
Counting Outdated Honeypots: Legal and Useful
Alexander Vetterl∗, Richard Clayton† and Ian Walden‡

∗ Computer Laboratory, University of Cambridge, UK. Email: alexander.vetterl@cl.cam.ac.uk
† Computer Laboratory, University of Cambridge, UK. Email: richard.clayton@cl.cam.ac.uk

‡ Centre for Commercial Law Studies, Queen Mary University of London, UK. Email: i.n.walden@qmul.ac.uk

Abstract—Honeypots are intended to be covert and
so little is known about how many are deployed or who
is using them. We used protocol deviations at the SSH
transport layer to fingerprint Kippo and Cowrie, the
two most popular medium interaction SSH honeypots.
Several Internet-wide scans over a one year period
revealed the presence of thousands of these honeypots.
Sending specific commands revealed their patch status
and showed that many systems were not up to date: a
quarter or more were not fully updated and by the time
of our last scan 20% of honeypots were still running
Kippo, which had last been updated several years
earlier. However, our paper reporting these results was
rejected from a major conference on the basis that our
interactions with the honeypots were illegal and hence
the research was unethical. We later published a much
redacted account of our research which described the
fingerprinting but omitted the results we had gained
from the issuing of commands to check the patch status.
In the present work we provide the missing results,
but start with an extended ethical justification for our
research and a detailed legal analysis to show why we
did not infringe cybersecurity laws.

Index Terms—honeypots, ethics, ethical issues, mea-
surement, intrusion detection, unauthorised access

I. Introduction
Many security researchers find it valuable to deploy

apparently insecure systems on the Internet in the hope
of learning about new attacks by monitoring interactions
with these ‘honeypot’ machines. The intent is that attack-
ers cannot distinguish the honeypots from ‘real’ targets
and so they will reveal novel techniques, allowing the
defenders to deploy appropriate countermeasures.
We have been particularly interested in ‘medium inter-

action honeypots’, which are often used to collect quantita-
tive data about large-scale, scan-based attacks. Typically
medium interaction honeypots emulate key services such
as SIP, SMTP, FTP, Telnet, and SSH with a subset of
commands commonly executed by intruders, but in a more
sophisticated way than ‘low interaction honeypots’. Their
attraction over ‘high interaction honeypots’, that expose
full operating system functionality, is that they are less
likely to be compromised and so the maintenance cost and
the risk involved in running them is minimised.
Medium interaction honeypots are almost invariably

implemented as Python programs with the relevant In-
ternet protocol layer being provided by an off-the-shelf
Python library. In earlier work [11], we showed how this
architecture is fatally flawed because the Python libraries

being used have a large number of minor differences
in their implementation of the Internet protocols when
compared with a ‘real’ system – particularly when it comes
to the handling of errors. This allowed us to develop an
automated technique to identify the most valuable differ-
ences and then send a small number of malformed packets
to a system and determine from the responses whether
it was a real system or merely a honeypot. By sending
our malformed packets to every host on the Internet, we
were then able to count how many medium interaction
honeypots are currently deployed for the SSH, Telnet, and
HTTP protocols.
What we have not previously reported is that not only

did we count the SSH honeypots that are deployed but
we also ‘logged into’ them and issued commands to de-
termine what version of software they were running. Even
though the honeypots are generally operated by security
professionals we found that a high proportion of them were
significantly out of date and many had been deployed in a
way that would leak that they were a honeypot. Failing to
run the latest version means that a proportion of attackers
will rapidly determine that they are interacting with a
honeypot and so its value will drastically decrease.
The reason we have not previously reported the config-

uration and updating issues was that in order to obtain
detailed information it was necessary to login and issue a
small set of shell commands. Our original paper explaining
our methodology and results was rejected by a leading
conference on the basis that our interaction with the hon-
eypots was illegal and hence our research was unethical.
Leaving aside whether the one necessarily follows from the
other, in this paper we start by exploring in detail the legal
situation in accessing honeypot machines, where we firmly
believe we have not broken the law, and then we set out
why performing our research was also ethical. Having done
that, we report our results.

II. Unauthorised access to computers
There is significant uniformity when it comes to legisla-

tion about ‘cybercrime’ because the statutes are less than
35 years old, there has been a tendency to replicate the
wording of statutes from certain leading jurisdictions and
there have been significant international harmonisation
initiatives, primarily the Council of Europe Convention
on Cybercrime (2001) [2]. So the usual caveats that ‘your
jurisdiction may vary’ tend to be less relevant in this area.

