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Abstract—With the ever-growing occurrence of networking
attacks, robust network security systems are essential to prevent
and mitigate their harming effects. In recent years, machine
learning-based systems have gain popularity for network secu-
rity applications, usually considering the application of shallow
models, where a set of expert handcrafted features are needed to
pre-process the data before training. The main problem with this
approach is that handcrafted features can fail to perform well
given different kinds of scenarios and problems. Deep Learning
models can solve this kind of issues using their ability to learn
feature representations from input raw or basic, non-processed
data. In this paper we explore the power of deep learning models
on the specific problem of detection and classification of malware
network traffic, using different representations for the input data.
As a major advantage as compared to the state of the art, we
consider raw measurements coming directly from the stream
of monitored bytes as the input to the proposed models, and
evaluate different raw-traffic feature representations, including
packet and flow-level ones. Our results suggest that deep learning
models can better capture the underlying statistics of malicious
traffic as compared to classical, shallow-like models, even while
operating in the dark, i.e., without any sort of expert handcrafted
inputs.

Index Terms—Deep Learning; Network Traffic; Raw Measure-
ments; Malware Detection.

I. INTRODUCTION

The popularity of Deep Learning (DL) models has seen

tremendous growth because of their power to achieve great

results in many signal processing problems, such as computer

vision, audio processing, natural language processing, etc. One

of the key reasons making DL models widely used today is the

increasing computational power and the availability of larger

datasets to perform the training.

The dramatic impact and massive breakthrough of DL

can be associated with 2012’s ImageNet large scale visual

recognition challenge (ILSVRC2012), in which Krizhevsky et

al. [2] presented for the first time a model based on a deep

convolutional neural network (CNN) for this task, winning

the challenge by a wide margin (lowering the state-of-the-art

error rate from 26.1% to 15.3%). One of the most powerful

characteristics of DL models is their ability to learn feature

representations from input raw or basic, non-processed data.

For example, a CNN trained for image classification can learn

to recognize edges and more complex structures along the

sequence of neural layers, using as input only the image RGB

pixel values (refer to [1] for a detailed example).

Despite the success of DL models, shallow machine learning

models are usually applied when it comes to the analysis of

network traffic measurements. When using these models, a fea-

ture vector of expert-handcrafted features is usually built in or-

der to achieve the best results. This is actually the critical step

on which the success of the model depends. There are different

problems when addressing network traffic measurements tasks

using shallow machine learning approaches. First, the lack of

a consensual labeled raw traffic, full-packet capture dataset to

train these models (e.g. due to privacy policies in the data);

second, the lack of a consensual set of input features to tackle

specific targets, such as network security, anomaly detection,

traffic classification, etc.; third, the continuous changing in net-

work measurements statistics that may cause static handcrafted

features to fail. To improve these limitations, we explore

in this paper the end-to-end applications of DL models to

complement traditional approaches for network measurement

analysis, using different representations of the input data. We

particularly focus on the problem of malware traffic detection

and classification through deep neural networks, using raw,

bytestream-based data as input. Inspired on previous recent

work on this domain [13], we present and evaluate different

DL architectures and different input representations showing

outstanding performance on the analysis of raw bytestream

packet data for network malware traffic detection.

The rest of the paper is organized as follows: in Section

II we present a brief state-of-the-art on DL models applied

to the analysis of network traffic measurements; in Section III

we present the different DL approaches selected and evaluated

in this work, for the specific detection of malware traffic; in

Section IV we discuss the detection performance achieved by

these approaches, comparing them with traditional, shallow-

like based models, using domain expert knowledge to craft the

input features; in Section V we introduce a variation of the

detection problem using a multi-class, malware classification

approach, and present concluding remarks in Section VI.

II. STATE-OF-THE-ART

The application of shallow, machine learning models to

general network measurement problems is largely extended

in the literature. There are a couple of extensive surveys and

papers on network measurement problems such as network

anomaly detection [5] [4] - including machine learning-based

approaches [3], machine learning for network traffic classifi-

cation [7] and network security [6].

Some DL approaches have been recently shown good per-

formance, mainly associated to traffic classification tasks. In
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2015, Z. Wang et al. [17] presented a Deep Neural Network

for feature learning using feed-forward networks and Stacked

Auto-Encoders (SAE) to perform network protocol recognition

over a dataset made up of TCP flows from an internal network.

In 2017 there have been some works over the subject. W.

