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Abstract—A modern battery management system in electric
vehicles plays a crucial role in enhancing battery pack safety, re-
liability, and performance, particularly in E-transportation appli-
cations. To achieve more accurate estimation methods, combining
battery digital twinning with cloud computing for computational
power and data storage capabilities proves beneficial. Over the
last decade, various data-driven state-of-charge (SOC) estimation
methods, such as machine learning and deep learning approaches,
have been introduced to provide highly precise estimations. The
widely used SOC estimation method in the industry is the extended
Kalman filter (EKF). To explore and analyze the potential use
of SOC estimation in a cloud platform, this article develops and
conducts a comparative analysis of four SOC estimation methods:
EKF, feedforward neural network, gated recurrent unit, and long
short-term memory. These models are deployed in two cloud com-
puting infrastructures, and their accuracy and computing time are
thoroughly examined in this study. This study concludes that the
EKF method is the fastest and most accurate among all considered
methods. It boasts an average execution time of 54.8 ms and a
mean absolute error of 2 × 10−4 when measured over a physical
distance of approximately 450 km via the mobile network long-term
evolution.

Index Terms—Artificial intelligence, battery management
system (BMS), cloud computing, data-driven techniques, digital
twining, electric vehicles (EVs), lithium-ion batteries, machine
learning, state estimation.
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I. INTRODUCTION

TOWARD decarbonization of societies, transportation elec-
trification is one of the main steps [1]. To ensure optimal

capacity utilization, safety, and longer battery life, a battery man-
agement system (BMS) plays a crucial role in electric vehicles
(EVs). Over the last decade, the functionality of the BMS has
raised from battery safety and protection to enable higher battery
output and more secure battery systems [2]. Furthermore, an
accurate and precious estimation of state-of-charge (SOC), state-
of-health (SOH), and temperature is essential for the effective
operation of the BMS. The state-of-the-art onboard BMS has
limited computing resources and low local storage. Therefore,
due to limited resources, simple models, such as equivalent
circuit models (ECMs) and Kalman filter (KF), are widely used
to estimate battery states, such as SOC, SOH, and temperature,
in real-world applications. Here, an increasing interest in cloud
computing and digital-twin-based BMS is noticed recently.

Besides the classical communication techniques, such as con-
troller area network (CAN) bus and wireless technologies, such
as long-term evolution (LTE), 5G, ZigBee, and Bluetooth, can be
used in the BMS [3]. Wireless communication in the BMS is typ-
ically used in combination with Internet of Things technologies,
such as cloud computing and Big Data, to enable cloud-based
BMS. The path toward developing a fully functional cloud-based
BMS includes multiple levels and development stages. Hossain
Lipu et al. [4] mentioned computing and storage in the cloud
as an enabler for precise data-driven estimation techniques.
Contributing toward the cloud-based BMS, Karnehm et al. [5]
proposed a framework to store, visualize, and analyze historical
data and high-resolution real-time data of EVs on the cloud
platform that provides flexibility and data interoperability. Tran
et al. [2] described the concept of a hybrid architecture of a
cloud-supported BMS where basic safety mechanisms are im-
plemented onboard and additional and computational resource-
intensive functionalities are implemented on a cloud platform.
The hybrid approach circumvented the limitation of low data
storage and the limited computing power of an onboard BMS.

Multiple cloud computing approaches for state estimations
such as SOC, terminal voltage, and SOH have been proposed [6],
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[7], [8]. Merkle et al. [9] proposed an architecture for a cloud-
based digital twin deployed at Amazon Web Services (AWS) to
estimate multiple states of a battery pack of a VW Golf-e, such as
SOC, SOH, and the internal resistance of the cell. Furthermore,
an architecture for the cloud-based BMS based on the cyber
hierarchy and interactional network (CHAIN) framework is
proposed in [10]. The authors illustrated the necessity of each
component of the architecture and the location sensitivity of
the components to execute distributed computing. The study
also differentiated and discussed in detail end-computing, edge-
computing, and cloud computing. Li et al. [11] implemented a
cloud-based BMS for SOC and SOH estimation based on an
extended Thevenin model with an adaptive extended H-infinity
filter and particle swarm optimization. There, the authors have
not discussed the effect of the usage of cloud technologies on
accuracy and computing time. This missing inspection is closed
with the presented work. Tran et al. [2] proposed a cloud-side
model for highly accurate SOH estimation. The study mainly
focused on the accuracy of the model. Evaluation of computa-
tional cost, details of technical architectural frameworks, and
fault detection and prevention for the cloud-based BMS were
overlooked.

