the globe
as a means to streamline monitoring, inspection, mapping,
and logistic routines. When dispatched on autonomous mis-
sions, drones require an intelligent decision-making system for
trajectory planning and tour optimization. Given the limited
capacity of their onboard batteries, a key design challenge is
to ensure the underlying algorithms can efficiently optimize the
mission objectives along with recharging operations during long-
haul flights. With this in view, the present work undertakes a
comprehensive study on automated tour management systems
for an energy-constrained drone: (1) We construct a machine
learning model that estimates the energy expenditure of typical
multi-rotor drones while accounting for real-world aspects and
extrinsic meteorological factors. (2) Leveraging this model, the
joint program of flight mission planning and recharging opti-
mization is formulated as a multi-criteria Asymmetric Trav-
eling Salesman Problem (ATSP), wherein a drone seeks for
the time-optimal energy-feasible tour that visits all the target
sites and refuels whenever necessary. (3) We devise an efficient
approximation algorithm with provable worst-case performance
guarantees and implement it in a drone management system,
which supports real-time flight path tracking and re-computation
in dynamic environments. (4) The effectiveness and practicality of
the proposed approach are validated through extensive numerical
simulations as well as real-world experiments.

Note to Practitioners—This study is stimulated by the need
for developing pragmatic and provably efficient automated tour
management systems for UAVs deployed on energy-constrained,
long-distance flight missions. As such, UAVs provide a nifty
platform for facilitating environmental monitoring, disaster man-
agement, transport of medical supplies, as well as expediting
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last-mile deliveries. However, existing path planners generally
fall short of capturing several crucial aspects, such as detailed
power consumption model (e.g., factoring in payload, wind speed
and direction) or performance guarantees, potentially leading to
underutilized or infeasible routing decisions. To address these
issues, the present work proposes a theoretically-backed routing
approach with a certifiable degree of optimality and develops
an effective, practical power consumption evaluation model for
multi-rotor UAVs, verified on multiple drone models.

Index Terms— Unmanned aerial vehicles, flight mission plan-
ning, recharging optimization, power consumption modeling,
approximation algorithm, traveling salesman problem.

I. INTRODUCTION

ITHIN future smart cities and ecosystems, autonomous
drones are often envisaged as key-enabling technolo-
gies that would bolster and refine a range of vital services
and procedures, including environmental surveillance, search
and rescue operations, traffic monitoring and logistics [1], [2].
This outlook rests on drones’ salient properties: (1) Energy-
efficiency: Small drones typically consume less energy per
package-km than delivery trucks [3]. They are particularly
energy-efficient for transporting lightweight items in short trips
(within 4 km), whereas ground vehicles are useful for carrying
heavier objects over long distances. (2) Agility: Unlike on the
ground, there is little restriction and fewer obstacles in the
sky, hence drones can travel across space in straight paths
with nimble navigation. (3) Swiftness: Aerial transportation
is usually not hampered by traffic congestion. Thus, the
flight duration is mostly reflected by the distance traveled.
Drones can also be rapidly launched via catapults and drop
payloads by parachutes in response to time-critical situations.
(4) Safeness: As there is no on-board human operator, UAVs
are particularly appealing for mission tasks that are hazardous,
contagious or lethal. Furthermore, in applications such as
transport of medical supplies or disaster management, aerial
drones may conduce to saving lives. (5) Low-cost: Drone
technologies have matured over time and price has dropped
due to economies of scale. The adoption of customized drone
systems can yield notable cost reduction in a number of
applications, including field spraying, surveillance in precision
agriculture, monitoring of difficult-to-access infrastructure as
well as parcel deliveries [4].
Nevertheless, drones are plagued with several opera-
tional challenges, such as limited battery endurance, meagre
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loadability and sensitivity to ambient factors [3], [5]. In par-
ticular, typical drones are only suitable for short-range trips,
which restrains their applicability in persistent, long-distance
mission tasks. Incidentally, though drones are expected to
travel within certain high altitudes, they are largely susceptible
to wind conditions (especially in light of their sheer weight).

Most of the existing planners for optimizing UAV routing
focus on short-distance (reachable within the maximum flight
time), recurrent tours that can be performed in parallel by
a fleet of drones (e.g., for last-mile package deliveries).
While beneficial on their own, these methods are not readily
amenable to fuel-constrained, distant flight trips which demand
a battery endurance model and entail an additional over-
head for managing the recharging decisions. Such flights are
often associated with solitary or non-parallelizable missions
involving monolithic workflows or interdependent subtasks.
One practical example concerns police patrols, which are
typically discerned based on the pre-assigned monitoring
area or district. Currently, UAE is actively utilizing drones
to accompany police cars or independently monitor specific
sites of interest [6], [7]. Another example relates to drone-
based postal/governmental services being tested in UAE,
France, UK, and Japan [8]-[11]. As is customary in these
procedures, UAV’s flight trajectory would likely consist of
a sequence of visits to designated locations, wherein the
shipment can undergo the prescribed successive pipeline for
authentication and/or certification (e.g., stamp collection for a
permit/document).

Without a reliable and inclusive battery consumption model
in place, long-distance drone routing is prone to disruptions
and exorbitant operational costs. Arguably, an ill-estimated
battery charge level (e.g., owing to overlooked adversarial
weather conditions) might degrade service quality or even
lead to mission failure (e.g., when a drone runs out of charge
before reaching a charging station or returning to the depot).
On the other hand, frequent recharging detours might incur
unnecessary delays and excessive energy expenditure.

In response to these demerits, we synthesize and experi-
mentally validate an effective multifaceted tour management
framework for energy-constrained, long-haul drone routing
applications. Specifically, the present study complements and
advances the relevant literature with the following four-fold
contributions:

» Drawing on intensive experimentation and analysis,
we design a first-order regression model for estimating
energy consumption of typical multi-copter UAVs. The
model accommodates wind speed and direction, UAV
motion kinematics and payload mass, allowing for suffi-
ciently accurate yet computationally inexpensive battery
performance estimation in complex real-world environ-
ments (within 5% deviation error, as validated on three
different drones).