Wang et al. presented two models based upon a 2D-CNN [16]

and 1D-CNN [15], in which the authors transform network

flows and sessions to images to work as an input for the CNN

models, using either the information of all the layers, or only

from the application layer. Lotfollahi et al. [12] presented

an approach for encrypted traffic classification using SAE

and 1D-CNN at the packet level. M. Lopez-Martin et al.
[11] presented different DL architectures based on CNN and

LSTM networks to perform traffic classification using self-

collected network traces. Recently, in 2018, Radford et al.
[14] presented an anomaly detection model using a LSTM

network from network traffic logs for cyber-security. In [13]

authors introduced RawPower, a DL architecture showing

outstanding performance on the analysis of raw bytestream

data for network anomaly detection.

Most of these proposals use DL models after some prepro-

cessing of the data was made, or after some set of handcrafted

features was built in order to extract meaningful input for the

DL models. The main contribution of our approach is that of

using completely expert-knowledge-independent inputs for the

prediction and classification tasks - just the raw bytestream,

opening the door to a broad set of potential applications of

DL for networking problems.

III. DEEP LEARNING FOR MALWARE DETECTION

Our goal is to train a DL model with the stream of incoming

bytes without requiring any preprocessing step or domain

expert intervention, to make the approach generic and flexible.

As we said before, we particularly focus on the problem

of malware traffic detection and classification, using raw,

bytestream-based data as input. The input representation of

the data, as well as the network architecture, are both key

facts when building a DL model. Since we want to evaluate the

feature representation power of the model from non-processed

data, we consider two types of raw representations: packets

and flows. In both cases we consider decimal normalized

representation of every byte of every packet as a different

feature. Since different packets can have different sizes, we set

a fixed threshold n to trim each incoming packet to the first n
bytes, after removing potentially biasing byte information such

as MAC and IP addresses. All packets with size larger than

n bytes are trimmed, and packets with smaller size are zero-

padded. Next we describe the two raw representations based

on packets and flows, along with the corresponding network

architectures.

A. Input Representations

In the packet approach, we consider each packet as a

different instance, while in the flow approach we consider a

group of packets –that make up the flow– as an input for the

network, i.e., we build a tensor made of packets that represents

(a) Packet representation for the
input data. The shape of the input
data is (N,n): N is the number of
instances –packets– and n the num-
ber of steps –bytes–.

(b) Flow representation for the in-
put data. A tensor of size (N,m, n)
where N represents the number of
instances –flows–, m the number of
channels –packets– and n the num-
ber of steps –bytes–.

Figure 1: Different input representation for the DL models.

a flow as an input instance. Both representations are depicted

in Fig. 1. For the Raw Packet representation, we have to choose

the number of bytes from the packet to consider (n), while in

the flow representation we also have to set the number of

packets per flow to consider (m). This is because, naturally,

different packets and flows can have different sizes. The packet

approach is inspired by previous work [13].

Since both malware and normal captures are gathered under

controlled conditions, there is some bias in the IP and transport

protocol headers that are not representative of in the wild
traffic. This is the case, for example, of fixed values for IP

addresses and ports and even some of the transport protocol

flags. For this reason, we take the payload of every packet

as the key information to analyze and to build the dataset.

Afterwards, we set a fixed threshold for the parameter n to

trim each incoming packet to the first n bytes of payload. All

packets with size larger than n bytes are trimmed, and packets

with smaller size are zero-padded at the end. For the number

of packets per flow, we fixed a number m and took the first

m packets of the flow, discarding the rest.

B. DL Architectures - Raw Packets

The architecture of the DL network for the Raw Packets
input representation is shown in Fig. 2. It consists of two 1D-

CNN layers of 32 and 64 filters of size 5, respectively; a max-

pooling layer of size 8; a LSTM layer of 200 units, returning

the outputs of each cell (“return sequences” mode on); and

finally, two fully-connected (FC) layers of 200 units each.

A binary cross-entropy is used as the loss function. Spatial

and normal batch normalization layers are added after each

1D-CNN and FC layers to ease the training process. Dropout

layers are also used to add regularization to the model.

C. DL Architectures - Raw Flows

When deciding on the network architecture for the Raw
Flows approach, we note that the number of instances to deal

with when operating at the flow level is by far much smaller

than in the case of packet-based inputs; as a consequence, the

capacity of the model does not have to be as high as in the

Raw Packets case. The architecture in this case consists of one

1D-CNN layer of 32 filters of size 5 and two fully-connected

layers of 50 and 100 units each. Also, binary cross-entropy is

used as the loss function. The architecture is shown in Fig. 3.
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Figure 2: DL architecture for Raw Packets representation.

