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Abstract—Real-time anomaly detection system (ADS) and
anomaly classification system (ACS) techniques are becoming a
crucial need for future power electronic dominated grid (PEDG).
Artificial intelligence techniques such as recurrent neural net-
works, specifically long short-term memory (LSTM) provide a
promising solution to detect anomalies in power grids. The main
challenge is the implementation of these methods for real-time
detection and classification for preventing catastrophic failure in
PEDG. This article is addressing the challenge for detection and
classification of anomalies in real-time in PEDG. The proposed
approach is based on integration of model predictive control (MPC)
and LSTM for realizing real-time ADS and ACS. The LSTM
detection network can utilize the same time-series input data as
the MPC, allowing for anomaly classification and correction. The
proposed integrated LSTM-MPC approach has features of power
electronics internal failure detection and corrective actions, which
is an important aspect in future PEDG to differentiate inverters
internal failures versus anomalies. Such internal failures include
open circuit fault that needs to be detected and classified from a
potential cyber-attack, allowing resilient operation of PEDG. The
proposed integrated LSTM-MPC scheme for real-time ADS and
ACS scheme is tested on a realistic 14-bus system dominated with
inverters forming PEDG.

Index Terms—Anomaly classification, anomaly detection,
cyberattack, fault-tolerance, inverter fault detection.

I. INTRODUCTION

THE power system is experiencing a massive change to
be able to house ever-increasing distributed energy re-

sources (DERs) across the grid, to decrease the dependency
on nonrenewable-based sources, and shift it toward renew-
able resources, i.e., photovoltaics and wind. This new energy
paradigm is called power electronics dominated grid (PEDG)
[1]. With all the benefits the PEDG introduces, it brings up
some challenges that need to be properly addressed prior to full
implementation of such a complex system in the real world.
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These challenges include control, privacy, stability, planning,
resilience, and cyber-physical security aspects [2].

The PEDG resilient operation is constrained with predefined
boundaries for variables such as frequency, voltage, and power
quality indices. Any anomaly could cause destructive conse-
quences on the operation of the PEDG. These anomalies could
have different characteristics such as component failure, faults,
or malicious intrusive attacks. By considering the recent intru-
sive attempts on the power systems, cyber-physical security of
the system gains extensive attention from governmental agencies
and decision-making organizations, since it affects the national
security. Thus, prevention, detection [4], mitigation [5], and, if
needed, isolation of these cyber-physical intrusions are trending
research topics for modern PEDG. High penetration of DERs in
the grid requires various agents for proper functionality. These
include smart meters, PMUs, observers, smart loads, and the hi-
erarchical control architecture of the PEDG. Thus, it is necessary
to incorporate multilayer anomaly detection and classification
(MADC) systems performing in multiple timescales. This is
inevitable to ensure the secure and seamless operation of the
entire system.

One of the most common cyber-attacks on power systems is
false data injection (FDI). FDIs target the data integrity of the
system which would push the control system to adopt inadequate
decisions [3], [4]. Attack consequences could vary, depending on
the number of compromised assets, attacker’s level of knowledge
on the system, attack propagation, and its persistence [5], [6].
Even attacking one node of the system could impact the other
nodes across the PEDG, since the compromised DER may im-
pact the neighboring nodes’ power quality and optimal operation
of other DERs. The consequence of this attack is cascading
failures across the grid. Thus, it is crucial for resilient operation
of PEDG to isolate the anomalous nodes to avoid cascading
failure across the PEDG that could results in catastrophic failure
of the power grid.

The supervisory layer of the PEDG must be able to dif-
ferentiate between these cyber intrusions and internal inverter
failures to be able to make the most optimal decision for the
PEDG. Without this knowledge, the supervisory layer will not
be able to adopt the best decisions for a system with fleets
of smart assets across it. In the literature, numerous inverter
fault-tolerant control schemes are proposed [7], [8], [9], [10].
The existing solutions are mainly focusing on detection, location
of the faulty switch, and updating the switching sequences
accordingly. The missing piece of the puzzle in improving the
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resiliency of the PEDG is differentiating these internal faults
from malicious intrusions. Differentiating between these allows
for optimal corrective action. A critically important missing
piece in exiting solutions is ensuring this process occurs in
real-time. If the MADC cannot detect and classify the anomaly
in a real-time-basis, the existing window for making proper
decision might be missed.