Yassin et al. [12] saw a research gap in the connectivity speed
and loss of distributed computing for digital twins of power
systems. The primary contributions of this article are as follows.

1) Typically, automotive OEMs and battery pack manufactur-
ers use models with nonlinear filters for SOC estimation.
Currently, neural-networks-based SOC estimations are
also popular. Therefore, in this article, a comprehensive
comparative analysis is conducted to highlight the suitabil-
ity of the aforementioned techniques for SOC in a cloud
environment.

2) An experimental evaluation of the usability of SOC esti-
mation in the cloud as a function of a cloud-based BMS
is also presented.

3) The impact of data loss on prediction accuracy is also
closely examined to emulate network interruption in real-
world conditions.

II. METHODS

A. SOC Estimation

As mentioned, different estimation methods are established
for SOC estimation. This article compares different estimation
methods in the case of a cloud computing implementation. To
do so, an extended Kalman Filter (EKF), as an adaptive filter
algorithm and classical approach, and three different neural
networks are implemented and compared. The neural network
architectures are feedforward neural network (FNN), long short-
term memory (LSTM), and gated recurrent unit (GRU). Guo and
Ma [13] conducted a comparison between the neural network
architectures FNN, LSTM, and GRU, and temporal convolu-
tional network. This work highlights that multiple algorithms for
SOC estimation based on neural networks have been proposed
but a lack of comparison between them is noticed. Therefore,
Guo and Ma [13] compared the models regarding estimation
accuracy and computational cost for on-board implementation.

Fig. 1. Schematic layout of the considered EKF [18].

The GRU model showed the highest precision among the models
considered based on the experimental evaluation. One of the
primary concerns related to the usability of the cloud-based BMS
is the computational cost. Therefore, in this study, the GRU is
considered since it demonstrated the highest prediction accuracy
in terms of root mean square error (RMSE) and mean absolute
error (MAE). Furthermore, FNN and LSTM are also considered
in this study as these models showed the lowest and highest
computational cost.

1) Extended Kalman Filter (EKF): Due to the nonlinear
characteristics of the lithium-ion battery cell, the KF is not
best suited for accurate battery state estimation. Therefore,
the EKF has been used frequently for SOC estimation [14],
[15] instead of the basic KF. The EKF uses partial derivatives
and resistor-capacitor (RC)-model expansions to linearize the
battery model [16]. It relies on a set of observations of battery
voltage yk and current uk for adaptive and accurate state esti-
mation x̂−

k [17]. Fig. 1 shows the detailed steps of the EKF [18],
where uk and yk are the inputs for the prediction and correction
operation stages of the filter, respectively. Hannan et al. [16]
highlighted the EKF as a method with high prediction accuracy
but limited robustness and linearization of errors, which could
occur in a highly nonlinear system.

2) Machine Learning: This section gives an overview of
the three deep learning algorithms considered here, namely,
FNN, LSTM, and GRU, with mathematical descriptions and
characteristics.

a) Feedforward neural network (FNN): In Fig. 2, the
structure of an FNN is shown. It includes an input layer, multiple
hidden layers, and an output layer [13]. Each layer is fully
connected through the next layer, so the information flows from
the input nodes through the hidden layers to the output layer.
The relation between the neuron i of the current and the neuron
j of the previous layer is defined as

oj = σ

(
N∑
i=1

(wj,ixi + bj,i)

)
(1)

σ(x) = x+ = max(0, x) =

{
x if x ≥ 0

0 if x < 0
(2)
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Fig. 2. FNN architecture.

Fig. 3. LSTM architecture.

whereσ(x) describes the activation function rectified linear unit,
N the number of inputs, wj,i the weight of the input i at neuron
j, xi the input value, and bj,i the bias.

b) Long short-term memory (LSTM): Unlike the FNN,
LSTM has a feedback connection, making it a type of recurrent
neural network (RNN). It is ideal for processing and predicting
time-series data. The cell memory unit is the key component of
an LSTM [19]. Fig. 3 shows the structure of an LSTM model
and a typical LSTM cell.