» With the established model, the energy-constrained tour
management problem is formulated as a multi-objective
extension of ATSP, in which a drone is tasked with
visiting the chosen (possibly distant) target locations
while maintaining battery state-of-charge (SoC) within
limits. The objective function aims at minimizing the
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total trip duration; the flight time plus the duration of
recharging operations.

» We devise an efficient approximation algorithm inducing
near-optimal (within an asymptotic constant factor) tan-
dem of flight mission decisions and charging strategies.
The average-case performance and scalability of the algo-
rithm are demonstrated through numerical simulations.

» We implement the proposed approach in a drone manage-
ment system that supports real-time flight path tracking
and re-computation in dynamic environments. Subse-
quently, simulation studies and real-world experiments
are provided to corroborate the effectiveness and prac-
ticality of the featured planner.

II. RELATED WORK

The extant literature on drones can be thematically orga-
nized into two major threads: (1) low-level transient con-
trol of flight operations, for instance, modulating propellers
and maintaining balance through PID and MPC controllers
[12], [13], and (2) high-level planning and management of
drone missions, for example, obstacle avoidance, localization
and mapping, and trajectory planning [14]. In the latter theme,
most prior research on UAV routing, such as the works in
[15]-[20], focused on short-distance fleet-based flight scenar-
ios intended primarily for last-mile parcel deliveries. To over-
come the range barrier, the studies in [21]-[23] propose
different extended setups, involving mobile assisting platforms
or multiple spatially distributed battery charging/swapping
stations. Yet, the approaches developed therein lack optimality
guarantees (except the one in [21]) and leave unexplored the
potential of optimizing the duration of recharging operations
(hence the consumed energy). Table I provides a further
comparison between the present paper and the aforementioned
studies.

Meanwhile over the recent past, several general-purpose
planners for autonomous robots, such as Kongming [25],
p-Sulu [26], COLIN [27] or ScottyActivity [28], have emerged
in the Artificial Intelligence community. An important charac-
teristic of COLIN and ScottyActivity is that they do not require
time discretization. This is essential for efficient planning
in scenarios with long operational horizons and activities
with multiple time scales. Although these approaches have
significantly increased expressivity of the problems that could
be modeled, there is a lack of theoretical understanding of
solution quality and running time. In particular, they often rely
on Heuristic Forward Search (e.g. as in COLIN and Scotty-
Activity), and Integer Programming (e.g., as in p-Sulu), both
of which are provably unscalable in many domains. This work
explores a different approach by exploiting problem structure
with a deeper understanding from a theoretical perspective.

The problem under study is linked to several variants of
the Vehicle Routing Problem (VRP), namely Solar-VRP [29],
Hybrid-VRP [30], Green-VRP [31], and Electric-VRP [32].
Solar-VRP seeks to optimize the route and speed of a
solar-powered electric vehicle in a single-source single-
destination tour such that power consumption is balanced by
harnessed solar energy. In Hybrid-VRP, the objective instead is
to minimize the fuel consumption of a hybrid (electric and fuel
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TABLE I

A COMPARATIVE SUMMARY OF RELATED LITERATURE ON UAV ROUTING AND MISSION PLANNING PROBLEMS. THE ACRONYMS CS, BSS AND TLP
STAND FOR CHARGING STATION, BATTERY SWAP STATION AND TAKEOFF AND LANDING PLATFORM, RESPECTIVELY

Power

. Recharging Experimental | Optimality . . -
Problem Setup ng;::gflg(nm Optimization Validation Guarantees Intended Flight Trajectory Application
Sundar and Rathinam (2013) [21] Single UAV, multi-CS X X X 4 Long-distance, single trip Multi-domain
Dorling et. al. (2017) [15] Multi-UAV, single CS ‘White-box model X X X Short-range, multi-trip Logistics
Song et. al. (2018) [17] Multi-UAV, multi-CS X X X X Short-range, multi-trip Logistics
Vivaldini et.al. (2019) [24] Single UAV, single CS X X 4 X Short-range, single trip Monitoring
Jeong et.al. (2019) [16] Single UAV, mobile BSS ‘White-box model X X X Short-range, multi-trip Logistics
Shao et. al. (2020) [22] Single UAV, multi-BSS X X X X Long-distance, single trip Logistics
Ribeiro et. al. (2020) [23] Multi-UAV, multi-CS X X X X Long-distance, single trip | Monitoring & inspection
Torabbeigi et. al. (2020) [19] Multi-UAV, single CS Black-box model X X X Short-range, single trip Logistics
Cheng et. al. (2020) [20] Multi-UAV, single CS ‘White-box model X X X Short-range, multi-trip Logistics
Huang et.al. (2021) [18] Single UAV, mobile TLP X X X X Short-range, multi-trip Logistics
‘ Present work Multi-U, AV,SiS‘:]g; ree(gjl:‘l\:;l lri):‘éléi-((s:ese Sec. VII) Black-box model ‘ v ‘ v ‘ v ‘ Long-distance, single trip ‘ Multi-domain
powered) vehicle by modulating its driving mode based on trip
information and finding an optimal path considering interme- SO orene
diate filling and charging stations. Green-VRP, Electric-VRP oo
. . . . Station
and variants thereof are concerned with optimal routing and
. . . . ite of
refueling planning of a fleet of alternative fuel-powered vehi- @ pieil
cles considering the associated environmental and financial st
tolls. Unlike the setting studied here, the vehicle energy/fuel i
consumption rate is assumed constant in the preceding line of Fath
studies. For current purposes, we cast the energy-constrained
drone tour management program as an extended version of
the Fuel-constrained UAV Routing Problem (FCURP) studied  Fig. 1. A drone flight mission plan with charging stations.

in [21]. Therein, the authors develop an approximation algo-
rithm for FCURP, based on the approach in [33] for the special
case of the problem with symmetric travel costs. Building
upon these methods, we devise an asymptotic constant-factor
approximation algorithm for multi-objective FCURP and val-
idate its practicality experimentally through real-world trials.