The existing solutions for anomaly detection can be classi-
fied into two main categories, which are system model-based
techniques [11], [12], and data-driven schemes [13], [14], [15],
[16], [17]. Generally, in model-based approaches, a model of
the system must be developed, and the system parameters
must be estimated. Since there is not a training mechanism in
model-based approaches, data mining is not needed. However,
the main drawbacks of model-based techniques is scalability of
the detection mechanism, meaning that if the system changes,
a new model needs to be developed [18]. In model-based
schemes, for detection purposes, usually an observer is designed
to oversee the dynamic behavior of the system. The observers
for these model-based techniques could use Kalman filter [19],
principle component analysis [20], and weighted least-square
[21]. These model-based techniques could be implemented in
real-time applications. However, since they are highly depen-
dent on the mathematical model of the system, they are prone
to uncertainties, unforeseen disturbances, and computational
burden as the system becomes more complex. Additionally,
the model must be modified to account for any change in the
PEDG. On the other hand, data-driven-based schemes can be
used to perform effective detection and classification of wide
range of anomalies such as FDIs in complex systems. As an
example, artificial-neural-network-based approaches illustrated
proper performance for nonlinear systems. These tools are an
appealing candidate for anomaly detection system (ADS) and
anomaly classification system (ACS) in PEDG. However, these
schemes require huge datasets for training purposes in order to
provide accurate performance. Other machine learning-based
schemes such as k-nearest neighbor (k-NN), support vector ma-
chine (SVM) [22], [23], and deep learning [24] suffer from the
same drawbacks and real-time implementation. As illustrated in
[14] and [25], for power system applications, SVM illustrates
better performance than k-NN, however, the performance of
SVM highly depends on kernel type selection. In [26], a deep-
learning-based method, which is modified version of WaveNet,
was proposed and applied to IEEE 14-bus system while high
penetration of renewable resources are considered. With all these
methodologies, real-time implementation and scalability of the
ADC and ACS are the remailing challenges.

Incorporating neural network (NN) based scheme, thus, has
an opportunity to cooperate with control methods to ensure
an impactful contribution. In this article, the inherent charac-
teristics of model predictive control (MPC) is leveraged for
effective real-time integration of NN-based network for realizing
MADC in highly nonlinear PEDG. Conventional finite-set MPC
determines optimal switching sequences based on the model
and a cost function for optimization. The main focus of this
article is to develop a framework for integration of MPC and
NN for real-time MADC. The proposed work seeks to be a

strong contender for scenarios in which the NN-based solutions
do not significantly increase computational time compared to
conventional MPC and where real-time detection of anomalies
is of upmost importance. The work in [27] demonstrates an
ability for MPC-based controllers to detect open circuit faults
using the MPC cost function. This control scheme utilizes the
main core of MPC to generate modified switching sequences
constraint by the faulty switches without the need of major com-
putation. The model used for generating the switching sequences
is proven to be sufficient for open-circuit faults. However, for
more comprehensive anomaly detection and classification, this
article proposes an NN module integrated within the MPC
framework. Therefore, a NN-based-detection scheme must pro-
vide additional utility which the conventional MPC itself cannot.
The main technical challenge for NN integration with MPC for
MADC is sufficient data collection for accurate classification in
real-time.

Existing solutions mostly focus on detecting FDI attacks and
they neglect the internal failure of the DERs [2]. Also, the
existing literature, mostly focuses on detection only and they
are not proposing any solutions after the detection is executed in
real-time [2]. Additional utility is presented in classifying FDI
attacks and circuit faults with a single NN. The main contribution
of this article is the realization of a framework, which is able to
detect and classify the anomalies across the PEDG in real-time.
The proposed control scheme could be used at the primary layer
of the control hierarchy of the PEDG to ensure detection and
classification of anomalies of any nature, i.e., inverter internal
failure or cyber-attack, in a real-time manner. Thus, integra-
tion of the proposed MADC in the primary control level at
microseconds time scale results in smart self-learning inverters
operating at the grid-edge toward resilient and secure PEDG. The
considered attack model includes noise injection over the voltage
and current measurements. The noise-based attacks are among
the difficult-to-detect malicious activities, and their destructive
impacts are considerable, varying from service interruptions to
cascading failures across the grid. Specifically, the proposed
control framework employs recurrent neutral networks (RNN).
RNNs are utilized as feedforward NN techniques classification
proved unable to determine fault classification [28]. Thus, for
anomaly classification a deep NN topology is preferred. This
category of neural networks are among the top candidates to per-
form classifications on time-dependent variables while taking
into the account the previous inputs of the system [29]. Among
different variants of RNNs, the long short-term memory (LSTM)
employs an internal memory to create the predictions for next
steps of the system [29], a perfect match to be integrated with
MPC with long-time horizon prediction and optimization for the
application in hand and real-time implementation. This internal
memory with better predictive capabilities makes the LSTM the
best option for fault classification within a system as complex as
the PEDG. The initial part of the proposed framework employs
LSTM in conjunction with MPC to perform anomaly detection
and classification for inverters at the primary layer controller.
The considered inverter topology in this article is cascaded
multilevel inverted (CMI) due to its fault-tolerant capability
[27], [30]. It is worth mentioning that the same approach could
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be employed for any other inverter architecture to reach to a
similar performance. After detection and classification, the pro-
posed LSTM-MPC framework adopts corrective actions to per-
forms self-healing model predictive control to ensure fault-ride
through capability in the case of internal failure of the inverter.
The integrated LSTM-based MADC with self-healing MPC
enhances the resiliency and cybersecurity of the PEDG in the
case of inverter internal failure and noise-injection-based cyber
intrusions. Thus, to put it in a nutshell, the major contributions
of the article are as follows.