The LSTM cell utilizes an input gate i, forget gate f , and the
output gate o. The forward pass at time t of an LSTM cell is

Fig. 4. GRU architecture.

processed as follows [19]:

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc (Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct) (3)

where xt and ht are the cell input and output at time t, and ct
denotes hidden cell memory. W and U are weight matrices, and
b bias vector learned during training. it, ft, and ot represent
the gates, while σg , σc, and σh are the corresponding activation
functions.

LSTM networks are especially good at detecting contextual
anomalies by learning temporal relationships and capturing them
in a compact state representation. They are particularly effective
in modeling multivariate time-series and time-variant systems,
accommodating both stationary and nonstationary dynamics, as
well as short- and long-term dependencies [20].

c) Gated recurrent unit (GRU): Like LSTM, a GRU is a
kind of RNN. Compared to LSTM, it also addresses long-term
memory problems, is cheaper in the sense of computational cost,
and has comparable accuracy [21]. The structure of a GRU cell
is shown in Fig. 4.

The GRU cell utilizes an update gate z and a reset gate r. The
forward pass at time t of a GRU cell is processed as follows [22]:

rt = σ (Wr [ht−1, xt] + br)

zt = σ (Wz [hh−1, xt] + bz)

ĥt = tanh
(
W [rt ◦ ht−1, xt] + bĥ

)
ht = zt ◦ h̃t + (1− zt) ◦ ht−1 (4)

where xt represents the input at time t, h̃t and ht are information
vectors, representing the output,Wr,Wz , andW the weight ma-
trices of the gates and the output, and br, bz , and bĥ represent the
different biases corresponding to the different weight matrices.
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Fig. 5. Cloud computing architecture.

B. Cloud Computing

To enable a cloud-computing-based SOC estimation, it is
necessary to define the framework that needs to be implemented.
The focus of the proposed framework is a cloud-ready soft-
ware architecture based on open-source standards and software,
to enable a cloud as well as an on-premise deployment. The
framework is shown in Fig. 5. Such a focus enables the usage
of modern technologies and decreases the risk of dependence
on a single service provider. The framework mainly consists
of three components: a training and evaluation component, the
cloud computing component, and the vehicle/laboratory setup.
Training and evaluation are two main stages in machine learn-
ing. These steps also take place to implement the EKF model.
Therefore, during training, the battery parameters have to be
determined. Furthermore, the performance of the implemented
model also needs to be examined based on the evaluation data.
Typically, the data are preprocessed and split into train and test
data. Then, the train data are used to fit the machine learning
model and the test data are used to evaluate the accuracy during
the fit process. The trained models are deployed for usage on
the cloud infrastructure. This contains a controlling component,
machine learning models, and a state space. The components
are implemented in a containerized way, so each of these com-
ponents is implemented as a single Docker [23] container. An
introduction to containerized software engineering for cloud
computing using Docker is given by Bartlett [24]. To serve
the machine learning models implemented in Keras [25], the
Docker image of TensorFlow Serving [26] is used. For control,
a self-developed solution is implemented. Controlling includes
data preprocessing and parsing for machine learning models, the
EKF implementation, and state handling for time dependence
of machine learning models and EKF. The state space itself is
implemented as a containerized Redis [27] database. Separation
of single components from each other enables individual scaling,
which is also a separate derivative of each component. For

TABLE I
ARCHITECTURE OF THE MODELS

this study, the laboratory setup consists of a physical battery
pack, a BMS to control the battery pack, and a gateway device
for establishing a communication channel between the cloud
infrastructure, and the classical BMS. Therefore, it converts the
messages transferred over the bus systems, such as the CAN, to
data formats such as JavaScript Object Notation. Furthermore,
it also ensures security features such as encrypted data transmis-
sion or access management.

The two architectural components, training and evaluation,
and production are independent of each other and can be de-
ployed on different infrastructures. Thus, due to the chosen com-
ponents, the architecture is independent of the service provider
or hardware used, resulting in the production architecture being
able to be deployed as an on-premise and a cloud computing so-
lution. Here, in this study, the cloud computing service provider
AWS in Frankfurt, Germany, and Montreal, QC, Canada, has
been chosen as an example only.