Although power consumption modeling and estimation of
electric vehicles has been extensively studied, the research
focus revolved primarily around ground vehicles [34]-[39].
Deviating from the latter, UAVs exhibit certain unique char-
acteristics that entail new challenges (e.g., the impact of wind
is more substantial for drone flight). As surveyed in [40], the
methods developed for drones can be broadly categorized into
two types: model-based white-box and black-box. The former
approach hinges on explicit theoretical (in a sense “micro-
scopic”’) behavior model of a drone that comprehensively char-
acterizes the motor performance, aerodynamic environment,
and battery systems. However, producing a reliable white-box
model often requires a large amount of data for calibration as
well as specific particulars of the drone. For example, the aero-
dynamic parameters such as propeller and motor efficiencies,
drag coefficients could be cumbersome to compute accurately
without resorting to sophisticated experimental setups like
wind tunnel. In contrast, a model-agnostic black-box method
that relies on generic statistical techniques can estimate battery
endurance of a drone with only a small set of measurable
variables and parameters. In the sections to follow, we design
a simple yet accurate power consumption regression model
for multi-copter UAVs which is then leveraged for joint flight
mission planning and recharging optimization.

III. PROBLEM STATEMENT

This section formalizes the problem of joint flight mission
planning and recharging optimization for battery-operated

autonomous drones. We propose a multi-criteria objective
function that seeks to complete a flight tour mission for a set
of target sites in the shortest time while minimizing duration
of intermediate recharges.

As illustrated in Fig. 1, consider a set of sites of interest,
denoted by &, that a drone needs to visit (e.g., sites for
measurements or patrolling or drop-off locations of parcels),
and a set C of charging station locations where a drone can
refuel its battery. Let vy correspond to the base location of a
drone and V £ SUC U {vp}.

Given a pair of locations u, v € V, we denote the designated
direct flight path from u to v by €(u, v), and the corresponding
flight time by 7 (1, v). As is customary, we assume that, while
in route, the drone first ascends vertically to a desired altitude,
then travels in a straight path, and finally descends to the
destination vertically. Let E(f (u, ), r(u,v)) be the energy
consumption required for the drone to fly along £(u,v) in
a time span of 7(u,v). Here, E(-, -) is an increasing function
that maps the combination of flight path £(u,v) and flight
time 7 (u, v) to the required amount of energy. As exemplified
in Section IV, E(-,-) can be estimated through a first-order
regression model.

We represent the charging strategy by a function
b() : C — R that maps a charging station to an amount
of energy to be recharged. When recharging the battery at
u € C, let the incurred charging time be z.(b(«)). Define by
ne < 1 and 59 > 1 the charging and discharging efficiency
coefficients, respectively. Once at a charging station u, the
drone recharges its battery by an amount of energy denoted
by n.b(u). Whereas when flying between two sites u,v € V,
it drains ndE(f(u,v), r(u,v)) amount of energy from the
battery.
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A flight mission plan is denoted by F, which is a tour
starting and terminating at v that consists of a sequence of
locations in S UC U {vg}. Set F; to be the k-th location in F,
then F; = F| 7 = vo, and let x; be the state-of-charge (SoC)
when reaching 7. We require the SoC to stay within a feasible
range [B, B]. The lower bound of SoC, B, ensures sufficient
residual energy for the drone to return to the base in case of
emergency. The initial SoC is conventionally set to xo = B.

With the above notations, the drone flight mission planning
with recharging problem (DFP) is formulated as

[Fl-1 | F|
(OFP)  min = > «(Fi i+ D w(b(Fi)
T k=1 k=1:FyeC
S.t. Fi = .7:\]-'| =0y (1)
SCFCSUCU{vy} 2)
Xi—1 — Phprr, if Fr €8
X = Xk—1 + 1D (Fir1) — Prorr,  (3)
if 7, € C
B<x<B, xo=8B, 4)

where W1 = TYdE(f(}—k, Fr1)s T(Fi, -7:k+1))-

DFP aims to find a flight mission plan F together with
a charging strategy b(-) that minimizes the total trip time,
consisting of the flight time plus the recharging time, while
maintaining the SoC within permissible limits. The difficulty
of DFP is to balance the flight decisions and charging deci-
sions. On one hand, a flight mission plan needs to consider
the requirement of completing the tour goals in minimal total
trip time. On the other hand, it needs to be able to reach a
charging station in case of insufficient SoC.

For further practical adaptations, the formulation of DFP
can be extended to incorporate a variety of pragmatic mission
planning factors, such as restrictions of no-fly zones and
altitude as well as wind speed forecast information. Users can
additionally weigh in with application-specific preferences,
such as mission completion deadline or maximum payload
weight. In Section VII, we highlight several immediate exten-
sions for future work and sketch their solution methodologies.

IV. POWER CONSUMPTION MODEL

In order to accurately optimize the flight missions of drones,
this section develops a practical battery endurance estimator
for UAVs. First, we perform extensive experiments considering
various flight scenarios on multiple drones to generate training
data and examine energy consumption covariates. We then
develop a nine-term regression model and train it for each
drone. Lastly, we appraise the model fidelity through field
experiments.

A. Experimental Setup and Scope

We evaluate the power consumption of three commercial
drone models, namely 3DR Solo,! DJI Matrice 100, and DJI
Matrice 600 Pro,> which appear in Fig. 2 (see Table III in the

Uhttps://3drobotics.com/support
Zhttps://www.dji.com/products/enterprise
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Fig. 2. Left: 3DR Solo. Middle: DJI Matrice 100. Right: DJI Matrice 600 Pro.
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Fig. 3. Power consumption of 3DR Solo for different motions.

supplementary materials for their specifications). The drones
support developer kits, which allowed us to extract the sensor
readings and program the flight paths. The onboard barometer
and GPS sensors served for measuring the 3-dimensional
movements of a drone. The (ground) speed and position of
a drone were obtained through GPS and IMU modules, while
the altitude was obtained through barometer and GPS.