1) An integrated MPC-LSTM technique for detecting and
classifying anomalies in real-time followed by a self-
healing solution and/or isolating the intruded DER in the
network to ensure the resilient operation of the system by
preventing cascading failure scenarios.

2) Comprehensive approach for data collection and training
of LSTM for anomaly classification and effective mitiga-
tion in real-time, which is crucial for the application in
hand.

3) Analysis and case studies to demonstrate the scalability of
proposed LSTM-MPC.

4) Discussion on the hyperparameter selection process as a
guideline for design of LSTM.

The rest of this article is organized as follows. Section II
is a description of the PEDG system, LSTM, and MPC used.
Section III details the collection of training data and the opera-
tion of the proposed LSTM-MPC. Section IV demonstrates the
case studies. Finally, Section V concludes this article.

II. SYSTEM DESCRIPTION

The proposed LSTM-MPC detects anomalies and, with the
guidance of the supervisory controller, determines whether the
anomaly would allow for continued operation of the affected
DER. If the anomaly presents a larger threat, it may ultimately
lead to isolation from rest of the grid to ensure harmonious
operation of other DERs and nearby nodes. While the proposed
LSTM-MPC can be applied to any power system, the proposed
scheme is tested primarily using a 14-Bus system with high
penetration of DERs as the PEDG, and a seven-level cascaded
multilevel inverter as power electronic interface of each DER.
To detect an anomaly, the NN system receives input data at each
sampling instance Ts. This data is fed into the LSTM system,
which is detecting for one of two potential anomalies considered
in this article. Fig. 1 illustrate the schematic of the 14-Bus system
with proposed LSTM-MPC.

Two classifications of anomaly are presented. The first detects
whether a physical converter failure has occurred. In this article,
it is an open circuit switch failure, a leading cause of semi-
conductor failure in power electronic systems [31]. This type
of anomaly, once detected, allowing for continued operation.
Thus, the supervisory controller can provide a corrective action
to the MPC and continue operation. The second type of anomaly
represents an FDI. This represents a potential cyber-attack on the
current measurement sensors. When such a detection occurs,
a DER can no longer be treated as a trusted source to the
supervisory layer and, thus, must be isolated from the PEDG

TABLE I
CMI OPERATIONAL PARAMETERS

to prevent impact on nearby nodes and other healthy DERs.
Therefore, corrective action is taken to prevent further attacks
on the grid and ensure resilient operation.

The utility of the presented NN scheme is twofold. First, the
NN scheme can detect potential anomalies in real-time. The goal
of the NN detection scheme is to, in less than one line cycle,
determine whether anomalous behavior exists and classify it as
either a fault or cyber-attack; the unique contribution of this
article. This quick detection allows for the supervisory layer
to address anomalies before the impact is visible on the entire
PEDG. The second feature of the NN approach is efficient use
of computational resources. When the NNs are trained to reduce
the computational burden, such as by having a single NN system
detect numerous anomalies with the same input data, the local
LSTM-MPC is operating efficiently. It also allows for further
anomaly detection in future works where the single network
approach can be used to classify more anomalies without ex-
treme increase in the number of neurons. Thus, this two-level
approach both on the local and supervisory level allows for
discrete implementation. The proposed LSTM-MPC MADC
framework is implemented on each phase of a CMI with the
properties shown in Table I. A complete overview of the system
implemented is seen in Fig. 1.

A. Communication Infrastructure of PEDG

The proposed control framework consists of MPC and NN
parts working collaboratively to ensure short-term and long-term
voltage and frequency stabilities of the PEDG. The MPC-based
controller is utilized in the local controller. The local controller
has the responsibility to receive the power set-points from the
upper control layers, convert them to switching signals, and
turn power electronic switches ON and OFF in the power stage
accordingly. The reasons for opting MPC for the local controller
include: easy to leverage into constrained multiobjective control
problems, eliminating the hurdle of PID controller tuning for
different operating points, better power quality, and proper for
inner control loop with high compatibility with outer control
loops. Considering these features, MPC is the best candidate for
the local layer of the proposed controller. However, the local
controller does not have proper knowledge of the entire PEDG,
thus, the communication layer is required between the local layer
of the controller and the supervisory layer.