Figure 3: DL architecture for Raw Flows representation.

Representation Dataset size n (bytes) m (packets)

Raw Packets 248, 850 1024 –

Raw Flows 67, 494 100 2

Table I: Parameters selection for building the input represen-

tation for training the DL models.

IV. EXPERIMENTAL EVALUATIONS

We evaluate the different proposed DL architectures and

input representations using real network measurement datasets,

publicly available through the Stratosphere IPS Project of

the CTU University of Prague in Czech Republic [10]. In

this section we focus exclusively on the problem of malware

detection, posing it as a binary classification problem: either

normal instance or malware. To show the main advantages of

the proposed approaches, we pose ourselves three evaluation

questions: (i) is it possible to achieve high detection accuracy

with low false alarm rates using the raw-input, DL-based

models?; (ii) are the proposed DL-based models better than the

commonly used shallow models for malware detection, when

feeding them all with raw inputs (e.g., bytestreams)?; and (iii)

how good are the raw-input, DL-based models as compared

to a classical approach for malware detection, where shallow

models take as input specific hand-crafted features based on

domain expert knowledge?.

A. DL vs. Shallow Models with Raw Inputs

We begin with a simple evaluation scenario, detecting

malware at the packet level. We take a first dataset previously
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Figure 4: Malware detection performance. Raw packet inputs,

DL vs. RF model.

used in the literature [16], referred to as the USTCTFC2016
dataset. This dataset consists of two groups of labeled pcap
files from malware and benign applications. The malware files

contain 10 types of malware traffic from public websites, col-

lected from a real network environment by researchers of the

Czech Technical University in Prague (CTU) [10]. The benign

traffic contains 10 types of normal traffic which were col-

lected using Ixia BreakingPoint (https://www.ixiacom.com),

a network traffic simulation platform. We take every packet

from each labeled pcap as part of the dataset, using decimal

normalized representation of every byte as a different feature.

We set n = 1024 bytes; each packet is finally labeled as either

benign or malware, i.e., we consider a binary classification

problem. The total dataset consists of one million samples

(i.e., trimmed packets), half of them benign and half of them

coming from the malware traces. We split the dataset on

80% of the samples for training, 10% for validation and 10%

for testing purposes. We built the model using the Keras

framework running on top of TensorFlow, using the Big-

DAMA platform [9], a big-data cluster for analyzing network

traffic data with machine learning models.

Fig. 4 presents the initial results obtained by the Raw Packet
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(a) Raw Packets representation.
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(b) Raw Flows representations.

Figure 5: Learning performance (loss and accuracy evolution after each epoch) for Raw Flows and Raw Packets approaches.
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(a) Raw Packets representation.
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(b) Raw Flows representation.

Figure 6: Malware detection performance using Raw Packets and Raw Flows representations.

DL model in the detection of malware packets, in the form

of a ROC curve. The model is compared to a Random Forest

(RF) one, using exactly the same input features and an internal

architecture of 100 trees. We choose a RF model based on

the generally outstanding detection performance shown by the

model in our previous work [8], using domain expert input

features. The DL model can detect more than 70% of the

malware instances with a false alarm rate below 3%, largely

outperforming the RF model. Indeed, when applying the RF

model with the same set of raw, non processed input features,

the obtained results are very poor. These results are highly

encouraging, as they point to the ability of the DL-based model

to better capture the underlying statistics of the malware,

without requiring any specific handcrafted feature set. Still, the

absolute detection performance results are not good enough to

rely on such a DL model with raw packet inputs for malware

detection in the practice.

B. Packet vs. Flow Representation Performance

We take a step further an consider a similar comparison as

before, but considering now both raw packet and raw flow

representations as input. We take again publicly available

datasets from CTU, but to test on different scenarios, we

extend the mix of data by considering multiple pcap files. We

consider the same 10 different types of malware captures as

before, adding now 16 types of normal captures, choosing the
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(b) Expert-Knowledge based input features.

Figure 7: Malware detection performance using Raw Flows vs expert-knowledge-based inputs.

same number of packets for each capture to build a balanced

dataset (50% malware packets and 50% normal packets).