To construct a detailed and practical battery endurance

model, we examine the following four compound factors:

1) Motion - We further categorize drone motion into three
types: hovering, horizontal and vertical.

2) Weight - The total weight of a drone including the
carried payload.

3) Wind - Wind may benefit the power consumption in
some cases and incur resistance in other cases. To distin-
guish, both ground speed and direction are considered.

4) Altitude - Flight altitude correlates with the fluid density
of air, which in turn may affect rotor thrust.

B. Experimentation Results and Analysis

1) Analyzing the Impact of Motion: To this end, four
experiments were conducted, with the first three on 3DR Solo
and the last on DJI Matrice 600, which results are detailed
below. Figs. 3 and 5 depict the recorded data traces.

Experiment 1: To assess the baseline power consumption,
the test drone was hovered in the air without any movement.
Note that drones may slightly drift around the takeoff location
due to deviation error of GPS modules, hence the speed data
smaller than 0.5 m/s is filtered out. From the recorded data,
we observe that the drone can maintain a sufficiently steady
flying altitude with steady power consumption.

Experiment 2: The test drone ascended and descended
repeatedly, producing time-series data that allowed computing
its vertical acceleration and speed. We observe larger power
fluctuations due to vertical movements. Power consumption
increases slightly when the drone ascends steadily.

Experiment 3: The test drone moved horizontally without
altering its altitude in this experiment. The GPS data comprises
of speed and course angle of the drone. We also gathered
average wind speed and direction using a wind speed meter.
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Fig. 5. Power consumption of DJI Matrice 600 under different payloads and
horizontal speeds.

We observe smaller power fluctuations due to horizontal
movements as compared to vertical ones.

Experiment 4: To test the effect of speed on a larger drone,
we programmed DJI Matrice 600 to move horizontally at
a fixed altitude under three different speeds. As revealed
by Fig. 5, no notable difference in power consumption was
observed.

2) Analyzing the Weight-Induced Impact: Here, two experi-
ments were performed on DJI Matrice 600 and 3DR Solo with
varying payload weights as illustrated in Figs. 4 and 5.

Experiment 5: To obtain the baseline power consumption,
we set 3DR Solo to hover in the air without any movement
while carrying three different weights. As inferred from Fig. 4,
the observed power consumption increases almost linearly
with the payload weight. Note that the maximum loading
capacity is 500g for 3DR Solo.

Experiment 6: To examine the joint impact of motion and
weights, DJI Matrice 600 was dispatched to fly horizontally
under three different payload and speed settings. In line
with the preceding analysis, nearly linear power consumption
growth was recorded with respect to payload weight during
stationary motion, whereas for horizontal acceleration we
observe rather comparable spikes in power consumption.

3) Exploring the Effect of Wind: For exhaustive analysis,
four test runs were performed under different wind speeds and
directions. The experiment was conducted at the same location
but on days with different wind conditions. The wind direction
and average speed were measured with a wind meter.

Experiment 7: Fig. 6 shows the battery power consumption
of 3DR Solo under different wind speeds when flying into a
headwind and tailwind at maximum ground speed (18 km/h).
We observe decreased power consumption when flying into
a headwind, which is due to the increasing thrust by fransla-
tional lift when the drone transitions from hovering to forward
flight. When flying into a headwind, translational lift increases
as the relative airflow over the propellers increases, resulting
in less power consumption to hover the drone [41]. However,
when the wind speed exceeds a certain limit, the aerodynamic
drag may outweigh the benefit of translational lift. The drone
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Fig. 6. Power consumption of 3DR Solo under different wind conditions.
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Fig. 7. Power consumption of DJI Matrice 600 while hovering at low and

high altitudes.

speed is relatively slow in our setting, even at its peak. Hence,
flying into a headwind is likely more energy-efficient for 3DR
Solo.

4) Assessing the Influence of Altitude: To quantify the
impact of air density on battery performance, we performed
multiple tests on DJI Matrice 600 as elaborated below.

Experiment 8: The test drone was hovered for around
2 minutes with zero ground speed at a height of 50 and
110 meters (FAA maximum permitted altitude is 120 meters).
As seen from Fig. 7, the observed variation in power consump-
tion is merely 1%. While at higher altitudes the effect might
be more substantial, given the adopted FAA regulations, the
incurred impact is assumed constant.

C. Regression Model of Power Consumption for Drones

This section introduces a general multivariate black-box
model of power consumption for multi-copter drones.
In essence, the battery consumption of an electric vehicle
is determined by the total power needed to overcome the
physical forces opposing its motion, which include the force
for acceleration and aerodynamic drag force [35], [36], [39].

Let P denote the estimated battery power consumption of a
drone. Hinging on the insights gained in Section IV-B as well
as prior models for electric vehicles, we express P as a linear
combination of three composite forces parameterized by mass,
acceleration, velocity and wind attributes. Mathematically,
P takes the following form:

T

- T -
[ 5y A RTA
P=\p lawll  |+]| Bs lla.|
B3 0y [l xy Pe lozllla |l
T
B m
+ ,88 Uxy * Wyy 5)
Bo 1
where || - | denotes the magnitude of a vector, f1, ..., fly are

the regression coefficients to be calculated and
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e Uy, and dy, are the speed and acceleration vectors describ-

ing the horizontal movement of the drone,

o U, and 4, are the speed and acceleration vectors charac-

terizing the vertical movement of the drone,

o m is the payload weight,

e Wy is the vector of wind dynamics in the horizontal

surface.

Assuming uniform conditions in (5), the total power con-
sumption of a drone in time interval At would then amount to
P-At. We note that while the above model does not capture all
detailed factors, it can provide relatively accurate estimations
with low computational complexity, as verified in Secs. [V-D
and VI-B.

D. Model Evaluation

Based on the data collected from the experiments in
Section IV-B, power consumption predictive models were
trained for each of the three test drones. The resulting regres-
sion coefficients for 3DR Solo, DJI Matrice 100 and Matrice
600 are as follows: S0 = [—1.526, 3.934, 0.968, 18.125,
96.613, —1.085, 0.220, 1.332, 433.9], fmico = [—2.595,
0.116, 0.824, 18.321, 31.745, 13.282, 0.197, 1.43, 251.7],
and Smeoo = [—1.777, 4.408, —0.038, 93.94, 1.362, —0.111,
140.46, 2.249, 0.0].

