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Abstract—Despite a large amount of attention on adversarial
examples, very few works have demonstrated an effective de-
fense against this threat. We examine Deep k-Nearest Neighbor
(DkNN), a proposed defense that combines k-Nearest Neighbor
(kNN) and deep learning to improve the model’s robustness to
adversarial examples. It is challenging to evaluate the robustness
of this scheme due to a lack of efficient algorithm for attacking
kNN classifiers with large k and high-dimensional data. We
propose a heuristic attack that allows us to use gradient descent
to find adversarial examples for kNN classifiers, and then apply
it to attack the DkNN defense as well. Results suggest that our
attack is moderately stronger than any naive attack on kNN and
significantly outperforms other attacks on DkNN.

I. INTRODUCTION

Deep learning has recently attained immense popularity

from various fields and communities due to its superhuman

performance on complicated tasks such as image classification

[1], [2], playing complex games [3]–[5], controlling driverless

vehicles [6], [7], and medical imaging [8]. Nonetheless, many

works have shown that neural networks and other machine

learning classifiers are not robust in the face of adversaries

(e.g. adversarial examples) [9]–[13] as well as more common

cases of distribution shifts [14], [15].

This phenomenon raises a call for more robust and more

interpretable neural network models. Many defenses against

adversarial examples have been proposed; however, most have

been broken by adaptive adversaries [16]–[18]. Only a few

defenses provide a significant improvement in robustness on

toy datasets like MNIST and CIFAR-10 [19], [20]. One plausi-

ble approach to simultaneously combat adversaries and make

neural networks more trustworthy is to build interpretable

models [21]–[23] or to provide an explanation supporting the

model’s output [24]–[26]. Deep k-Nearest Neighbors (DkNN),

recently proposed by Papernot & McDaniel, showed promising

results: their evaluation suggests it offers robustness against

adversarial examples, interpretability, and other benefits [23].

Nonetheless, adversarial examples are surprisingly difficult

to detect when that the adversary has full knowledge of

the defense [17]. Among the works that have been beaten,

many attempts to distinguish adversarial inputs by statistically

inspecting their representation (or activation) from hidden

layers of neural networks [27]–[30]. This fact raises some

concerns for the robustness of DkNN, which uses kNN on the

intermediate representations produced by the neural network.

In this paper, we examine the robustness of DkNN against

adversarial examples. We develop a new gradient-based attack

on kNN and DkNN. While gradient descent has found great

success in attacking neural networks, it is challenging to apply
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Fig. 1: Adversarial examples generated from the gradient-

based attack on kNN and DkNN with �2- and �∞-norm

constraints. The numbers on top and bottom are predictions of

DkNN on the clean and the adversarial samples respectively.

For a few adversarial examples, the perturbation might change

the human label: some of the adversarial 4’s have their top

closed, so a human might consider them a 9, and one of the

3’s looks close to an 8.

to kNN, as kNN is not differentiable. At a high level, our attack

approximates the discrete nature of kNN with a soft threshold

(e.g., a sigmoid), making the objective function differentiable.

Then, we find a local optimum using gradient descent under

an �p-norm constraint. With this attack, we find that DkNN is

vulnerable to adversarial examples with a small perturbation

in both �2 and �∞ norms. With �∞-norm of 0.2, our attack

manages to reduce the accuracy of a DkNN on MNIST to only

17.44%. Some of the adversarial examples generated with our

attack are shown in Fig. 1.

The main contributions of this paper are as follows:

1) We propose a gradient-based attack on kNN and DkNN.

2) We evaluate our attack on kNN and DkNN, compare

it to other naive approaches as well as the adaptive

attack proposed by Papernot & McDaniel, show that our

attack performs better than prior attacks, and show that

it can find adversarial examples for kNN and DkNN on

MNIST.