224

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, Alexander Vetterl. Under license to IEEE.
DOI 10.1109/SPW.2019.00049



A. Statutory Text
Our conduct described in this paper can be broadly

divided into two kinds: scanning for, and interaction with,
honeypots. Scanning for identification purposes is obvi-
ously a subset of the latter, but should be distinguished
because it involves interaction with a broad range of
systems, not only the target honeypots. In both cases,
our conduct might appear to be ‘unauthorised’ or ‘illegal’
access; a form of computer integrity offence [12].
Under UK law, unauthorised access is an offence under

the Computer Misuse Act 1990 (as amended). S. 1(1)
states that a person is guilty of an offence if–
(a) he causes a computer to perform any function with
intent to secure access to any program or data held in any
computer, or to enable any such access to be secured;
(b) the access he intends to secure, or to enable to be
secured, is unauthorised; and
(c) he knows at the time when he causes the computer to
perform the function that that is the case.
It is clear that element (a) is made out, so the issues

to be determined are whether the access we intend to
secure is ‘unauthorised’ and whether we have the requisite
knowledge that our access is unauthorised. Element (b)
primarily concerns the conduct of the person operating the
honeypot (as ‘victim’); while element (c) looks to our state
of mind when accessing the honeypot (as ‘perpetrator’).
The statute sets out in s17(5) the meaning of unauthorised
access: access of any kind by any person to any program or
data held in a computer is unauthorised if–
(a) he is not himself entitled to control access of the kind
in question to the program or data; and
(b) he does not have consent to access by him of the kind
in question to the program or data from any person who is
so entitled.
This interpretive subsection has been considered by the

courts, focusing on the controller of the ‘victim’ system.
In Bow Street Magistrate and Allison (AP), ex parte US
Government (HL(E)) [1999] 4 All ER 1, it was held that
access of the ‘kind in question’ can be refined considerably
by the system controller, such that authority to view data
may not extend to authority to alter data. Additionally,
in DPP v Lennon [2006] EWHC 1201 (Admin), the court
held that a system controller’s consent can “be implied
from his conduct in relation to the computer”.
In the USA the federal offence comes under ‘18 U.S.

Code §1030 – Fraud and related activity in connection
with computers’. This was originally enacted as the Com-
puter Fraud and Abuse Act in 1986 but has been amended
several times:

(a) Whoever . . . (2) intentionally accesses a computer
without authorization or exceeds authorized access, and
thereby obtains . . . (C) information from any protected
computer;
So again, the issue is authorisation, but the question of

whether the person obtaining access knew their access was
unauthorised is implicit rather than explicit as in the UK.

Even in Mexico and Taiwan, relevant because they ap-
pear to host many honeypots [6], the applicable legislation
follows a similar pattern to that of the UK and US.
Under Mexico’s Federal Penal Code, Article 211 bis 1,
unauthorised access is only criminalised where the system
is “protected by a security mechanism”, which is itself an
arguable assertion when operating a honeypot. Likewise,
in Taiwan, Article 358 of the Criminal Code, provides that
it is an offence to access a person’s computer ‘without
reason’ by ‘breaking his computer protection’.
The 2001 Convention on Cybercrime (sometimes known

as the Budapest Convention) is intended to harmonise
cybercrime laws across the world [2]. Article 2 – ‘Illegal
access’ requires: Each Party shall adopt such legislative
and other measures as may be necessary to establish as
criminal offences under its domestic law, when committed
intentionally, the access to the whole or any part of a com-
puter system without right. A Party may require that the
offence be committed by infringing security measures, with
the intent of obtaining computer data or other dishonest
intent, or in relation to a computer system that is connected
to another computer system.
Thus signatory states must have laws that forbid access

‘without right’, a concept which is seen as either referring
to a person having the positive authority to engage in the
conduct (e.g. granted by consent, contract or legislation)
or a negative defence or justification that is recognised in
law. Without right is not a term of art in UK or USA law,
but ‘authorisation’ is seen as being a comparable concept.
Currently 62 states have ratified the convention with 4
more having signed but not yet ratified.
There is a further obligation within the European Union

under Directive 2013/40/EU (Article 3: Illegal access to
information systems): Member States shall take the nec-
essary measures to ensure that, when committed intention-
ally, the access without right, to the whole or to any part of
an information system, is punishable as a criminal offence
where committed by infringing a security measure, at least
for cases which are not minor. Again the terminology
‘without right’ is used, but the Directive permits member
states to criminalise behaviour only when it is “not minor”
and where a “security measure” was infringed.
To summarise the statutes, unauthorised access to com-

puter systems is an offence in many jurisdictions although
it may be in some parts of the world that minor infringe-
ments are not criminalised.

