
Privacy Risk Assessment for
Data Subject-aware Threat Modeling

Laurens Sion, Dimitri Van Landuyt, Kim Wuyts, Wouter Joosen
imec-DistriNet, KU Leuven

Heverlee, Belgium

{laurens.sion, dimitri.vanlanduyt, kim.wuyts, wouter.joosen}@cs.kuleuven.be

Abstract—Regulatory efforts such as the General Data Protec-
tion Regulation (GDPR) embody a notion of privacy risk that is
centered around the fundamental rights of data subjects. This
is, however, a fundamentally different notion of privacy risk
than the one commonly used in threat modeling which is largely
agnostic of involved data subjects. This mismatch hampers the
applicability of privacy threat modeling approaches such as
LINDDUN in a Data Protection by Design (DPbD) context.

In this paper, we present a data subject-aware privacy risk
assessment model in specific support of privacy threat modeling
activities. This model allows the threat modeler to draw upon a
more holistic understanding of privacy risk while assessing the
relevance of specific privacy threats to the system under design.
Additionally, we propose a number of improvements to privacy
threat modeling, such as enriching Data Flow Diagram (DFD)
system models with appropriate risk inputs (e.g., information on
data types and involved data subjects). Incorporation of these risk
inputs in DFDs, in combination with a risk estimation approach
using Monte Carlo simulations, leads to a more comprehensive
assessment of privacy risk.

The proposed risk model has been integrated in threat mod-
eling tool prototype and validated in the context of a realistic
eHealth application.

Index Terms—privacy, privacy by design, data protection by
design, GDPR, threat modeling, risk assessment, privacy risk

I. INTRODUCTION

The principle of Privacy by Design (PbD) is increasingly rec-

ognized as paramount for the realization of privacy-preserving

software. Besides the growing awareness of privacy concerns

due to increasingly impactful data breaches, its importance

is also confirmed with the introduction of legislation and

guidelines such as the EU’s General Data Protection Regulation

(GDPR) [1], the OECD Privacy Guideline [2], [3], and the

Generally Accepted Privacy Principles (GAPP) [4], all of which

advocate explicit privacy risk management. The GDPR [1] even

imposes it, as it requires countermeasures proportional to the

risk to the involved data subjects [1, Art. 32]. Hence, privacy

risk assessment becomes an essential part of a comprehensive

privacy engineering approach.

An important class of solutions for system analysis from

a privacy perspective is threat modeling, which entails the

systematic enumeration of misuse and attack vectors and

considering their applicability in the system under design.

Successful implementations of security threat modeling [5]–[8]
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have led to the conception of counterparts for eliciting privacy

threats, the most notable methodology being LINDDUN [9].

It is in the prioritization of the uncovered privacy issues

that threat modeling and privacy risk assessment are mutually

reinforcing approaches. However, privacy is an inherently

contested concept [10]; its risk can be approached from different

perspectives: (i) legal risk involving data protection aspects;

(ii) economic risk focusing on financial losses or reputational

damage; (iii) societal risk in terms of fundamental rights of

citizens or societal notions such as social cohesion; (iv) software

engineering risk with approaches such as threat elicitation

involving notions as attacker capabilities, threat feasibility,

involved assets, countermeasure strengths, and engineering

trade-offs; and so on.

Existing risk assessment methodologies in a privacy en-

gineering context commonly focus on a narrow perspective,

such as asset values, or are confined to a limited high-level

assessment, but lack focus on data subjects. By creating a

detailed risk decomposition, the involved risk factors are made

explicit, leading to a more precise interpretation. Furthermore, a

detailed decomposition provides support for a more fine-grained

calculation of the resulting risk. Finally, retrieving the risk

inputs from engineering models, automation can be supported,

enabling an encompassing risk management approach that

keeps track of the global reduction of privacy risk across

multiple countermeasures and design iterations, allows for

better traceability and auditability.