3) We show that the credibility scores from DkNN models

are not effective for detecting our attacks without a

significant drop in accuracy on clean images.
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II. BACKGROUND AND RELATED WORK

A. Adversarial Examples

Adversarial examples are a type of an evasion attack against

machine learning models at test time. While the robustness

of machine learning classifiers in adversarial settings has

been studied for a long time [31], [32], the term “adversarial

examples” was recently introduced as an attack on deep neural

networks by adding very small perturbation to a legitimate

sample [10], [11]. Previous works propose algorithms for

finding such perturbation under a norm-ball threat model

which can be generalized as solving the following optimization

problem:

xadv = x+ δ∗ where δ∗ = argmax
δ

L(x+ δ) (1)

such that ‖δ‖p ≤ d

where L is some loss function associated with the correct

prediction of a clean sample x by the target neural network.

The constraint is used to keep the perturbation small or

imperceptible to humans. Our attack also uses the norm-ball

constraint and an optimization problem of a similar form.

B. Robustness of k-Nearest Neighbors

The kNN classifier is a popular non-parametric classifier

that predicts the label of an input by finding its k nearest

neighbors in some distance metric such as Euclidean or cosine

distance and taking a majority vote from the labels of the

neighbors. Wang et al. recently studied the robustness of kNN

in an adversarial setting, providing a theoretic bound on the

required value of k such that robustness of kNN can approach

that of the Bayes Optimal classifier [33]. Since the required

value of k is too large in practice, they also propose a robust

1-NN by selectively removing some of the training samples.

We did not experiment with this defense as it is limited to a

1-NN algorithm with two classes.

C. Deep k-Nearest Neighbors

DkNN, proposed by Papernot & McDaniel, is a scheme

that can be applied to any deep learning model, offering inter-

pretability and robustness through a nearest neighbor search

in each of the deep representation layers. Using inductive
conformal prediction, the model computes, in addition to a

prediction, confidence and credibility scores, which measure

the model’s assessment of how likely its prediction is to be

correct. The goal is that adversarial examples will have low

credibility and can thus be easily detected. The credibility is

computed by counting the number of neighbors from classes

other than the majority; this score is compared to scores

seen when classifying samples from a held-out calibration
set. Papernot & McDaniel evaluate DkNN with an adaptive

adversary which is found to be quite unsuccessful. We examine

the robustness of DkNN with the stronger attack we propose.

We note that the DkNN proposed by Papernot & McDaniel

uses cosine distance, which is equivalent to Euclidean distance

given that all samples are normalized to have a unit norm. For

the rest of the paper, we tend to omit the normalization for

simplicity and less clutter in equations. The implementation

and the evaluation, however, use cosine distance as instructed

in the original paper.

III. THREAT MODEL

We assume the white-box threat model for attacks on both

kNN and DkNN. More precisely, the adversary is assumed to

have access to the training set and all parameters of the DkNN

neural network. Since a kNN classifier is non-parametric,

the training set is, in some sense, equivalent to the weights

of parametric models. We also assume that the adversary

knows all hyperparameters, namely k, the distance metric used

(Euclidean or cosine distance), and additionally the calibration

set for DkNN. Though this knowledge is less crucial to the

adversary, it allows the adversary to accurately evaluate his/her

attack during the optimization resulting in a more effective

attack.

For consistent comparisons with previous literature, the

adversarial examples must be contained within a norm-ball

(�2 and �∞) centered at given test samples. We recognize that

the �p-norm constraint may not be representative of human

perception nor applicable in many real-world cases.

IV. ATTACK ON K-NEAREST NEIGHBORS

A. Notation

We follow notation from Papernot & McDaniel as much

as possible. Let z denote a target sample or a clean sample

that the adversary uses as a starting point to generate an

adversarial example, and yz its ground-truth label. We denote

the perturbed version of z as ẑ. The training set for both kNN

and DkNN is (X,Y ) with n samples of dimension d. The

classifier’s prediction for a sample x is knn(x).