B. Implicit authorisation
Quite clearly, much authorisation of access to computer

systems is implicit – web servers expect visitors to fetch
pages and fill in forms to customise the material shown.
Anonymous FTP servers provide access to files once a user
has specified a username of ‘anonymous’ and provided (by
convention only) their email address as a password. No-one
suggests that every visitor must first correspond with the
system owner before viewing the front page of a website.

225



We argue that, firstly, the identification stage of our
analysis, i.e. scanning IPv4 addresses, is lawful, primarily
because the scanned systems implicitly authorise interac-
tion by being connected to the Internet; while the absence
of intent on our behalf to access all but the identified
honeypots also avoids our conduct being considered illegal.
Secondly, we think that someone who places a medium in-
teraction honeypot on the Internet has done so specifically
because they wish people to send commands to it. In fact,
they would be most disappointed if no-one was to interact
with their honeypot at all. Since, by using the techniques
that we discuss in the second part of this paper, we can
be certain that we are interacting with particular software
implementations of medium interaction honeypots we are
not accessing systems without authorisation.
To labour the point, we are not arguing that we can

attempt to log into any old machine on the off-chance
it might be a honeypot, but that our sure and certain
knowledge that we are communicating with a honeypot
changes everything: we are no longer guessing credentials
in order to impersonate a legitimate user of the system but
when presented with the password prompt we are sending
a standard value in the sure and certain knowledge that,
perhaps after a number of iterations, the honeypot we are
interacting with will present us with an impersonation of
a shell prompt in a pretence that we have ‘logged in’.
In terms of the statutory requirements outlined above,

it would seem clear that our access is not unauthorised
because the controller of the honeypot has intentionally
made available a vulnerable system, implicitly permitting
access of the ‘kind in question’, which we know at the time
we access the system. Taken together, our conduct cannot
constitute an offence of unauthorised access.
We have been unable to identify any earlier discussion of

the exact issue we are concerned with, but two decades ago
when honeypots were first being widely employed there
was a belief (not borne out in practice) that people who
accessed honeypots would be routinely prosecuted. One
question that arose was whether the use of honeypots
might be ‘entrapment’ – whether the deployment of a
honeypot by a public law enforcement agency would have
caused an otherwise innocent person to commit a crime.
In 2003 Walden (one author of this paper) and Flanagan

considered the entrapment issue in a comparative law
approach [13]. To summarise a lengthy analysis they con-
cluded that operating honeypots would not be entrapment
because anyone who broke into them had not been invei-
gled into doing so by anything more than being presented
with the opportunity. This earlier work did not consider
the legal position of a person who accesses a honeypot
knowing that it was specifically designed to be so accessed.

III. Ethical Analysis
Having established that our research was not illegal the

question as to whether illegal research is always unethical
becomes moot. We would disagree, but we would accept

that there is a very high bar in such situations and that
it would be essential to provide a detailed analysis as to
how the law was unethical before starting to consider the
research itself.
We followed our institution’s ethics policy at all times

and addressed some particular concerns that were raised
about data storage. Nonetheless, for completeness, and
given the history of trying to publish our results, we now
set out the ethical justification for our research at longer
length than might normally be expected.
Our overall view was that the research was in the

public interest because demonstrating that it is possible to
rapidly identify medium interaction honeypots at Internet
scale should serve as a wake-up call for the people who
deploy these honeypots – they would need to upgrade to
new implementations without the flaws. Accordingly we
followed a responsible disclosure policy to ensure that the
authors of the various honeypots learnt of our discoveries
well before we made them public. Full details of who we
informed and when can be found in our earlier paper [11].
The first part of our research involved an Internet-wide