The supervisory layer is responsible for overseeing the en-
tire grid including generations, consumptions, reserved power,
and power loss. Using all the gathered information, this layer
assigned the power set-points for each individual inverter.
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Fig. 1. Complete system under study for this work. The proposed neural network scheme exists as a per phase detection of the cascaded multilevel inverter at
DER 4. This anomaly detection network is connected to the higher level 14-bus system at Bus 3. Anomalies are detected initially at the local controller, then verified
at the supervisory level before corrective action is taken.

Various communication protocols are developed for smart grid
applications for secure communications with minimal latency
[32], [33], [34]. These protocols include, IEEE 802.15.4 (Zig-
Bee), IEEE 802.11 (Wireless LAN (WLAN) or Wi-Fi), IEEE-
802.16 (WiMAX), GSM and GPRS, and DASH7. But even with
these improvements in communication protocols, the commu-
nication layer is the most vulnerable layer of the PEDG.

FDI attacks are possible attacks on the communication layer.
In this article, the attacks considered are noise-based FDI at-
tacks on the sensors measuring the current injected by the DERs.
When there is communication between a supervisory controller
and local controller, an attacker’s plan can be to interfere with
the communication layer and inject noise into the feedback

loop or communication link of each individual inverter. In that
case, although the supervisory layer has assigned specific set
points to the MPC-based layer of the framework, the noise-based
FDI attack prevents proper power injection when the measured
current is incorrect. This means the balance between generation
and consumption will deteriorate, and voltage or frequency
stabilities of the system will be endangered. On the other hand,
the supervisory layer of the PEDG needs an accurate model of
the entire system to perform a load flow analysis to determine the
voltage of each node and consequently determine the power set-
points for each individual inverter. Within the concept of PEDG,
where the distributed resources and consumers are changing
dynamically according to the time of the day and season, having
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Fig. 2. Fundamental LSTM Cell.

a precise model of the system is almost impossible. This will
paralyze the supervisory layer of the PEDG in the case of FDI
attacks. For this reason, in the proposed control framework the
supervisory layer of the controller is equipped with an NN-based
algorithm. It performs the responsibilities of the supervisory
layer without an accurate model of the entire integrated system.
The proposed NN-based supervisory layer not only assigns
the set points for each individual inverter, but also detects
noise-based cyber intrusion. The proposed LSTM-MPC-based
control framework enables the PEDG to differentiate between
inverter internal failures and FDI attacks. This will enable the
supervisory layer to take corrective actions using an MPC-based
controller in the case of power stage failure of the inverter, or
label the inverter as compromised in the case of FDI detection.

B. LSTM Description and Formulation

RNNs are a category of NNs, which analyze sequential data.
Whereas more traditional methods, such as the feed forward
neural network, produce outputs solely based on the current
inputs to the NN. RNNs are trained to also incorporate past
states of the network. These networks are strong contenders
for anomaly classification, as instantaneous data may or may
not be anomalous depending on where it occurs in a sequence.
In this article, the LSTM RNN topology is used to enable the
implementation of the LSTM cell, as shown in Fig. 2. The two
activation functions used in each LSTM cell are the sigmoid and
hyperbolic tangent functions, represented in

σ(x) =
1

1 + e−x
(1)

tanh(x) =
ex − e−x

ex + e−x
(2)

Fig. 2 demonstrates each LSTM cell has 12 parameters deter-
mined through the training process. In this article, the structure
of the LSTM network is constant; there is no variance in the
number of features, LSTM layers, dropout rate, or classification
layer. The major investigation for the training process is the
number of hidden units in each LSTM layer. The training process
accounting for changes in hidden states is detailed in Section III.

C. Model Predictive Control Formulation

The MPC applied for the CMI is shown in Fig. 1. This system
is an adaptation of the finite-set MPC, which can eliminate
switching sequences made impossible by an open circuit fault.
This MPC scheme, as summarized in this section, is similar to
the state-of-the-art approaches, with wide range of benefits for

grid-tied inverter applications as highlighted in [35] and [36].
The proposed LSTM-MPC is focused on leveraging the inherent
characteristics of state-of-the-art MPC with additional features.
The MPC operates with a second order generalized integrator
phase lock loop, which generates the grid angle needed for utiliz-
ing active and reactive power references, which are synchronized
with the grid. The reference current i∗k in (3) is determined from
the active and reactive power references, and predicted current
ik+1 in (4) is determined from using the forward Euler method

i∗k = i∗d,k sin(θk) + i∗q,k cos(θk) (3)

ik+1[s] =

[
1− R

L
Ts

]
ik +

TS

L
[vinv,k+1[s]− vk]. (4)

The cost function (5) is determined using i∗k and ik+1

J [s] = |i∗k − ik+1[s]| ∀s ∈ N ≤ 64 s.t. state s1x64[s] = 0

sk+1 = arg minimize(J [s]) (5)

where s is a specific switching state, and the array states lists,
which of the switching sequences are permissible. Under normal
operating conditions, states is a 1 × 64 array representing
all valid switching states for a seven-level CMI. Whichever
switching state minimizes the cost of (5) is applied to the
inverter.