We assess the accuracy of produced estimations through
two set of experiments. In the first, 3DR Solo and DIJI
Matrice 100 were programmed to perform vertical movements,
then fly into a headwind and tailwind carrying different
payload amounts while maintaining their altitude during the
horizontal flight. As evidenced by Fig. 8, the predicted and
the ground truth power consumption records match closely
within 0.4% error. The second experiment, conducted with
DJI Matrice 600, employed a more complex flight scenario
with multiple target locations and a recharging station as laid
out in Section VI-B. According to the results, the estimated
energy consumption was within 5% deviation from the actual
measurements.

V. SOLUTION METHODOLOGY
A. Case With Uniform Speed and Steady Wind

To provide efficient algorithms for DFP, we first consider
a basic setting under some realistic assumptions. Suppose that
the horizontal speed of the drone is a uniform constant under
steady wind condition, which will be relaxed in Section V-B.
Then, the flight time 7(u,v) between two sites u,v € V
is proportional to the length of flight path £(u,v), denoted
by d(u,v). The energy consumption model established in
Section IV implies that the function E(€(u,v), 7 (u,v)) is
linear in the distance d(u, v), and the charging time z.(b(u))
is linear in the amount of recharged energy b(u). Thus,
we assume the following linear objective functions:

T(M, D) = Cad(l/l, D)’ TC(b(u)) = Cbb(u)a (6)
E(f(u,v),r(u,v)) =cr(u,v)-du,v), @)

for some constants c,, ¢, cr(u,v) > 0. Note that we allow
cy(u,v) to be edge-dependent. This can model non-uniform
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environment® for each £(u,v), for instance, a path expe-
riencing stronger wind is expected to have a larger con-
stant c¢y(u,v). Denote the minimum and maximum values
of ¢y by ¢r £ ming ) cs(u,v) and ¢ £ max(, ) ¢ r(u, v),
respectively.

In this paper, we concentrate mostly on long-distance trips
(e.g., > 4 km), for which the vertical landing and take-off
operations usually constitute a small part of the whole flight
(e.g., < 10m vertically), hence account for only a marginal
percentage of the total energy expenditure (e.g., < 1%). For
exposition clarity, the energy consumption of these operations
is assumed to be implicitly captured by cs(u,v) - d(u,v),
though the results can be easily extended to consider them
explicitly.

For convenience of notation, for a flight mission plan
(F, b()), we write 7(F) £ YV 2(F, Ferr), we(b(F)) 2
Sl ree 1e(B(Fr)) and define d(F) £ 37" d(Fi, Fir).

Under the aforementioned assumptions, the total charging
time 7.(b(F)), in an optimal flight mission plan F with the
corresponding charging strategy b(F), is related to the total
flight time 7 (F) by the following lemma.

Lemma 1: In an optimal flight mission plan (F, b(-)),
we have

cdF)+ =t(F)+wb(F)) <c-dF)+¢

where either

1) c=c=c,and ' =0, or

2) c=cq4 —}—gfcb%, c=c, —}—Efcb%, and ¢’ = %@—xo).

Proof: See the supplementary materials. 0

In other terms, Lemma 1 characterizes the total charging
time with respect to total fight time in the optimal flight plan
by the respective upper and lower bounds in terms of the
distances to be traveled.

Lemma 2: Given any feasible flight mission plan (F, b(-)),
there is another feasible flight mission plan (F,b'(:)) such

that

w0 = = Ly,

C C

Such a plan (F,b'(+)) can be found in O(|V]) time.

3Note that we consider the asymmetry in the energy consumption, due to
wind direction, by assuming two different constants c¢(u,v) and cs (v, u).
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Algorithm 1 Find—plan[V, d]

Algorithm 3 Fix-plan|G, Fo]

1: Compute pairwise shortest distances {3 (#,0)}yp on
weighted directed graph Gy = (V, 2(‘2/))
2: for each u,v € V do

3: (g(u,v), Pu,v)) < Init—distances[V,c/Z\,u,v]

4: Consider the weighted directed graph G = (V, E; d) where

E=2(}
5: Fo < (ﬁzIZd a tour using the Hungarian algorithm on G
6: F < Fix-plan[G, Fy]
7. b'(-) < Fix-chargel[F, b(")]
8: return (F, b'(-))

Algorithm 2 Init-distances|V, d,u, v]

1:if d(u,v) < U —d] — d} then

2 d(u, ) <—d(u 1)) P(u v) < {(u,v)}

3. return (d(u,v), P(u,v))

4: else

5. Construct a weighted directed graph G =
{u, v} E; w) where
E={{u,z}: z€C, d(u,z) <U— d”}U{{v Zyiz €
C}d(v ) <U—-d)}U {{z.2): 2,7 €C, d(z,7) <
U
and w(z,7) 2 d(z,7) for all z,z' € CU {u, v}

6:  P(u,v) < shortest path between u and v in G (with a
set of edge lengths {w(u, v)},.)
d(u,v) < length of P(u, )
return (d(u,v), P(u,v))

Ccu

Proof: See the supplementary materials. (Algo-
rithm 4 below demonstrates how to construct such a plan
explicitly.) (]

Both Lemma 1 and Lemma 2 allow us to focus on min-
imizing the distance d(F) instead of total trip time. Hence,
we simplify DFP such that the resulting problem’s optimal
solution is later shown to be within a constant factor from an
optimal solution of DFP. The simplified formulation (SDFP)
is defined as

|Fl-1

(SDFP)  min ; d(Fi, Fiesn) ®)
s.t. Fp = .7:|_7-‘\ = Dg )
SCFCSUCU vy} (10)

o [x_H — ad(Fe, Finr), if F €S

B, ifF.eC

(11)
B<x; <B, xo=B, (12)

and its explicit Mixed-Integer Linear Programming (MILP)
formulation is provided in the supplementary materials.
In SDFP, we consider a modified distance function c/z’\(-, 9,
which is defined as follows. Recall that V £ S U C U {vg}.
Consider a weighted directed complete graph Gy = (V,2(})),
whose edge lengths are defined by {c¢(u, v)-d(u, v)}4,,. Then,
for a pair of nodes u, v € Gy, Zz’\(u, v) quantifies the distance of
the shortest feasible path from u to » assuming full charge at