B. Mean Attack

We first introduce a simple, intuitive attack to serve as a

baseline. Let z be a clean sample, yz its ground-truth class,

and yadv �= yz be a target class. The attack, which we call

the mean attack, works by moving z in the direction towards

the mean of all samples in the training set with class yadv .

Concretely, we first search for the class yadv �= yz such that

the mean of training samples with that class is closest to z
in Euclidean distance. Let m denote the corresponding mean.

We then use binary search to find the smallest c > 0 such that

(1− c)z + cm is misclassified by the kNN.

This attack is very simple to carry out and applicable to

any classifier. While it is a natural choice for attacking a kNN

with Euclidean distance, the attack may perform less well for

cosine distance or other distance measures. As our experiments

show, the mean attack also produces perturbations that make

the resulting adversarial example look, to humans, more like

samples from the target class, and thus makes the attack

more noticeable. Nonetheless, this attack can be regarded as

a simple baseline for measuring the robustness of nearest-

neighbor classifiers.
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Fig. 2: (a) naive attack for k = 1: The target sample z
(light blue circle) is moved towards each of the samples from

a different class (red triangles). The one that requires the

smallest �2-distance to change the prediction is the optimal

adversarial example ẑ (pink circle). (b) naive attack for k > 1:

In the first step, a set S of 3 samples from the different class

closest to z are located with a greedy algorithm. The second

step involves moving z towards a mean of the samples in S
and stops when the prediction changes.

C. Naive Attack

Next, we introduce a second baseline attack that improves

slightly on the mean attack. When k = 1, a simple algorithm

can find the optimal adversarial example in O(n) time. For

each training sample z′ of a class other than yz , the algorithm

moves the target sample z in a straight line towards z′ until

knn(ẑ) �= yz (i.e., setting ẑ = (1 − c)z + cz′, we find the

smallest c > 0 such that knn(ẑ) �= yz). This produces n
candidate adversarial examples, and the algorithm outputs the

one that is closest to z. Fig. 2(a) illustrates this algorithm.

This strategy finds the optimal adversarial example when

k = 1, but when k > 1, it is not clear how to find the

optimal adversarial example efficiently. Repeating the previous

strategy on all sets of k training samples does not guarantee

an optimal solution and is inefficient, as its complexity grows

exponentially with k. Instead, we propose a computationally

cheaper attack that greedily chooses only one set of samples to

move towards, as summarized in Fig. 2(b). There are multiple

possible heuristics to choose this set. One simple option would

be to find the �k2 � nearest neighbors of z whose labels all

match but are different from yz . We instead use a slightly

more complex variant: (1) find the nearest neighbor from any

class other than yz , say class yadv , (2) add this sample to

an empty set S, and (3) out of all samples with class yadv ,

iteratively find the nearest sample to the mean of S and add

it to S. The final step is repeated until |S| = �k2 �. Finally, we

move z towards the mean of S until the classifier’s prediction

differs from yz .

D. Gradient-Based Attack

Here we introduce our main attack on kNN. On a high-level,

it uses a heuristic initialization to choose a set of m samples

that are close to the target sample z. Then, a gradient-based

optimization is used to move z closer to the ones with the

target class yadv and further from the ones with the original

class yz .

We will discuss the choices for the heuristic initialization

towards the end of this section. For now, the algorithm can be

formulated as the following optimization problem.

δ̂ =argmin
δ

m∑

i=1

wi · ‖xi − (z + δ)‖22 (2)

such that ‖δ‖p ≤ ε and z + δ ∈ [0, 1]d

where δ is the perturbation, ẑ = z+ δ̂ is the adversarial exam-

ple, x1, . . . , xm are the m training samples selected earlier,

and wi = 1 if the label of xi is yadv , otherwise wi = −1.

The first constraint constrains the norm of the perturbation,

and the second constraint ensures that the adversarial example

lies in a valid input range, which here we assume to be [0, 1]
for pixel values.