III. DESCRIPTION OF DATA AND MODEL TRAINING

A. Dataset

The dataset used for the estimation of SOC is taken from
Kollmeyer et al. [28]. The data include charge, discharge, and
driving cycle measurements of current, voltage, capacity, and
temperature with a measurement frequency of 10 Hz. The re-
searchers used a new 5-A·h Turnigy cell (Turnigy Graphene
5-Ah 65-C cell) and described the experimental procedure in
detail. The tests have been carried out at a wide range of temper-
atures starting from 40 ◦C, 25 ◦C, 10 ◦C, 0 ◦C,−10 ◦C to−20 ◦C.
The temperature-depending 2RC ECM parameters R0, R1, C1,
R2, andC2 of this dataset have been given by Khanum et al. [29].
In this study, data from the urban dynamometer driving schedule
(UDDS) drive cycle at 0 ◦C are used for experimental validation
of the research concept. The remaining data are split randomly
into train and test datain a 70:30 ratio for training and testing
purposes of the considered neural network models.

B. Model Implementation and Data Preprocessing

The main focus of this work is to evaluate and compare
methods to estimate SOC in a cloud environment. Therefore,
neural network models already proposed for SOC estimation are
used. Guo and Ma [13] proposed multiple models. Among them,
FNN, LSTM, and GRU models are implemented in this study as
the models with the lowest and highest computational cost and
the lowest error with their considered dataset. The architecture of
these models is shown in Table I. For implementation, the open-
source deep learning library Keras 2.12.0 and the programming
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TABLE II
MACHINE LEARNING HYPERPARAMETERS

Fig. 6. Training loss of FNN, LSTM, and GRU models.

language Python 3.8 are used. Furthermore, the implementation
of the EKF has been done in Python.

As data are preprocessed for the neural networks, feature
scaling takes place. Each feature, voltage (u), current (i), and
temperature (T ), is scaled by a Min–Max scaler, defined as
follows.

xscaled(k) =
x(k)−min(x)

max(x)−min(x)
(5)

where x is the set of elements of a single feature, and x(k) is
an element of this set. Such scaling is necessary to mitigate the
impact of scale discrepancies among the different features. The
hyperparameters, batch size, number of epochs, and learning
rate, of the model training are listed in Table II. Each training
used the same hyperparameters. The training loss of each epoch
during training of the models FNN, LSTM, and GRU can be
seen in Fig. 6.

IV. COMPARATIVE ANALYSIS AND DISCUSSION

To discuss the usage of SOC estimation in the cloud, the
following different scenarios are considered:

1) distance by request time;
2) network depending on request time;
3) model depending on accuracy;
4) model accuracy depending on the network stability.
The three artificial intelligence models are trained with the

dataset described in Section III-A.

TABLE III
MAE AND RMSE OF FNN, LSTM, GRU, AND EKF OF 0.75 H (DISCHARGE OF

SOC 100% − 91.81%) UDDS DRIVING CYCLE AT 0 ◦C AND A

MEASUREMENT FREQUENCY OF 10 HZ

A. Accuracy of the Models

To evaluate the precision of the different methods, the models
are evaluated on the basis of the first 10% measurement data
of the UDDS driving cycle at 0 ◦C [28]. These data include a
discharge of SOC 100%−91.81% in 2 760 s. Table III shows
the MAE and RMSE of this validation.

From Table III, it can be seen that the highest accuracy is
demonstrated by the EKF, with MAE and RMSE of 0.0002.
With an MAE of 0.0067, the FNN model showed the best
results compared to the two other neural network models in
this experiment. This result deviates from the results of Guo
and Ma [13]. Significantly worse results were observed for the
FNN there. Therefore, a possible reason is the difference in
the dataset used. The high precision of the EKF compared to
the neural network models is primarily due to the small amount
of training data used for neural networks compared to the highly
accurate battery parameters used by the EKF. However, if the
model parameters are not adaptive to aging and other variabilities
in real practice, the accuracy of the EKF will tend to degrade
over time. Moreover, the primary focus of this work is not to
propose highly accurate neural networks for SOC but rather the
possible implementation of different SOC estimation methods in
the cloud-based BMS. Therefore, the results of this experiment
can mainly be seen as a baseline for discussion in terms of
computational cost, response time, and the impact of network
connection losses on the performance of the could-based BMS.