. F<«0

2: for each (u,v) in Fy do

3 Add P(u,v) to F

4: Add to F a set of
{{(u, s'u), (8'u, 8"0), (8w, u)} 1 u € V}

5: for u € V do

6: if F\{(u,s",), (s, s",), (s",,u)} is feasible then

7

8

sub-tours

]: <~ f\ {(M, S/u)a (S/ua S//u)a (S//u) M)}
: return F

Algorithm 4 Fix—charge[}", b(~)]

1: Let F;,, ..., F; be the charging stations, in the order they
appear on F
2: for j=0,1,...,r do
[j41— T
33 Dj=um Z ¢ (Fis Frr1)d(Fi, Fiy1)
4:for j=1,...,r do

5. By ne Xl b(Fy)
6: for j = r downto 1 do

7. b(F)= max{O —

— Xo+ Z Dy — z Bi)}

8 if b'(Fi) >0 then
9: exit
10: return b'(-)

u and possibility of passing through charging stations. SDFP
specializes to the Tour Gas Station problem studied in [33],
which is NP-hard.

Note that we assume in SDFP that the SoC is brought
to its maximum at each charging station. Once we obtain
a tour under this assumption, it can be turned into a flight
mission plan with the minimal charging requirements using
Lemma 2.

For u € V, let d], £ min,ec d(u v) be the dlstance to the
nearest charging station from u, and s/, £ argmin, _.d (u )
be the corresponding nearest charging statlon from u. Also,
let d/ £ min,cc Zz’\(v, u) be the shortest distance starting from
a charging station to u, and s/ £ argminveca\(v,u) be the
corresponding charging station. Since we have asymmetric
distances, s;, is not necessarily equal to s, .

Following [33], we make a mild assumption that for every
u € S\ {vo} there is v € C such that d(u,v) < a—, where

ael0,1)and U & B”d Intuitively, this assumption indicates
that the distance between a pair of sites is always reachable by
the available battery capacity. This assumption can be justified
(for o = 1) as follows. For a location u € S\ {vg}, if every
v € C is at a distance greater than % then it is infeasible to
visit u without incurring the battery level below B (as the SoC
drops below B — 53U = B). Moreover, £ is defined as the
maximum ratio between edges going between two gas stations,
such as d(u,v) < p-d(w,u) Y u,v € D.

In the following, we present an algorithm to SDFP and
then DFP. The main algorithm is Find-plan[V, d], which
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is an extension of the Hungarian Algorithm [42] for find-
ing a tour for ATSP. It converts the graph into a bipartite
graph, iteratively solves the minimum assignment problem,
and finally combines all sub-tours to get a single tour. The
resulting tour is passed to the procedure Fix-plan for
converting it to a feasible flight mission plan F, which might
use a non-optimal charging strategy b(-). Then, the resulting
plan (F,b(-)) is delegated to procedure Fix-charge for
finding the minimal charging requirements with respect to the
flight mission plan F. Specifically, the three procedures in
Find-plan[V,d] are: _

o Init-distances[v,d,u,v]: This provides a lower
bound for an optimal solution. Namely, it finds for every
Eair of locations u, v € V, the minimum possible distance
d(u,v), and the corresponding shortest path P (u, v) to go
from u to v without going out of the operational range
of the battery. Note that if d(u,v) < U — d/ — d/, then
the drone can always go from u to v directly.* Otherwise,
in the best possible scenario, the drone can reach u with
SoC at most B — nad)/, next it can visit a sequence of
charging stations (only if the distance d between two
successive such stations is at most U), then, from the
last station, it has to reach o such that the SoC at v is
at least B + nqd, (so that there is sufficient battery to
reach s,). In particular, the distance from u to the first
charging station on this path should be at most U — d,.
Similarly, the distance from the last station on the path to
v should be at most U — d,. This explains the definition
of the graph G in line 5 of the procedure.

o Fix—plan[G, .7-"0]: Given the flight mission plan
Fo returned by the Hungarian algorithm considering the
weights d, this procedure reconstructs a feasible flight
mission plan F for SDFP. First, each edge (u,v) is
replaced in the flight mission plan by the correspond-
ing path P(u,v). Since the resulting mission plan may
still be infeasible, the procedure adds to every site a
round trip to the closest charging stations (from and
to the site). Finally, the added stations are dropped
sequentially in a greedy manner as long as feasibility is
maintained.

. Fix—charge[}", b(')]: Starting from the flight mission
plan (F, b(-)) returned by Fix—plan[G,]—'o], this pro-
cedure finds a minimal amount of recharging energy,
according to Lemma 2.

Let OPTpep and OPTgpgp be the optimal solutions of DFP

and SDFP, respectively.

Lemma 3 [21]: The flight mission plan F _returned
by algorithm Find—plan[V,d] has cost d(F) <

1 1

(( tockal) g(T1)) OPTgpep,

The below theorem establishes that algorithm
Find-plan[V, d] has an asymptotic constant-factor

approximation guarantee for DFP.

_4That is, starting with SoC= B at Sy, then the drone reaches u with SoC
B — nad,/, and then it flies directly from u to v causing the SoC to drop to
B —na(d] +d(u,v)) = B+ na(U —d]] —d(u,v)) = B + naqd, at v. Thus,

there is sufficient battery at v to reach s,.
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Theorem 1: The flight mission plan (F,b'(-)) returned by
algorithm Find—plan[V, d] has cost

©(F) + w(b'(F)) = O(OPTorp) + O(1).