scan to identify honeypot deployments. Before doing this
we thoroughly tested our scanner to ensure it was working
exactly as intended. For all of our scans we used the DNS-
OARC exclusion list [5]. The host used for scanning runs
a web page on port 80 so that people who are scanned
can determine the nature of our experiment and learn our
contact details. We also added reverse DNS entries for this
host to clarify its purpose. Whilst using our scanner we
ensured that local CERTs were fully aware of the nature
of our activity. We received one complaint and respected
their request to be excluded from further scanning.
Honeypot software is updated all the time, generally not

to make it more secure but to remove distinguishing traits
that criminals have identified in their efforts to determine
whether they are interacting with a honeypot. As these
distinguishers are identified the honeypot is extended so
as not to be identifiable in that manner.
Our initial scan, sending very small numbers of packets,

had already shown that some honeypots were not being
kept up to date. To refine our understanding we decided
to interact with the honeypot programs and issue a small
number of shell commands, carefully chosen after exami-
nation of the revision history, to tell us rather more exactly
how out of date the honeypot might be.
We were careful not to issue any commands that had the

potential to impair the operation of the honeypot, which
could be a separate offence to that of illegal access. We also
took the ethical stance that we should not hide who we
were – so we used a University of Cambridge IP address,
gave it an appropriate reverse DNS entry and ensured that
local CERTs would promptly pass on any reports to us so
that we could explain what we were doing.
We believe that our contribution to the honeypots’

overall traffic is negligible. After all, we send a minimum
number of packets and honeypots are built to be probed,

226



attacked and tested. At no point did we download files or
try to find or use remote code exploitation.
We were also concerned that honeypot operators

might consider our interaction with their systems to
be worth their time investigating. So every successful
SSH session was started and ended with the ‘command’
“Cowrie fingerprinting experiment, please ignore this ses-
sion/connection”. We intended that, by looking at the
honeypots’ logs, it would become evident to the honeypot
owner that an experiment was occurring and that they
need not view the activity as some new form of attack
that they should spend effort on understanding.
In retrospect this message was unnecessarily cryptic and

caused some confusion to honeypot operators, but since
the responsible disclosure process was still in progress we
did not want to explain to every honeypot operator that we
had an easy way of identifying their system as a honeypot.

IV. Fingerprinting SSH Honeypots
Having disposed of the legal and ethical issues we can

now move on to discussing what we learnt by interacting
with the SSH honeypots that we identified.
Our earlier paper [11] sets out our observation that the

architecture of medium interaction honeypots is invariably
that of a specially written emulation program which uses
a general purpose library to provide the relevant protocol
layer. We developed a method of identifying the best
‘probe’ we could send to a server which would reveal
whether we were interacting with a library or a real system
– and we reported on the number of honeypots that we
were able to identify in a series of scans of the Internet.
One of the first SSH honeypots was Kojoney but active

development ceased around 2006. Kojoney uses the Twist-
edConch library which dates back to 2002 and is the de
facto standard implementation of SSHv2 for Python2/3.
Kojoney inspired Kippo1 which was developed from 2009
to 2015 but the Kippo author now recommends people use
a forked project called Cowrie.2 Cowrie has added more
extensive logging and support for Telnet, and it remains
under active development. The project’s philosophy is
to only implement shell commands that are being used
by attackers and so as of 2018-01, Cowrie (partly) emu-
lated 34 commands. In 2015, Deutsche Telekom included
Kippo in T-Pot, a multi-honeypot platform “based on
well-established honeypots” [3]. T-Pot combines different
honeypots for network services with an intrusion detection
system and a monitoring and reporting engine. As of
March 2016, Kippo was replaced by Cowrie “since it offers
huge improvements over Kippo” [4].

A. Identifying SSH honeypot patch levels
Note that for clarity of exposition within this section we

will use terms such as login, authentication and passwords,
although when dealing with honeypots, as explained in