III. NEURAL NETWORK DETECTION SCHEME: LSTM-MPC

A. Data Collection

The LSTM-MPC is created by training data collected from
the MPC system described in Section II-B. The diagram of the
LSTM-MPC operational principle is shown in Fig. 3. The aim in
data collection for this system is to ensure real-time detection is
possible, and no additional measurements or sensors are neces-
sary beyond those needed by conventional MPC. Additionally,
proper simulation of the grid voltage during the collection of
training data will allow for scalability of the LSTM-MPC into a
wider range of power system topologies. If the system needs to
be retrained for changing system properties such as the number
of switches, power level, and voltage level the same process as
described here can still be utilized. This eases the requirements
for data collection and allows for more general usage of this
system and training process. With this design principle in mind
for collecting data, the data considered as input to the NN are
1 × 7 array INP given by

INP =

[
i[k], i[k−1], Vinv[k], Vinv[k−1]

OS[k], OS[k−1], Vgrid[k]

]
(6)

where at sampling instant k, i[k] and i[k-1] are the inductor
currents, Vinv[k] and Vinv[k-1] are the inverter voltages, OS[k] and
OS[k-1] are the optimal switching states applied by the MPC, and
Vgrid[k] is the grid voltage at the point of common coupling.
The voltage and current measurements are the same as the
measurements used in the MPC cost function formulation. The
optimal states are the output of the MPC formulation and, thus,
the switching states applied. Therefore, the variables chosen
are impactful to detecting anomalies involving FDI and fault
failures as it will impact the data of INP adversely and noticeably.
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Fig. 3. Operational diagram of the LSTM-MPC. The input data of INP is collected in step one. Then, is given to the 2-layer LSTM-MPC to create a probability
of anomaly in step two. The number of hidden units in each layer of step two is variable and based on the results of Table II. The final step triggers corrective action
when the probability passes the trigger threshold, as explained in Section III.

The aim of the NN training process is to ensure proper network
structure and training procedure, which can detect these anoma-
lies in real-time and accurately.

The DER as described in Section II and Table I is created
in MATLAB/Simulink version 2021b to collect training data.
The Simscape Specialized Power systems toolbox is utilized for
solving power flow equations at each discrete step instance. The
data creation is executed in this environment as it would also be
used to verify the network operation in the case studies section.
Thus, a comprehensive dataset is collected from a realistic PEDG
bus as a true replica of DER in real world. In fact, this model can
be considered as the digital twin of an actual physical system
for collecting comprehensive data set for training purpose of
NN network. Matching the training data accumulation to the
method in which the system is tested and operated eliminates
additional noise or unrealistic data, which might potentially
skew the training process.

1) Open Circuit Fault Data: To collect data for an internal
fault anomaly, the DER operates as a three-phase system with
a seven-level CMI. An open circuit fault is simulated through
the opening of a breaker in series with the faulted switch.
Thus, for open circuit faults, the potential number of faulty
switches in each inverter is 36. To ensure sufficient training
data is collected, the simulation is run 36 times with a different
switch causing an open circuit fault in each instance. For the data
collection scheme, the simulation in each iteration is run for 1 s
of simulation time where the open circuit fault occurs at 0.5 s. As
the system operates with a line frequency of 60 Hz, 30 complete
line cycles occur for each open circuit fault. This amount of data
is sufficient for NN training and not so large as to unnecessarily
increase training time. The seven inputs of INP are collected at a
sampling rate of 100 kHz, as well as the 1× 36 array denoting the
status of each fault. Should a controller need the NN to operate at
a slower frequency, the entire dataset can be under sampled to the
required frequency. Combining the sample rate simulation time
and number of iterations along with the input and class data for
the network, a total of 25 200 000 data points from this collection
process are used for training the fault anomaly detection NN
scheme. These data are grouped into blocks 50 sample long
to minimize the sample size needed for classification, leading
to improved response time. Finally, data are randomly split into
training, validation, and testing subsets, which are divided as
70%, 15%, and 15% of the total data acquired, respectively.

2) False Data Injection Data: Data collection for the FDI
attack follows a similar setup as the open circuit fault data. To
model an FDI attack, white noise is injected into the current sen-
sor, which outputs normally distributed random noise. The noise
has a power of 0.1. The attack occurs at 0.5 s, halfway through the
data collection time of 1 s. To accumulate data for a wide range
of situations, the amplitude of the noise and the power reference
are varied. The output of the noise generator is multiplied by a
constant NFDI, which varies from 0 to 2 in increments of 0.05.
A total of 32 200 000 data points from this collection process
are used for the FDI anomaly detection NN scheme. The data
are grouped into blocks the same as the fault data.