However, Eq. 2 may not achieve what we desire since it

treats all xi equally and does not take into account that for

kNN, only the k nearest neighbors contribute to the predic-

tion, while the other training samples are entirely irrelevant.

Moreover, the distance to these k neighbors does not matter

as long as they are the k closest. In other words, the distance

to each of these k neighbors is irrelevant so long as it is

under a certain threshold η (where η is the distance to the k-th

nearest neighbor). This means that a sample xi gets a vote if

‖xi − ẑ‖2 ≤ η; otherwise, it gets zero vote. The optimization

above does not take this into account.

We show how to adjust the optimization to model this

aspect of kNN classifiers. The function that maps ẑ to 0 or

1 according to whether xi gets a vote is not a continuous

function and it has zero gradient where it is differentiable,

so it poses challenges for gradient-based optimization. To

circumvent this problem, we approximate the threshold with a

sigmoid function, σ(x) = 1
1+e−αx where α is a hyperparam-

eter that controls “steepness” (or an inverse of temperature)

of the sigmoid. As α → ∞, the sigmoid exactly represents

the Heaviside step function, i.e., a hard threshold. This lets

us adjust Eq. 2 to incorporate the considerations above, as

follows:

δ̂ =argmin
δ

m∑

i=1

wi · σ
( ‖xi − (z + δ)‖2 − η

)
(3)

such that ‖δ‖p ≤ ε and z + δ ∈ [0, 1]d

Ideally, η should be recomputed at every optimization step, but

this requires finding k nearest neighbors at each step, which

is computationally expensive. Instead, we fix the value of η
by taking the average distance, over all training samples, from

each sample to its k-th nearest neighbor.

Choosing the initial m samples. There is no single correct

way to initialize the set of m samples. We empirically found

that choosing all of them from the same class yadv , and

choosing the m training samples of that class that are closest

to z, works reasonably well. We choose yadv by computing

the distance from z to the mean of all samples of class

y, for each y, and taking the class y that minimizes this

distance. Other heuristics might well perform better; we did
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not attempt to explore alternatives in depth, as this simple

heuristic sufficed in our experiments. The choice of the attack

parameter m affects the attack success rate. A larger m means

we consider more training samples which make the kNN

more likely to be fooled, but it is also more expensive to

compute and may produce larger distortion. In principle, one

could recompute the set of m samples periodically as the

optimization progresses, but for our experiments, we select

them only once in the beginning.

For p = ∞, we use a change of variable as introduced by

Carlini & Wagner [34] to provide pixel-wise box constraints

that simultaneously satisfy both of the optimization constraints

in Eq. 3. More precisely, the i-th pixel of the adversarial

example is written as ẑi = 1
2 (tanh(vi) + 1) · (bu − bl) + bl

where bu and bl are the upper and the lower bound of that pixel

respectively. v becomes the variable that we optimize over, but

for simplicity, we omit it from Eq. 3. In the case of p = 2,

this change of variables enforces the second constraint. The

first constraint is relaxed and added to the objective function

as a penalty term:

δ̂ = argmin
δ

m∑

i=1

wi · σ
( ‖xi − (z + δ)‖2 − η

)

+ c ·max
{
0, ‖δ‖22 − ε2

}
(4)

such that z + δ ∈ [0, 1]d

To find an appropriate value for c, we use a binary search for

five steps. If the attack succeeds, c is increased; otherwise, c
is decreased.

V. ATTACK ON DEEP K-NEAREST NEIGHBORS

A. Notation

Let dknn(x) denote DkNN’s prediction for a sample x. The

prediction of the l-layer neural network part of the DkNN is

denoted as f(x), and the output from the λ-th layer as fλ(x)
where λ ∈ {1, 2, ..., l}. The calibration set (Xc, Y c) is used to

calculate the empirical p-value as well as the credibility and

confidence.

B. Mean Attack

The mean attack for DkNN is exactly the same as for kNN

without any modification as the attack does not depend on the

choice of classifiers.