B. Location Dependence on Execution Time

In this scenario, the basic feasibility of a cloud BMS in terms
of computing time and the need to establish a global infrastruc-
ture in the case of global fleet services must be analyzed. For
these experiments, two elastic cloud computing (EC2) instances
have been set up at two different locations. EC2 is a virtual
machine service from the cloud service provider AWS. The
chosen instance type is t2.2xlarge and Amazon Linux is the
operating system of the instances. The instances are deployed
in two geographic regions: Canada (Central), located in Mon-
treal, QC, Canada, and Europa (Frankfurt), located in Frankfurt,
Germany, and the execution request is sent from Ontario Tech
University, Oshawa, ON, Canada. The direct distance between
the different locations can be seen in Table IV. To reduce the
likelihood of network problems, a wired Internet connection is
used for this experiment.

Fig. 7 shows the request time in milliseconds of the four
different implementations by the location of the servers. As seen
in Fig. 7(a), the average request time from Oshawa to Montreal is
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Fig. 7. Request time depending on the model between (a) Oshawa (ON) and Montreal (QC), and (b) Oshawa (ON) and Frankfurt (DE).

TABLE IV
APPROXIMATE DISTANCE BETWEEN THE CLOUD DEPLOYMENT LOCATIONS

AND THE CLIENT, LOCATED IN OSHAWA

around 62.5 ms. The mean request time to Frankfurt, Germany,
is approximately 455 ms, as can be seen from Fig. 7(b). Taking
into account that all models located in Montreal easily reach a
measurement time of 100 ms, which means that a measurement
frequency of 10 Hz can be achieved, excluding a few out risers as
shown in the box plot. To the best of our knowledge, a standard
for SOC estimation frequency is not yet set. Wei et al. [30]
highlighted 1–10 Hz as a typical sampling frequency according
to current practice. Furthermore, Rosewater [31] has mentioned
these ranges as a time window of estimation. In addition, they
have also demonstrated that the faster the measurement, the bet-
ter the accuracy. Thus, for this study, a measurement frequency
of 10 Hz is defined as the baseline to compare execution time.

Under the condition of a computing time below 100 ms,
none of the solutions deployed in Frankfurt can be utilized. If
cloud-based BMS solutions need to be used for a global fleet
operation, the choice of different locations of cloud servers and
data orchestration of cloud infrastructure needs to be considered
carefully. Because of the usage of the same instance type, the
rise in computational time can be explained by the distance,
the resulting latency, and package loss. LSTM and GRU are
showing a higher variability, located in Montreal, compared to
the variability of FNN and EKF. This could be explained by the
higher complexity of the models, the necessary state handling,
and the resulting computational cost.

C. Network Dependence on Request Time

In practice, LTE networks are widely used for mobile devices.
Thus, to evaluate the possible use of the cloud-based BMS in

real applications, measurements have also been taken with LTE
as a network connection. The experiments are conducted with
the EKF and FNN, the methods with the highest accuracy, as
seen in Table III. During the experiment, the device under test
(DUT) was located at the campus of Ontario Tech University and
was static. The average request time for the EKF is 66.1 ms ±
29.4 ms and for the FNN is 54.8 ms ± 10.3 ms as obtained from
the experiments. A better request time with LTE in the case of the
FNN is noticed compared to the wired request time. The higher
request time for the EKF can be explained by the measurements
in Fig. 8. At 632.5 s, a network interruption of 1.1 s can be seen,
as highlighted in the figure. After the interruption, a lower mean
request time of 53.5 ms is observed. Possible reasons could be an
issue on the network provider side, network reconfiguration, or
a switch on the radio cell. Still, both measurement series showed
an acceptable result, and the maximum time could be 0.1 s. For
the FNN, and after disconnecting also for the EKF, a better
request time can be seen compared to the wired connection.
This could be explained by bad network configurations of the
wired network. In summary, it can be inferred from this series
of experiments that cloud-based SOC estimation is possible in
real-world scenarios but a careful consideration of the execution
time needs to be taken.

D. Accuracy Depending on Loss Rate

The impact of connectivity losses needs to be considered
while analyzing the feasibility of the cloud-based BMS im-
plementation. Based on the usage of mobile networks and the
fact that the complete network coverage cannot be ensured, the
impact of the connection loss rate on the prediction accuracy
over time is assessed. For this only, the FNN and EKF models
are chosen, as these demonstrated the highest accuracy level
among all the considered models in Table III. A synthetic loss
of packages with a specific loss rate is randomly distributed
over all sent packages to emulate the network connection loss
rate.
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Fig. 8. Request time measurement using LTE as network.