1https://github.com/desaster/kippo
2https://github.com/cowrie/cowrie

Section II-B above, we are merely just sending strings
to a Python program that is impersonating a vulnerable
system with a view to having it change internal state and
start executing its impersonation of the ‘bash’ shell.
There has been a long history between finding ways

to detect honeypots and camouflaging their presence.
Attackers have attempted to distinguish honeypots by
executing commands within the login shell and examining
the responses. This has led to an arms race as attackers
develop new distinguishers and honeypot authors improve
the verisimilitude of their system. More recently, honey-
pot fingerprinting has moved from issuing commands to
finding protocol deviations [7], [9], [11].
These findings have raised the awareness of honeypot

operators that their systems might be identified and so
they not only update the shell, but also the protocol layer.
Thus, without authenticating to the honeypots, solely
based on the protocol interactions, we are able to get a
estimate of the honeypots’ patch level (Table I).
However, to get more insights on how honeypots are

actually configured, e.g. what authorisation settings are
used or what hostname is configured, the only viable
option is to login to the honeypots and issue commands.
After the careful ethical considerations described in

Section III, we decided to authenticate with a list of
passwords to all of the Cowrie honeypots and to issue
three simple shell commands in order to better estimate
the patch level of the host system. These commands were:
uname -a, to get more information about the host system,
ls -d, added on 2016-09-05, and tftp,3 added on 2016-
11-02. After hearing from us the developer of Cowrie
implemented a fix to null pad packets on 2017-06-06 which
is a useful intermediate date for determining the age of
Cowrie honeypots. The analysis of the version information
we obtained is given in Section V.
B. Measurement Setup
We aimed to visit all SSH servers on the Internet with

a custom scanner written in Python3 which would send
probes to determine whether we had found an instance of
Kippo or Cowrie and if so which version was being run. We
first used ZMap to perform a one-packet scan at 30mbps
sending TCP SYN packets to port 22 (the well-known
port number for SSH) using the IP address exclusion
list maintained by DNS-OARC [5]. In total we scanned
3 336m IPv4 addresses, 78% of the IPv4 address space. We
determined which IPv4 addresses responded successfully
with a SYN-ACK packet and thereby efficiently identified
the presence of SSH servers.
We connected to the SSH servers and checked the

version to determine if it was claiming to run OpenSSH.
We then checked whether the server behaved identically to
OpenSSH using the method outlined in our earlier paper
[11]. This told us unambiguously when we had identified

3This command is issued without any arguments and solely to
check if the command is implemented.

227



TABLE I
Update Statistics for Cowrie and Kippo

Scan 1: 2017-03 Scan 2: 2017-06 Scan 3: 2017-09 Scan 4: 2018-01

Kippo < 2014-05-28 1384 (42.5%) 1519 (42.8%) 695 (24.4%) 546 (19.6%)
Kippo < 2015-05-24 659 (20.3%) 285 (8.0%) 211 (7.4%) 212 (7.6%)
Cowrie < 2016-09-05 385 (11.8%) 392 (11.0%) 134 (4.7%) 147 (5.3%)
Cowrie < 2016-11-02 — — 556 (15.7%) 360 (12.7%) 422 (15.2%)
Cowrie < 2017-06-06 — — — — 734 (25.8%) 381 (13.7%)
Cowrie ≤ date of scan 827 (25.4%) 799 (22.5%) 710 (25.0%) 1071 (38.6%)
Total 3255 3551 2844 2779

an instance of Kippo or Cowrie. For the Cowrie machines
(and only these machines), we used a custom script written
in Python3 to try to authenticate. Having done so we
issued the commands uname -a, ls -d and tftp. Note
that Kippo does not implement these commands.

V. Results
The results of our authentication attempts are sum-

marised in Table II.

A. Authentication Configuration
For the first run, conducted on 2017-03, we used the

username root and just 6 passwords: 123456, root,
admin, password, PASSWORD, cisco. For 859 of 1 212
Cowrie honeypots (70.9%.) the authentication was suc-
cessful and we received a SSH2 MSG USERAUTH SUCCESS
packet indicating that the password was deemed correct.
We re-ran our script three weeks later, but instead of

6 passwords, we used the 500 most common passwords
seen in authentication attempts to our own research SSH
honeypots. For each connection, we kept trying passwords
until we received a “too many bad auths” disconnection
message with reason code 14. We immediately reconnected
and continued down the list until we were logged in, had
tried all 500 passwords, or received an error message.
In our second run, we successfully logged in to 794 of
1 212 Cowrie honeypots (65.5%). For 136 (11.2%) of the
honeypots, all 500 passwords were successfully attempted,
but failed. Table II reports the other outcomes.
We repeated this measurement for the Cowrie instances