C. Baseline Attack

We use the adaptive attack evaluated by Papernot & Mc-

Daniel as a baseline. Given a target sample z, we try to

minimize the distance between its representation at the first

layer and that of a guide sample xg , a sample from a different

class whose representation is closest to f1(z). For the �∞-

norm constraint, the attack can be written as:

δ̂ = argmin
δ

‖f1(xg)− f1(z + δ)‖22 (5)

such that ‖δ‖∞ ≤ ε and z + δ ∈ [0, 1]d

The optimization is solved with L-BFGS-B optimizer as

suggested in Sabour et al. [35]. For completeness, we will

also evaluate the attack with a �2 constraint, using the same

relaxation as Eq. 4.

D. Gradient-Based Attack

The baseline attack relies on an assumption that if f1(ẑ) is

close to f1(xg), then fλ(ẑ) will also be close to fλ(xg) for

2 ≤ λ ≤ l, resulting in both ẑ and xg having a similar set of

neighbors for all of the layers as well as the final prediction.

However, while this assumption makes intuitive sense, it can

be excessively strict for generating adversarial examples. The

adversary only needs a large fraction of the neighbors of ẑ
to be of class yadv . By extending the gradient-based attack

on kNN, we formulate an analogous optimization problem for

attacking DkNN as follows:

δ̂ =argmin
δ

m∑

i=1

l∑

λ=1

wi · σ
( ‖fλ(xi)− fλ(z + δ)‖2 − ηλ

)

(6)

such that ‖δ‖p ≤ ε and z + δ ∈ [0, 1]d

The m samples are chosen similarly to the attack on kNN.

In the interest of space, we omit the formulation for the �2
constraint as it is also analogous to Eq. 4.

VI. EXPERIMENTAL SETUP

We reimplement DkNN from Papernot & McDaniel with the

same hyperparameters, including the network architecture and

the value of k = 75. We evaluate our attacks on the MNIST

dataset [36] as past research suggests that finding adversarial

examples on other tasks is even easier. 60,000 samples are

used as the training samples for kNN, DkNN, as well as the

neural network part of DkNN. 750 samples (75 from each

digit) are held out as the calibration set, leaving 9,250 test

samples for evaluating the accuracy and the robustness of

the classifiers against the attacks. Similarly to Papernot &

McDaniel, for a quick nearest neighbor search on DkNN,

we use a locality-sensitive hash (LSH) from the FALCONN

Python library, which is based off cross-polytope LSH by

Andoni et al. [37]. kNN uses an exact neighbor search without

any approximation. The kNN and the DkNN have an accuracy

of 95.74% and 98.83% on the clean test set, respectively. The

neural network alone has an accuracy of 99.24%.

All of the attacks are evaluated under both �2- and �∞-norm

constraints, except for the naive attack on kNN and the mean

attacks. For simplicity, we only evaluate untargeted attacks.

Both the mean and the naive attacks use only five binary

search steps. For the other attacks, we use 400 iterations of

gradient updates and five steps of binary search on the �2-

penalty constant. The Adam optimizer is used in the gradient-

based attack, and to save computation time, we only check

for the termination condition (i.e., whether ẑ is misclassified)

three times at iterations 320, 360, and 400, instead of at every

step.
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TABLE I: Evaluation of all the attacks on kNN.

Attacks Accuracy Mean Distortion in �2

Clean Samples 0.9574 -
Mean Attack 0.0589 8.611
Naive Attack 0.7834 8.599
Gradient Attack (�2) 0.0989 6.565
Gradient Attack (�∞) 0.8514 5.282

TABLE II: Evaluation of all the attacks on DkNN.

Attacks Accuracy Mean Dist. Mean Cred.