B. Training

1) Neural Network Topology: With the training data col-
lected, the next step is to describe the operation LSTM system.
The fully trained MADC is able to determine when an anomaly is
probable, which of the two classes the anomaly is in, and signals
to the supervisory controller that corrective action is needed. The
LSTM-MPC has three classes to represent the training data,
“normal,” “fault,” and “cyberattack.” Should different data be
collected to train another LSTM-MPC, the number of classes
will change to match the additional data and classifications. To
create more balanced training data, half of the “normal” class
of data from each data collection process is excluded from the
training data set. The final data set classes are approximately
29.2% “fault,” 37.4% “cyberattack,” and 33.3% “normal.” The
goal of the LSTM-MPC is to have an accuracy above 90%. This
data is sufficiently balanced to meet this goal since 90% accuracy
requires high accuracy of each class and no individual class can
dominate training. After detection, the supervisory controller
can confirm the anomaly with a mirrored NN, should extra
validation be required. Finally, corrective action is implemented.

2) Hyperparameters Selection: The LSTM network is
trained in MATLAB 2021b. Determining the exact hyperparam-
eters of the system, specifically the number of LSTM units in
each of the two layers, is cause for further investigation to the
specific control system. In this article, various hyperparameters
are tested and examined to pick the most proper NN system
for anomaly detection. Top priorities of operation in the 14-bus
system are accuracy, detection speed, computational effort, and
scalability. Accuracy is crucial for resilient operation of PEDG,
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TABLE II
LSTM HYPERPARAMETERS

fast detection speeds allow the MADC to take corrective action
fast enough to prevent a violation of grid standards, low com-
putational effort enables the anomaly detection network to run
in parallel with the MPC, and scalability allows for deployment
even in changing grid topology, perhaps due to more DERs com-
ing online. Finally, a scalable system Therefore, the operation of
the MPC will be used as a benchmark for the NN operation. The
lower the execution rate, the better the NN system. While other
hyperparameters such as batch size, learning rate, and activation
function, may be considered necessary for other applications,
the concerns of this article are primarily on execution rate of
the scheme once the NN has been developed. Therefore, the
hyperparameters adjusted are the number of neurons in each of
the two layers of the LSTM.

Hyperparameter tuning is performed by adjusting the number
of LSTM units in each layer. It is determined two layers are
sufficient to correctly identify faults. In this article, the number
of units will vary from 1 through 100 for the first layer, and
the second layer will consist of either an equal number of units,
or half (rounding up) the units of the first layer. The results
of the hyperparameter tuning are seen in Table II. This table
provides the hyperparameters of various LSTM networks along
with the accuracy and computational effort required to execute
each NN. Both the number of neurons and number of layers are
seen in the leftmost column. For example, “10 × 5” denotes
a two-layer network of 10 and 5 neurons, respectfully. The
“anomaly detection accuracy” is the accuracy of the network
using the testing data after five epochs of training. All other
hyperparameters of the system remain constant, as described in
Table III.

The computational rate is determined using the Performance
Advisor Simulink Profiler in MATLAB/ Simulink. To account
for variances in computational time due to hardware variance
on the testing computers, the NN processing time is shown as
a percentage of the processing time to enact the computations
necessary for the MPC. For example, if the MPC required
100 s of total execution time in the profiler, and the NN system
needed 75 s, the computational burden is considered 75%. This

TABLE III
LSTM TRAINING PARAMETERS

generalization allows for consistent data comparisons across
machines of differing computational speeds.

From the results generated in Table II, an optimal LSTM
network is selected for implementation into the final system. The
network selected is the least computationally expensive network
with an accuracy of at least 90%. Thus, the 10 × 10 network
is used; its accuracy is 96.66% with a computational burden of
only 59.39%.

C. Corrective Action

After the LSTM-MPC has been trained, it is incorporated
into the system as the “inverter neural network” shown in
Fig. 1. During operation, the inputs to the LSTM-MPC are the
data of INP at each sampling instance. The trained 10 × 10
LSTM-MPC produces a probability an anomaly has occurred.
The three trained classification for the network are “normal,”
“fault,” or “cyberattack.” The LSTM-MPC produces a number
from 0-1 for each class, where the higher the number is, the
higher the probability the data is of the specified class. To
prevent false positives from affecting an operational DER, the
outputs of the fault detection network are fed into a moving
average filter to filter out potential false positives and ensure a
fault is only triggered when enough successive terms indicate
high probability of a fault. Then, if the moving average filter
exceeds a threshold Vt, the anomaly fault flag is tripped, and
the supervisory controller is notified. Before Vt is exceeded
for either “fault” or “cyberattack,” the system is assumed to
be “normal”. For this article, Vt = 0.16 for the fault detection
and Vt = 0.45 for the cyberattack detection. This threshold is
manually set low enough to ensure fast response time, but high
enough to prevent false positives. The threshold can be adjusted
depending on the accuracy of the NN, as well as the desired
response time of the system operator. After Vt is exceeded, the
supervisory controller confirms the anomaly and takes corrective
action. Two corrective actions are implemented here: when an
internal fault occurs, the corrective action detailed in [27] is
executed, where states is updated to remove faulty switching
states. If an FDI attack is determined, the bus is isolated and
power references are adjusted, as explained in Section IV and (7).