Proof: See the supplementary materials. 0

B. Practical Adaptations

The preceding section explored a basic setting of DFP
and its efficient algorithms. In practice, an automated drone
management system may require more sophisticated options.
Here, we provide two extensions to the above algorithms to
obtain heuristics for further practical applications.

1) Wind Uncertainty: Under steady wind conditions,
we assume in the preceding algorithms that cs(u, v)
stays constant on the designated path from u to o.
To account for wind volatility, it should be more pre-
cisely represented by c,(u, v, w), where w is a vector
whose value lies in an uncertain domain w € W. For
example, W can be defined by the anticipated speed
and orientation ranges [|w|, |w]], [0, @,]. To adjust the
algorithms, one can proceed conservatively by replacing
cy(u,v) with ¢y (u, v) = maxyew ¢y (u, v, ).

2) Variable Drone Speed: During monitoring or patrolling
missions, the drone may need to vary its speed uniformly
at certain designated paths in V. In this case, we run
the algorithms sequentially in multiple rounds, with an
increasing drone speed at each round, until reaching
infeasibility (higher speed may result in insufficient
battery to reach some sites, hence resulting no feasible
solution). Then we will enumerate all the optimal solu-
tions across the rounds to find the best solution with the
lowest total flight time. By enumerating the possibilities
of different drone speeds, the algorithms can identify an
optimal flight mission plan.

VI. EXPERIMENTAL VALIDATION AND CASE STUDIES

As one demonstration, we implement the proposed approach
in an automated drone management system and verify the pro-
duced flight mission plans and recharging strategies in a real-
world experiment. Additionally, to complement the analytic
results derived in Sec. V-A, the average-case performance and
scalability of the featured planner are scrutinized extensively
through numerical simulations and diverse case studies.

A. Drone Management System

The system interface, depicted in Fig 9, allows users to
specify individual goals and visualize the computed flight
mission plan. The system connects to a cloud server, which
accepts location data from the users and computes the opti-
mal flight mission plan. Then, the drone is programmed to
follow the pre-computed flight mission plan. For dynamic
tracking, the data from onboard sensors, including GPS, video
feed, and SoC can be fetched continuously to monitor the
real-time flight status of the drone. Should notably deviant
sensor measurements be detected from the values estimated
in the pre-computed mission plan, real-time calibration can
be performed to find the minimum adjustment to the previous
plan.
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Fig. 9. User interface of drone management system.

B. Field Experiment

To validate the practicality of the proposed planner and cor-
roborate the power consumption model developed in Sec. IV,
a long-distance test mission was carried out in a real-world
uncontrolled environment. Particularly, DJI Matrice 600 was
deployed to patrol a rural area, delimited in Fig. 10, with
4 sites of interest and a charging station. The drone, which has
a maximum flight duration of 38 minutes and a payload capac-
ity of 6 kg, was loaded with a 2 kg weight and programmed
to fly at 120-meter altitude maintaining 30 km/h horizontal
speed. The lower bound on the battery SoC was set to 40%.
The average wind speed was estimated to 30 km/h, as mea-
sured by a portable wind meter at the start- and end-points
of the route. Video footage of the experiment is available
online.’

As displayed in Fig. 10, the proposed planner in Alg. 3
returned the flight mission route [S, 1, 2, 3, C, 4, S], which
has a total distance of 9.47 km and includes one recharging
stop. The detour to C resulted from the selected minimum
battery SoC limit of 40% (pictured as a red line in Fig. 10).
From the experiment results, we observe a slight discrepancy
(of around 5%) between the actual battery energy levels
and the estimates provided by the regression model devel-
oped in Sec. IV. This is attributed primarily to inaccurate
wind profile as the measurements were taken only at one
location.

C. Case Studies

Setup: The studied scenario considers four sites of interest
and four charging stations. Fig. 11 depicts the locations of
the sites (as black points), charging stations (as blue squares)
and the base (as magenta triangle) wherefrom the test drone
(3DR Solo) departs for the mission. Positioning of these nodes
and their inter-distances are based on locations in a suburban
community in Abu Dhabi.
The following two major sets of studies were undertaken.
o Study I: Here, 4 sub-cases were examined under different
wind and payload conditions. In the first two, 3DR Solo
is equipped only with one battery and the average wind

Shttps://www.dropbox.com/s/mez5hnyg7czkwyf/drone_tsp_nk_50mb.mp4
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Fig. 10. The setup and results of the long-distance mission experiment with
DJI Matrice 600. The illustration on top captures the map of the area and
locations of the target sites, where S denotes the starting point and C locates
the charging station. The bottom plot collates the measured and predicted
battery consumption of DJI Matrice 600, with vertical green dashed lines
representing the target sites and the dashed blue line representing the charging
station.
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Fig. 11.  Map of the simulated environment.

TABLE II
PARAMETERS OF STUDY 1

=

Case [Battery| gy m
(Wh) (®
70 South 0
70 [North-East 0
140 | South | 500
140 North-East 500

FGOSIN I

speed is set to 18 km/h. Then we double the battery
capacity with the same wind condition in the remaining
two sub-cases. Since the battery capacity was doubled,
extra weight was added to the drone. Table II summarizes
the parameters of all the sub-cases, which are denoted by
S1Cq to S1Cy.

o Study 2: To evaluate the planner’s performance under
uncertainties, we vary the wind speed and orientation
within a certain range then investigate whether a feasible
solution can be obtained. We select the sub-case with
the shortest total trip time in Study 1 (i.e., S1Ci)
and then gradually elevate the level of uncertainties.
Specifically, four sub-cases, denoted by S;C; to S,Cy,
are considered wherein the wind speed and orientation
are varied from 9 to 21 km/h and from 0° to 360° in four
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Fig. 12.  Visualized results of Study 1 (a-d) and Study 2 (e-h).
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Fig. 13.  Trip time and energy consumption of 3DR Solo in Study 1 and
Study 2 on top and bottom, respectively. S1C; is appended to the bottom plot
merely for comparison purposes.

discrete scales (e.g., S2C; assumes the wind speed could
range from 9 to 12 km/h with an orientation lying within
[—45°,45°)).
Results: For comparison, we employ a benchmark strategy
that routes the drone to the nearest unvisited site, and flies to
a charging station if the battery SoC drops below a preset
threshold. The minimum SoC that could fly to a nearest
charging station from any site serves as the threshold.