Clean Samples 0.9883 - 0.6642
Mean Attack 0.1313 4.408 0.0172

Baseline Attack (�2) 0.1602 3.459 0.0185
Baseline Attack (�∞ = 0.2) 0.8891 2.660 0.0807
Baseline Attack (fixed �2) 0.5004 3.435 0.1385

Gradient Attack (�2) 0.0000 2.164 0.0482
Gradient Attack (�∞ = 0.2) 0.1744 3.476 0.1037
Gradient Attack (fixed �2) 0.0059 3.375 0.3758

We made minimal effort to select hyperparameters. We fix

the steepness α of the sigmoid at 4, and for DkNN, we

arbitrarily choose the initial m samples to be the k training

samples with class yadv whose first-layer representation is

closest to that of z. For the �2-norm attacks, ε is simply

chosen to be 0 with the constant c being 1. This choice of

penalty generally allows the optimization to find adversarial

examples most of the time but may result in unnecessarily

large perturbations. To set a more strict constraint, one could

set ε to a desired threshold and c to a very large number.

VII. RESULTS

A. k-Nearest Neighbors

Table I displays the accuracy and mean �2 distortion of the

successful adversarial examples for kNN. As expected, the

mean attack is very good at finding adversarial examples but

the perturbation is large and the adversarial examples some-

times introduce anomalies that may be noticeable to humans.

Surprisingly, the naive attack performs much more poorly

compared to the mean attack, indicating that the heuristic used

to choose the set of target samples can significantly affect the

attack success rate. The gradient-based attack with the �2-norm

performs well and is on par with the mean attack while having

considerably smaller mean distortion. On the other hand, the

gradient attack with �∞-norm of 0.2 is mostly unsuccessful.

We speculate this might be because ε = 0.2 is too small and

the �∞-norm is an ineffective choice of norm as kNN relies

on Euclidean distance in the pixel space for prediction.

B. Deep k-Nearest Neighbors

Table II compares the accuracy, mean �2 distortion, and

mean credibility of the successful adversarial examples for

DkNN between the three attacks. Our novel gradient-based

attack outperforms the baseline as well as the mean attack by

a significant margin. With an �∞-norm constraint of 0.2, the

gradient attack reduces the classifier’s accuracy much further

compared to the baseline. With an �2-norm constraint, our

gradient attack also performs better with smaller perturbation.

Although the mean attack reduces the accuracy even lower

than the gradient attack with �∞-norm of 0.2, it has lower

mean credibility and the perturbation is also considerably

larger and more visible to humans.

Unlike an �∞ constraint, which is strictly enforced by

the change of variables trick, an �2 constraint is written as

a penalty term with only a tunable weighting constant. To

compare the baseline and the gradient attacks under a similar

�2-norm, we arbitrarily set ε to be the mean �2-norm of the

�∞ gradient attack (3.476) and the constant c to be just high

enough that the optimization still finds successful attacks with

a minimal violation on the constraint ‖ε‖2 ≤ 3.476. We report

the results for both attacks in Table II on the “fixed �2” rows.

The gradient attack, when given a large �2 budget, can increase

the credibility significantly and reduce the accuracy to almost

zero (0.6%). In contrast, the baseline attack can only find

adversarial examples for about 50% of the samples under the

same �2 constraint.

Fig. 3 shows a clean sample and its adversarial versions

generated by all of the attacks along with their five nearest

neighbors at each of the four layers of representation. On the

first column, all of the 20 neighbors of the clean sample have

the correct class (a six). On the other hand, the majority of

neighbors of the adversarial examples are of the incorrect class

(a five) with an exception of the first layer whose neighbors

generally still come from the correct class. The other common

property of all the attacks is that almost every neighbor in the

final layer has the adversarial class.

Note that the �2-attacks, both the baseline and the gradient-

based attack, often perturb the sample in a semantically mean-

ingful manner. Most are subtle, but some are quite prominent.

For instance, the input of the third column from the left in Fig.

3 is perturbed by slightly removing the connected line that

distinguishes between a five and a six, making the adversarial

example appear somewhat ambiguous to humans. In contrast,

the �∞ adversarial examples usually spread the perturbation

over the entire image without changing its semantic meaning

in a way that is noticeable to humans.