IV. DISCUSSION AND VALIDATION

To verify the effectiveness of the proposed LSTM-MPC as an
effective MADC, anomalies are intentionally created in Phase A
of DER 4 of the 14-bus system. These can be either open circuit
faults, or FDI attacks.
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Fig. 4. Results of the first case study, verifying the neural network’s ability
to detect and correct an open circuit fault in Phase A of DER 4 of the 14-bus
system. In both simulations, an open circuit fault occurs at t = 2 s. When the
fault detection network has high enough confidence to determine a fault, the
Fault Status flag goes HIGH and the states array is updated to exclude switching
states requiring the faulty switch to be closed. (a) Fault occurs in S1. (b) Fault
occurs in S2.

A. Fault Detection Verification

The first case study is to verify the LSTM-MPC can correctly
identify a fault in both the positive and negative voltage levels of
Phase A. In this article, Pref is 16 kW and Qref is 0 kW. A fault
occurs at t=2 s for each test. In test one, the fault occurs in switch
S1 and in the second test the fault occurs in switch S2. When
the output of the moving average filter exceeds Vt the updated
states matrix is applied preventing any faulty switch from being
utilized in the “closed” state. The results of each test are seen
in Fig. 4. When S1 fails, the fault is detected and corrected in
14.32 ms; when S2 fails, the fault is detected and corrected in
4.08 ms. As seen in each example, the proposed LSTM-MPC
scheme can quickly identify faults in less than one line cycle.
This allows quick identification for each fault and prevents the
need to isolate the faulty DER due to inferior current quality for
grid standards, thus providing real-time solution at the grid-edge.

B. Impact of Compromised DER Isolation

To demonstrate the added benefit of the open circuit fault
detection network, the second case study compares the proposed
network to a system without any fault detection. In this case
study, DER 4 is considered a major contributor to power gener-
ation in the 14-bus system. The Pref is increased to 20 kW, the
14-bus system is operated during low loading conditions, and the
synchronous generator has a maximum capacity of 100 kW. For
simplicity, all other DER generators remain constant. Therefore,
failure of DER 4 will lead to an inability to supply power across
the system as the synchronous generator is unable to provide
the needed power and frequency support. In this case study the
open circuit fault occurs in switch S1 at 2 s. Fig. 5(a) shows
the LSTM-MPC system operating to take corrective action to
ensure proper operation despite the fault. Fig. 5(b) shows the
alternative, where the open circuit fault occurs at 2 s. After
five-line cycles, DER 4 must isolate from the 14-bus network
due to unacceptable power quality. Thus, the power injected by

Fig. 5. Results of the second case study, which examines the impact of the
fault correction network across a 14-bus system. In both simulations, an open
circuit fault occurs in S1 at t= 2 s. (a) Detection network is present. It detects and
applies corrective action to mitigate the fault in under one line cycle, allowing
for continued operation. (b) No mitigation technique is present. The low power
quality after the fault forces DER 4 to isolate from the 14-bus after five line
cycles. Since the synchronous generator is unable to compensate, the system
frequency collapses.

Fig. 6. Results of the third case study. Here, the robustness of the NN during
FDI is shown, as changes in the power reference do not cause. When FDI does
occur, the system responds promptly by alerting the supervisory controller,
which is then able to isolate the attacked DER from the system to minimize
the effects on the rest of the system.

the DER becomes zero. With the synchronous generator unable
to provide the necessary power to regulate frequency, it rapidly
denigrates and the frequency of the entire system collapses.
Therefore, the LSTM-MPC scheme ensures the DER does not
cause system collapse even when an open circuit fault occurs in
a critical DER.

C. Changing Power Reference in Response to Anomalies

The case study here demonstrates the LSTM-MPC scheme’s
ability to detect an FDI attack, as well as the system robustness
to changing Pref values. A change in Pref can represent an
anticipated load increase, change in solar irradiance if the DER is
a PV system, or any other ramp increase in power generation. In
this article, the system operates under the same initial conditions
presented in Section VI-B. At t = 2 s, the Pref for DER 4 ramps
up at a rate of 5000 kW/s. At t= 3 s, Pref ceases to increase. Once
this state is reached, an FDI attack occurs on the current sensor
when t = 3.25 s. The results of this case study are shown in
Fig. 6. As depicted, the proposed LSTM-MPC scheme operates
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TABLE IV
BUS VOLTAGES DURING FDI ATTACK

as designed. No false positive occurs during the change in Pref,
and the proposed scheme determines a FDI in 13.4 ms after it
occurs, which is less than one line cycle.