we identified in the second, third and fourth scans, but
only using the 500 password approach. We observed that
the number of successful logins remains fairly stable as we
were able to successfully login to 1 165 (66.7%) honeypots
in the second scan, 1 347 (69.5%) honeypots in our third
scan and to 1 578 (78.1%) in our fourth scan.
In all four scans, a significant number of honeypots

rejected all the passwords we tried. We conclude that
around 10% of the honeypot operators are only interested
in obtaining password and username combinations, but
not in providing a shell and in letting adversaries execute
commands; though it is possible that they are just being
more selective about the credentials they will accept. For
a few honeypots (0.3% to 9.1%), the connection timed out
(after 6 seconds). For the remaining honeypots we received

various error messages including “Connection refused” and
“Connection reset by peer”.
We cannot be sure why we managed to login to some

honeypots but got no further. It may be that firewalls or
hosting providers interfered in the process of establishing a
connection. A more likely explanation is that, because one
or more honeypots report ‘malicious’ activities they see to
central databases this caused other honeypots to refuse
to communicate with us. In particular we found that the
IP we used for scanning and logging in to honeypots was
added to various blocklists including blocklist.de which is
used by the intrusion prevention system fail2ban.

B. Set-up Options of SSH Honeypots
The first two options of the configuration file of both

Kippo and Cowrie are the SSH server version string and
hostname. We find that honeypot operators seldom change
default configuration options.
Our first scan found 61 different SSH version strings, but

in 83% of the cases it was a default. The Kippo/Cowrie de-
fault value accounts for 2 046 (72%) of the honeypots, but
additionally, 312 (11%) Kippo honeypots report the ver-
sion string SSH-2.0-OpenSSH 5.5p1 Debian-4ubuntu5,
which is the default set by the deployment script of the
Modern Honey Network [1], an open source honeynet
management platform. We observed some change in the
second scan where 1 839 (66%) honeypots had default SSH
version strings. In particular advertising versions equal or
greater than OpenSSH 7.2 are becoming more popular.
In an attempt to further confirm our hypothesis

that honeypot operators often use standardised config-
urations we issued the command uname -a on all the
Cowrie honeypots to which we could successfully login
in our first scan (see Section V-A). By default, Cowrie
will return Linux [hostname] 3.2.0-4-amd64 #1 SMP
Debian 3.2.68-1+deb7u1 x86 64 GNU/Linux\r\n.
The default hostname Cowrie places into this string is

svr04, but that hostname is only configured for 64 (3.3%)
of the honeypots and we find 171 different hostnames.
However, although the Cowrie default hostname is not
being widely used, our hypothesis about not changing de-
faults is in fact confirmed because we find that many host-
names have been set in a default manner by deployment
scripts. The most common hostname is debnfwmgmt-02
(14.6%), followed by router (5.5%) and pos01 (5.3%).

228



TABLE II
Authentication Attempts for Cowrie Honeypots

6 passwords 500 passwords 500 passwords 500 passwords 500 passwords
Outcome Scan 1: 2017-03 Scan 1: 2017-03 Scan 2: 2017-06 Scan 3: 2017-09 Scan 4: 2018-01

successful login 859 (70.9%) 794 (65.5%) 1165 (66.7%) 1347 (69.5%) 1578 (78.1%)
all passwords failed 110 (9.1%) 136 (11.2%) 187 (10.7%) 195 (10.1%) 223 (11.0%)
connection timed out 49 (4.0%) 110 (9.1%) 41 (2.4%) 43 (2.2%) 7 (0.3%)
other errors 194 (16.0%) 172 (14.2%) 354 (20.2%) 353 (18.2%) 213 (10.6%)

What has occurred is that debnfwmgmt-02 was the
default hostname for Cowrie when it is used in T-Pot
16.03 whereas debnfwmgmt-01 was used for Kippo in T-
Pot until it was replaced by Cowrie.4 It follows that 296
of Cowrie honeypots are extremely likely to be part of
T-Pot (and hence T-Pot has a significant ‘market share’)
– which in turn means that it is quite likely that other
servers hosted on the same IPv4 address are also (T-Pot
installed) honeypot instances.