TABLE V
MAE OF ESTIMATED SOC BY FNN, AND EKF COMPARED TO THE

CAPACITY-BASED SOC AT DIFFERENT LOSS RATES

In Fig. 9, the estimated SOC over time with a loss rate of 10%
for the FNN, EKF, and the capacity-based SOC is shown. Here,
the capacity-based SOC estimation is considered the baseline for
comparison purpose. The EKF depends on state observations.
Cipral and Romera [32] proposed that the missing observations
due to connection loss can be replaced by zero values to handle
incomplete data. In Table V, the MAE depending on the con-
nection loss rate in % is shown. An increase in the MAE of EKF
is noticed with the rise in connection loss. On the other hand,
no change in the error of the FNN is noticed. Worth noting in
all cases, the mean accuracy of the EKF is significantly higher
compared to the FNN model. It can be concluded that for cloud-
based SOC estimation, a fusion of the EKF and a data-driven
method, such as FNN, GRU, or LSTM could be used where the
EKF can be used to calibrate the model parameters of the neural
networks to improve and maintain the estimation accuracy.

V. CONCLUSION

In this article, a comparative analysis among EKF as classical
approach and the neural network models FNN, LSTM, and
GRU as data-driven methods for understanding the possible

Fig. 9. SOC of the EKF and FNN compared to the capacity-based SOC.

implementation of cloud-based SOC estimation is presented.
These methods have been implemented and deployed on a
cloud-based platform towards the practical application of cloud-
and digital-twin-based BMS for e-mobility applications. For
this purpose, the proposed framework has been deployed using
AWS as a cloud service provider. To evaluate the effect of the
geographical location of the cloud server, all the models are
deployed and validated in two different geographical regions
namely, Frankfurt, Germany, and Montreal, Canada.

Some of the major findings include the following.
1) A minimal average computing time of 54.8 ms is noticed

in the FNN with LTE mobile network connection, as
shown in Fig. 8.

2) No significant differences in computational cost is ob-
served among the considered methods EKF, FNN, LSTM,
and GRU, as shown in Fig. 7. Thus, for the considered
estimation methods, the difference in local time, as Guo
and Ma [13] discussed, is negligible.

3) The main impact on computing time is given by the
distance between the DTU, and the cloud infrastructure,
as can be seen from Fig. 7. These results indicate the clear
necessity of using global cloud infrastructure in the case of
using cloud-based BMS fleet operation and management.

4) The highest accuracy among the considered methods is
noticed in the case of the EKF with an mean absolute
error (MAE) of 0.0002 as seen in Table III.

To the best of our knowledge, there is no existing standard
to define a required estimation time for SOC. According to Wei
et al. [30], the typical sampling frequency for state estimation
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purposes is 1–10 Hz, as reported in the literature for battery esti-
mation. This frequency was also mentioned by Rosewater [31].
Due to this, the computational time of 66.1 ms ± 29.4 ms for
the EKF and 54.8 ms ± 10.3 ms for the FNN under LTE as
network connection is considered reasonably brief. However,
further research and development are required to establish a
more robust method to handle network issues in the cloud-based
SOC estimation method for practical application.

The EKF demonstrated the best precision among the methods
considered. How et al. [33] mentioned that the performance
of KFs is highly dependent on the battery model parameters,
noise level, physical parameters, and initial conditions. Neural
networks are effective under dynamic operating conditions in-
cluding drive cycles, battery aging, and operating temperature,
however, the performance is constrained by the training data.
The usage of cloud computing infrastructure can increase the
performance of neural networks, because of the possibility of
centralized data collection, which can be used for training of
these models. Also, a fleet-wide comparison of aging and update
of estimation methods can be greatly simplified. In future work,
the proposed method of state estimation needs to be tested on
pack level to evaluate the real-world usage of state estimation in
the cloud.

In addition, a fusion of the EKF and a data-driven method,
such as FNN, GRU, or LSTM, could be used, where the EKF can
be used to calibrate the model parameters of the neural networks
to improve and maintain the estimation accuracy over time in
cloud-based SOC estimation.
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