For the �∞-norm constraint, as we increase ε, the accuracy

of DkNN drops further and hits zero at ε = 0.3, as shown in

Fig. 4(a), whereas increasing ε on the baseline attack reduces

accuracy at a much slower rate.

Fig. 4(b) displays the mean credibility of successful adver-

sarial examples generated from the baseline and the gradient

attacks. As expected, as we increase ε, the mean credibility

also increases for both attacks because the adversarial example

can move closer to training samples from the target class. The

gradient-based attack increases the mean credibility at a much

faster rate than the baseline potentially because its objective

function indirectly corresponds to the credibility as it takes into

account m training samples instead of one like the baseline.

In the next section, we discuss the possibility of detecting

adversarial examples by setting a threshold on the credibility

score.
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Fig. 3: Each column shows five nearest neighbors for each of the four deep representation spaces of DkNN. From left to right,

the inputs are a randomly chosen legitimate sample, its �2 and �∞ baseline attacks, and its �2 and �∞ gradient attacks. For

the �∞-norm constraint, ε is 0.2. The legitimate sample is correctly predicted by the DkNN, and all of the attacks succeed in

changing the prediction from a six to a five, except for the �∞ baseline attack.

Fig. 4: (a) Accuracy and (b) mean credibility of DkNN under

the baseline attack and our gradient-based attack at different

�∞-norm constraints.

Fig. 5: Histogram of credibility of the clean test samples and

the adversarial examples generated from the gradient-based

attack with the �∞-norm constraint of 0.2 and 0.3. The black

dashed vertical line indicates credibility of 0.1.

VIII. DISCUSSION

A. Credibility Threshold

Papernot & McDaniel argues that the credibility output by

DkNN is a well-calibrated metric for detecting adversarial

examples. In Fig. 5, we show the distribution of the credibility

for the clean test set and for adversarial examples generated

from the gradient-based attack with two different �∞-norms.

Most of the test samples (around 55%) have credibility be-

tween 0.9 and 1. On the other hand, the majority of the

adversarial examples have credibility less than 0.1, suggesting

that setting a threshold on credibility can potentially filter out

most of the adversarial examples. However, doing so comes at

a cost of lowering accuracy on legitimate samples. Choosing

a credibility threshold of 0.1 reduces accuracy on the test set

to 91.15%, which is already very low for MNIST, and with

this threshold, 28% and 43% of the adversarial examples with

�∞-norm of 0.2 and 0.3 respectively still pass the threshold

and would not be detected. It is also important to note that our

attack is not designed to maximize the credibility. Rather, it is

designed to find adversarial examples with minimal distortion.

Simple parameter fine-tuning, e.g. a larger m, more iterations,

and a smaller η, might all help increase the credibility.

Our experiments suggest that DkNN’s credibility may not

be sufficient for eliminating adversarial examples, but it is

still a more robust metric for detecting adversarial examples

than a softmax score of typical neural networks. Unfortu-

nately, thresholding the credibility hurts accuracy on legitimate

examples significantly even for a simple task like MNIST.

According to Papernot & McDaniel, the SVHN and GTSRB

datasets both have a larger fraction of legitimate samples with

low credibility than MNIST, making a credibility threshold

even less attractive. Experiments with the ImageNet dataset,

deeper networks, choosing which layers to use, and pruning

DkNN for robustness are all interesting directions for future

works.

IX. CONCLUSION

We propose two heuristic attacks and a gradient-based attack

on kNN and use them to attack DkNN. We found that our

gradient attack performs better than the baseline: it generates

adversarial examples with a higher success rate but lower

distortion on both �2 and �∞ norms. Our work suggests that

DkNN is vulnerable to adversarial examples in a white-box

adversarial setting. Nonetheless, DkNN still holds promise

as a direction for providing significant robustness against

adversarial attacks as well as interpretability of deep neural

networks.
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