VI. Discussion
We found that many honeypot operators are relying

on standardised deployment scripts, docker containers or
public configuration files. Since various aspects of the
configuration reveal that the system is a honeypot, this
is clearly suboptimal. The fix is not, however, to eschew
the use of standardised deployment systems, but for those
systems to be far better engineered so that they do not
allow honeypots to be fingerprinted or for IPs to be linked
together. In response to our findings, Deutsche Telekom
acknowledged this issue and rapidly changed how they
configured the honeypots in their T-Pot collection.
We operate our own research SSH honeypots which are

not based on Kippo or Cowrie [10]. As of publication, we
have not observed attackers using the techniques we have
developed to determine that they are interacting with a
honeypot. However, we and others do observe that the
command uname -a is one of the most popular commands
the attackers’ scripts issue, presumably because they need
information about the host system and its architecture [8].
From that point of view T-Pot made an unwise choice
because any search engine will immediately reveal that
debnfwmgmt is part of the hostname T-Pot uses for Kippo
and Cowrie honeypots.5

VII. Conclusion
In earlier work [11] we showed how the use of off-the-

shelf libraries in medium interaction honeypots allows us
to fingerprint SSH servers and unambiguously identify
instances of Kippo and Cowrie. In this paper we have
extended this analysis by determining which versions of
Kippo and Cowrie are being run at the time of our scans.
We were surprised to see how out-of-date many of

the honeypot deployments were. It is well-known that
4https://github.com/dtag-dev-sec/tpotce archive
5When we first saw this string we found that the only results

returned to us by a Google search were within the T-Pot source files.

‘ordinary users’ find it a challenge to keep their systems
patched up-to-date, but we would expect that the majority
of honeypots are deployed by security professionals and
hence would be being actively looked after. In particular,
most of the reason for updates to these honeypots has been
to counteract fingerprinting tricks by criminals who wish
to avoid interaction with honeypots. Failing to update
makes the honeypots much less useful.
Finally, we hope that our detailed account of some

aspects of the legal and ethical framework of interactions
with honeypots will enable more research in the future.

Acknowledgments
This work was supported by the EPSRC [grant number

EP/M020320/1]. We are grateful to Alastair R. Beresford,
Alice Hutchings, Daniel R. Thomas, and to the anonymous
reviewers for helpful comments on this paper.

References
[1] Anomali Inc., “Modern Honey Network,” 2014. [Online].

Available: https://github.com/threatstream/mhn
[2] Council of Europe, “Convention on cybercrime,” Treaty No. 185,

2001.
[3] Deutsche Telekom AG, “T-Pot: A multi-honeypot plat-

form,” 2015, available: http://dtag-dev-sec.github.io/mediator/
feature/2015/03/17/concept.html.

[4] ——, “T-Pot 16.03: A enhanced multihoneypot platform,”
2016, available: http://dtag-dev-sec.github.io/mediator/
feature/2016/03/11/t-pot-16.03.html.

[5] DNS-OARC, “Don’t probe list,” 2017. [Online]. Available:
https://www.dns-oarc.net/oarc/services/dontprobe

[6] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Hernandez
Ganan, M. van Eeten, K. Yoshioka, and T. Matsumoto, “Detect
me if you... oh wait. An internet-wide view of self-revealing hon-
eypots,” in IFIP/IEEE International Symposium on Integrated
Network Management. Washington DC: IEEE, 2019.

[7] A. Morris, “Kippo SSH honeypot detector,” 2014.
[Online]. Available: https://www.rapid7.com/db/modules/
auxiliary/scanner/ssh/detect kippo

[8] D. Ramsbrock, R. Berthier, and M. Cukier, “Profiling attacker
behavior following SSH compromises,” in Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ‘07), 2007, pp. 119–124.

[9] D. Sysman, I. Sher, and G. Evron, “Breaking honeypots for fun
and profit,” in Blackhat, Las Vegas, NV, 2015.

[10] A. Vetterl, “OpenSSH Honeypot (sshd-honeypot),” 2018, avail-
able: https://github.com/amv42/sshd-honeypot.

[11] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fin-
gerprinting low- and medium-interaction honeypots at Internet
scale,” in 12th USENIX Workshop on Offensive Technologies
(WOOT 18). Baltimore, MD: USENIX Association, 2018.

[12] I. Walden, Computer Crimes and Digital Investigations, 2nd
Edition. Oxford University Press, 2017.

[13] I. Walden and A. Flanagan, “Honeypots: A sticky legal land-
scape,” Rutgers Computer & Technology Law Journal, vol.
29(2), pp. 317–370, 2003.

229