Fig. 12 visualizes the flight mission plans produced by
the proposed approach for both case studies, while Fig. 13
draws a comparison against the benchmark algorithm in terms
of the travel time and energy consumption. In Fig. 12, the
numbers indicate the path order of the drone, colors represent
the battery SoC, wind speeds and orientations are pictured on
the upper-left corners.

Study 1: The following two findings transpire: (1) The
north-east wind lead to higher energy consumption than the
south wind. Besides, longer travel time is observed due to
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increased charging duration. (2) Increasing battery capacity of
3DR Solo did not induce reduced travel time. We observe that
though the flying time in S;C5 is the shortest, it takes more
time to charge since the drone becomes heavier by carrying
extra weight for the battery, consequently resulting in longer
total travel time.

Study 2: As deduced from Fig. 13, the energy consump-
tion increases with the rising level of uncertainties. To that
extent, the worst scenario is captured by S,C4, in which
the drone may always fly into a tailwind. Thus, S,C4 pro-
vides the most conservative result. Also, for high uncertainty
levels, the observed performance gap (w.r.t. the trip time
and energy consumption) between the proposed approach and
the benchmark diminished. This is due to the latter taking
more frequent recharging decisions in provision for heightened
uncertainties.

D. Numerical Analyses

To conclude the evaluation, we investigate the proposed
approach’s average-case performance and scalability via sim-
ulations on randomly generated large-scale instances with up
to 200 vertices. Therein, the number of charging stations
is set to %th the number of vertices, which are positioned
uniformly at random on a canvas area of 3.33 km by 3.33 km.
The drone speed is fixed to 18 km/h and the battery capacity
to 80 Wh. Wind speed is sampled uniformly at random
from [0, 3.6] km/h with a direction chosen uniformly from
[215°,235°].

Fig. 14(a) plots the empirical and theoretical approximation
ratios attained by Alg. 3 for SDFP across 10 runs at 95%
confidence interval. The optimal solutions of SDFP were
computed by a numerical solver based on the MILP formu-
lation provided in the supplementary materials. In the simu-
lations, Alg. 3 exhibited favorable average-case performance,
far surpassing its theoretical worst-case guarantees stated in
Lemma 3. Furthermore, as the number of vertices grew, the
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Fig. 15. Robotic mobile charging station for drones.

empirical approximation ratio of Alg. 3 improved, approaching
near-optimality.

Lastly, Fig. 14b) explores the average computational com-
plexity (over 10 runs) of the planner introduced in Alg. 1
(implemented in Python 3 on an Intel 19-9900k CPU) along
with the total energy savings ensued from recharging optimiza-
tion (Alg. 4). For up to 200 vertices, the measured running time
did not exceed 30 seconds, which could be further reduced in
a computationally more efficient programming environment
(e.g., C++). With respect to recharging optimization, the
achieved energy savings were more substantial for small-scale
instances, in which the share of partial recharges was relatively
more prominent.

VII. PROSPECTIVE EXTENSIONS
A. Fleet Mission Planning With Recharging Optimization

In extending the current problem setup to a more general
setting with multiple UAVs, we differentiate between two
scenarios, namely with shared (i.e., supports charging multiple
drones simultaneously) and non-shared charging stations. For
instance, a charging site with multiple adjacently placed induc-
tive recharging landing pads (such as those mentioned in [43])
exemplifies the shared setup, whereas the one with a single
inductive pad corresponds to the non-shared scenario. In the
former case, one can avail the polynomial-time transformation
proposed by Bellmore and Hong [44] to convert the problem to
an equivalent instance of standard TSP on an expanded graph,
which can then be directly tackled by the algorithm proposed
in Alg. 1 while retaining the approximation guarantee in
Theorem 1. In the resultant solutions, several UAVs may be
assigned to charge simultaneously at a single station, hence
the requirement of shared charging stations.
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On the other hand, for the scenario where shared charging
is not supported, the problem transforms into joint mis-
sion planning and recharging scheduling. One sub-optimal
approach is to further extend the adapted MILP formulation
of SDFP with additional constraints that cater for multi-
UAV routing, as detailed in Sec. C in the supplementary
materials. As indicated by the simulations results reported
in Sec. C in the supplementary materials, the augmented
formulation can handle sufficiently large instances. However,
since the formulation lacks representation of time, it allows a
charging station to be used only once. The output solutions
might yield arbitrarily worse objective values compared to
the optimum (with recharging scheduling), thereby stimulating
future research into developing efficient approximation algo-
rithms for this problem.

B. Mission Planning With Mobile Charging Stations

Another promising avenue to explore is the extension to
the case with mobile charging stations. Such a setup allows
for more flexible and robust drone management system that
caters for uncertainties. In [45], an autonomous robotic mobile
platform (see Fig. 15 was proposed that can recharge drones
automatically. The system includes a tethered rover that is
capable of autonomous navigation, and is equipped with a
robotic arm carrying an inductive charging pad, which can
flexibly recharge drones of varying sizes and shapes from
different positions. With this dynamic model, the problem
would additionally include optimizing the number of rovers
and their routing.

VIII. CONCLUSION

To consolidate the practical applications of drones, this
paper developed and experimentally verified an automated tour
management system for an energy-constrained UAV deployed
on long-distance flight missions (e.g., for monitoring or data
acquisition purposes). Through extensive experimentation and
analysis, we derived an effective power consumption estima-
tion model for multi-copter UAVs and validated it on multiple
drones. With this model, we formulated the energy-constrained
tour management problem as a multi-objective extension of
ATSP and developed an efficient mission planning algorithm
with certifiable performance guarantees. Future work can
be directed towards developing approximation algorithms for
extended variants of the problem with multiple UAVs and non-
shared/mobile charging stations.
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