D. Impact of the LSTM-MPC on the System Resiliency

The fourth case study investigates the effect of isolating a DER
under attack. In this scenario, a FDI attack occurs at DER 4 at
t = 4.5 s, injecting noise into the current sensor. The increased
harmonics caused by the noise injection and the reduced power
quality of the DER causes breakers to trip, isolating the DER
from the grid. The scenario is tested under two conditions, with
and without the LSTM-MPC scheme. Without the LSTM-MPC,
the supervisory layer is not alerted to the anomaly and mismatch
occurs between the power generation and demand. With the
proposed LSTM-MPC, the anomaly is properly identified and
verified by the supervisory controller 12.0 ms after the attack.
The corrective action in this scenario accounts for the removal of
DER 4 and its power contributions are evenly divided amongst
the remaining DERs using

Pref,n = P ∗
ref,n + Pref,4

P ∗
ref,n

Pavalible
(7)

where Pref,n is the power reference for DER n, P ∗
ref,n is the

power reference of DER n before the attack, and Pavalible is the
power generated by the safe DERs before the attack. Another
approach can replace (7) should it be desired by the supervisory
controller. The results of the system under both scenarios are
recorded in Table IV and Fig. 7. Table IV displays the voltage at
each bus before the attack, as well at the voltage at 5 s. With the
LSTM-MPC and corrective action taken, the average voltage
deviation is 0.7% the p.u. voltage before the fault, compared
to an average deviation of 2.2% without the corrective action.
Additionally, with the corrective action, all buses are >0.9 V
p.u., whereas buses 1 and 2 do not meet this criterion without
the LSTM-MPC network.

E. Scalability Analysis

The previous case studies incorporate the LSTM-MPC to a
DER connected to an IEEE 14-bus system. The DER is rated
for a grid voltage of 220 V and 60 Hz, as per the parameters in

Fig. 7. Fourth case study demonstrates the impact of corrective action after an
FDI attack is determined. The bus voltage and current injected by Phase A are
shown at the bus with the FDI. (a) Without the anomaly corrective action. (b)
With anomaly detection and corrective action. After isolation from the system,
the system with the NN scheme has a smaller impact on the bus voltage due to
the corrective action taken by the supervisory controller after the fault.

Fig. 8. Results of the fifth case study. The topology of the power system is
expanded into a total of 18 buses by introducing additional loads and distribution
lines. (a) Open circuit fault occurs at t = 3.5 s. (b) FDI attack occurs at t = 3.5 s.
Despite the change in system architecture, the LSTM-MPC remains capable of
detecting both anomalies and triggering corrective action.

Table I. These parameters accurately describe the low voltage
operation of the 14-bus system. This match allows for easy
implementation of the LSTM-MPC in DER 4 at Bus 3. This
implies the LSTM-MPC is properly trained to operate in any
power system topology; with the important assumption that the
bus the LSTM-MPC is connected to is accurately reflected in
the training data. Changing the topology of the system should
not prevent the LSTM-MPC from operating properly.

To verify this assumption, the 14-bus system is expanded to 18
buses in this case study. The LSTM-MPC is tested in conditions
where the DER matches Case Study 1. Two anomaly scenarios
are tested. First, a switch failure in S1 occurs at 3.5 s, and second,
an FDI attack occurs in the current sensor of Phase A at 3.5 s.
The results of these tests are seen in Fig. 8. Similar to the case
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studies involving the original 14 bus system, the LSTM-MPC is
capable of detecting both anomalies in less than one line cycle.
The fault is mitigated after 11.10 ms and the FDI after 11.26 ms.
These results support the premise that the topology of the power
system is of little impact to the well trained LSTM-MPC. If the
DER is connected to a bus where training data is collected with
appropriately, the system can be scaled easily to detect these
anomalies locally.

V. CONCLUSION

This article presents an anomaly detection and correction
scheme for PEDG. The proposed MADC and corrective action
is based on an integration of LSTM and MPC, which features
real-time solutions for enhancing the resiliency of PEDG when
anomalies occurs. In the proposed scheme, when an anomaly
is detected, the supervisory layer controller can implement
corrective action to ensure the power system continues proper
operation. The data collection technique and training process of
the long short-term memory network is described as well as the
methodology of selecting proper hyperparameters. The training
data is selected to increase scalability of the LSTM-MPC should
the network topology expand as more DERs are integrated into
the PEDG. An optimal LSTM network is used to test and validate
the operation of the network. The case studies verify the system
ability to allow robust deployment after anomalies occur, and the
impact of the corrective actions by the supervisory controller is
demonstrated.
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