In Table I we show the selection of parameters for each input

representation. These parameters where selected after conduct-

ing a statistical analysis over the dataset. We built two different

datasets to fit each one of the considered input representations.

The dataset for the Raw Packet representation, after removing

duplicate instances, consists of roughly 250, 000 instances. For

the Raw Flows representation, the dataset consists of about

68, 000 instances. Both datasets are split according to the same

scheme as before: 80% of the samples for training, 10% for

validation and 10% for testing.

The learning processes for both approaches is described in

Fig. 5. In both cases we used mini-batches for the parameters

update and we trained the models over several epochs (being

an epoch a single pass-through over the complete training

dataset). In the case of the Raw Packets representation, the

training was held over 100 epochs, while in the case of Raw
Flows we used 10 epochs. We used Adam as the optimizer

function annealing the learning rate over time. The perfor-

mance metric chosen in both cases was the accuracy, since

the dataset is balanced. For the Raw Packets representation we

achieved 77.6% of accuracy over the test set; while in the case

of Raw Flows we achieved an accuracy of 98.6% also over the

test set. Note that the learning process performs better when

operating at the flow level, as there is some potential over-

fitting for this scenario using the packet-level representation.

As we did before, Fig. 6 compares the detection perfor-

mance of both models against a RF model using exactly

the same (raw) input features - in the Raw Flows case, we

flatten the data to fit the input to the RF. In both cases,

the internal architecture of the RF consisted of 100 trees

using different pruning techniques to prevent over-fitting (e.g.,

maximum depth, maximum number of instances per leaf, etc.).

Once again, we observe a clear out-performance of the DL

architectures as compared to the RF models, particularly when

operating at the flow level. For Raw Packets representations,

the detection model can detect about 65% of the malware

traffic packets with a false alarm rate below 3%, with an

overall out-performance of nearly 15% as compared to the

RF. Note that in this evaluation, the differences in terms of

performance are not as important as in Fig. 4.

The main differences occur when operating with Raw Flows
representations, where the DL model can detect as much as

98% of all malware flows with a false alarm rate as low as

0.2%. This suggests that, when operating at the flow level,

such raw input representation and associated DL architecture

can actually provide highly accurate results, applicable in the

practice.

C. Domain Knowledge vs. Raw Inputs

The last step of the evaluations tries to answer the third

question regarding the goodness and advantages of the pro-

posed approach w.r.t. the standard approach for machine-

learning based malware detection. In particular, we study how

good is the raw-flows, DL-based model as compared to a RF-

based model, the latter using as input specific hand-crafted

features based on domain expert knowledge.

The standard approach for detection of malware and net-

work attacks in networking traffic is to rely on flow-level

features, using traditional in-flow packet measurements such as

traffic throughput, packet sizes, inter-arrival times, frequency

of IP addresses and ports, transport protocols and share of

specific flags (e.g., SYN packets), etc. We therefore build a set

of almost 200 of these features to feed a RF model. Note that

besides using traditional features such as min/avg/max values

of some of the input measurements, we also consider their

empirical distribution, sampling the empirical distribution at

many different percentiles. This provides as input much richer

information, as the complete distribution is taken into account.

We take the same dataset used in Sec. IV-B for training and

testing purposes.
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Botnet Protocol Activity

Neris IRC spam, click fraud

Rbot IRC DDoS

Virut HTTP spam, port scan

Table II: Protocols and attacks performed by different kinds

of botnets in the scenarios chosen from the CTU dataset.

Class Accuracy Precision Recall F1 score

Normal 0.878 0.621 0.878 0.727

Neris 0.635 0.814 0.635 0.714

Rbot 0.999 1.000 0.999 1.000

Virut 0.547 0.679 0.547 0.606

Table III: Performance metrics for the DL model for the

malware classification problem.

Fig. 7 reports the results obtained on this scenario. Not

surprisingly, the RF using expert domain features achieves

highly accurate detection performance, detecting about 97%

of all the malware instances with less than 1% of false alarms.

However, also in this scenario, the DL-based model, using raw

flow representations as input, slightly outperforms this domain

expert knowledge based detector. As such, we can conclude

that DL model can perform as good as a more traditional

shallow-model based detector for detection of malware flows,

without requiring any sort of expert handcrafted inputs. This

of course, shows the great contribution of our approach.

Based on the three sets of evaluations, and recalling that

the RF model serves as performance benchmark - based on

our previous results showing their performance on malware

and network attacks detection tasks [8], we can conclude

that the proposed DL model, in particular that using raw

flow representations as input, can: (i) provide highly accurate

and applicable-in-the-practice malware detection results, (ii)

capture the underlying malware and normal traffic models

better than a shallow-like, RF-based model, and (iii) provide

results as good as those obtained through a domain expert

knowledge-based detector, without requiring any sort of hand-

crafted features.

V. FROM MALWARE DETECTION TO CLASSIFICATION

To complement previous malware detection results, in this

section we present a variation of the binary classification

problem, considering now different sorts of malware attacks

traffic as different classes, together with a “normal” class

representing benign traffic. In the CTU dataset, each capture

represents a different scenario, in which different sorts of

malware were executed using several protocols (e.g., IRC,

HTTP, P2P, etc.) and executing different types of attacks (e.g.,

DDoS, port scan, click fraud, spam, etc.).

To build the dataset we considered three different mal-

ware traffic classes, corresponding to three different types of

botnets, named Neris, Rbot, and Virut. Thus, our multiclass

classification problem has four different classes: three that

represents malware attacks and one that represents normal

activity. The activity and protocols used for the scenarios

chosen for building our dataset are depicted in Table II. The

dataset consists of 160, 000 samples, built in a stratified way,

i.e., the dataset is balanced with 40, 000 samples per class.

The DL model used for this task is quite similar to the

one used for the Raw Packets representation. The difference

is that now the activation function used in the last fully

connected layer is a Softmax function (a generalization of

the binary logistic regression classifier for multiple classes),

instead of the sigmoid used for the binary classification. The

resulting architecture is depicted in Fig. 8. The corresponding

loss function is also different for the multi-class classification

problem. In this case we used a categorical cross-entropy, and

the learning process was held over 50 epochs. The evolution

of the learning process, including loss and accuracy after

each epoch, is very similar to the previous raw packets-based

model (cf. Fig. 5a), as both operate using a similar input

representation.

For this problem, we also compared the performance of

the DL model against a Random Forest one, using the same

input features for both. In Fig. 9 we show the normalized

confusion matrices for both models (values are shown in

percentages); the DL model outperforms the RF for all classes.

As a sanity check, note that the accuracy of the multi-class

problem considering a binary approach (malware vs. normal)

holds similar results as the Raw Packets approach presented

in Sec. IV-B (77.6% vs. 76.5%). To complement, in Table III

we show additional performance metrics for the DL model,

including accuracy (AC), precision (PR), recall (RC) and F1

score for each class. Values are computed in a one-vs-all
schema, in which each class is evaluated against the rest, as if it

was a binary problem. It is interesting to note that Rbot botnet

is detected with an accuracy of 99.9% while Neris and Virut

achieve 63.5% and 54.7% each. It is likely that the fact that

both Neris and Virut share spam as an activity attack, could

be the root cause behind the bad performance to distinguish

one from each other - see Table II. Interesting is the fact

that once again, the DL architecture using raw inputs clearly

outperforms the RF model, for all variations of malware.

As a general conclusion of the multi-class problem, we can

observe that the raw packets representation does not provide

discriminative enough input for the proposed DL architecture

to realize properly classification results, but it still outperforms

the benchmark RF model. As part of our ongoing efforts, we

are working on both testing the multi-class problem using raw

flows representations, as well as on improving classification

performance for the raw packets input.

VI. CONCLUSIONS

In this paper we have presented two different approaches

using Deep Learning for the detection of malware network
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Figure 8: DL architecture for multi-class classification of malware traffic, using Raw Packets representation.

(a) Random Forest. (b) DL Multi-Class.

Figure 9: Normalized confusion matrices (showing percentage values) for both Random Forest and DL models.

traffic, considering raw representations of the input network

data. Different from traditional, shallow-based approaches, our

models operate with raw, byte stream inputs, without requiring

any type of handcrafted, expert domain knowledge-based

input features or feature engineering, providing an extremely

powerful approach. Evaluations show that using Raw Flows
as input to the DL models results in much better performance

than using Raw Packets, achieving detection performance

which is comparable - or even better, than the obtained by

expert-domain knowledge. We also presented a variation of

the binary classification model using a multi-class approach to

discriminate between different types of malware. In all cases,

DL models outperform a strong RF model used as benchmark,

using exactly the same raw input features. This demonstrates

the power of the DL models to better capture the underlying

statistics of malicious traffic, as compared to more classical,

shallow-like models.
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