In this paper we (i) present a privacy risk decomposition

to calculate privacy risk using Monte Carlo simulations,

(ii) parameterize the risk to support different analysis scenarios,

(iii) elaborate on the integration of the risk assessment model

in a threat modeling context, (iv) implement the presented

extensions in a prototype, and (v) apply it on an eHealth

application illustrating its use in risk analysis scenarios.

This paper is structured as follows. Section II provides some

background on privacy threat modeling. Section III presents

the privacy risk assessment model. Section IV introduces the

necessary threat modeling extensions for integrating privacy risk

assessment. Section V validates the extension in a prototype

and on an eHealth application case. Section VI provides a

discussion and Section VII discusses related work. Finally,

Section VIII concludes the paper.
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II. BACKGROUND

This section first provides the necessary background on pri-

vacy threat modeling and then discusses different perspectives

on privacy risk, leading up to the problem statement.

A. Privacy Threat Modeling

Privacy threat modeling methodologies, such as LIND-

DUN [9], [11], represent a class of architecture-level analysis

methods, tools, and techniques that involve systematically

assessing the applicability of known privacy-related issues

(threats types) in the context of a specific system under design.

As shown in the pseudo-code below, the threat elicitation

phase commonly involves four activities: (i) modeling the

system (line 1), (ii) systematically iterating over the model

elements (line 2), (iii) iterating over the known threat types

(line 3), and (iv) based on the applicability of the threat type

to the system element (line 4) and the perceived risk (line 5),
documenting the identified privacy threats (line 6), which are

then to be mitigated in later phases.

1 SystemModel systemModel
2 f o r each sc in systemModel :
3 f o r each t t in ThreatTypes :
4 i f ( t t . a p p l i c a b l e ( sc ) &&
5 Risk ( tt , sc ) > t h r e s h o l d ) :
6 document ( tt , sc )

Such an exhaustive threat elicitation approach is enumera-

tive and therefore suffers from combinatorial explosion—the

amount of threats to consider grows substantially with the

number of system elements and the number of threat types to

consider. In this context, privacy risk assessment is crucial to

ensure the cost-effectiveness and efficiency of threat modeling

approaches in general.

B. Perspectives on Privacy Risk

As explained earlier, privacy risk can be assessed from a

wide range of different perspectives. This section elaborates on

a number of risk perspectives that are relevant in the context

of privacy threat modeling. Many existing risk assessment

approaches focus on either technical failures (e.g., FMEA [12])

or the manifestation of security threats (e.g., FAIR [13],

CORAS [14], security threat risk [15]). In these approaches,

the risk impact depends on the value of business assets or the

level of criticality of technical components or services.

These risk assessment models do not, however, include an

assessment of the potential privacy impacts on data subjects.

The GDPR and other applicable regulations dictate adopting

a risk-based approach, and specifically advocate the execu-

tion of Data Protection Impact Assessments (DPIA), which

fundamentally weigh the privacy impact against data subjects’

fundamental rights. PRIAM [16] provides a much more detailed

view on privacy risk to the data subjects, using privacy harm

trees to assess the risk using the feared events, risk sources,

and weaknesses. Other risk assessment models [17]–[19] focus

on assessing the risk specifically from the point of view of a

single data subject or user.

C. Problem statement

Threat modeling in practice is approached mainly from a

security perspective, and despite many of the similarities be-

tween security and privacy as non-functional concerns, merely

adopting security-centric risk assessment models (focused on

factors such as assets, value, impact, technical feasibility) leads

to an incomplete characterization of privacy risk: more notably,

privacy threat modeling approaches lack awareness of the

impact on the involved data subject types.

Furthermore, existing approaches are coarse-grained and

provide limited support for traceability and repeatability of the

resulting risk values (e.g., to find out the main contributing

factors to a specific risk value). This, however, is essential

for (i) calibration, e.g., to allowing analysis why different

experts may reach different risk values in their assessment,

(ii) strengthening the understanding of privacy risk, i.e. towards

understanding which parameters (system context, type of

attacker, involved data subjects, etc.) actually impact privacy

risk the most visibly in a specific case, but also (iii) auditability

and compliance reasons, i.e. to demonstrate that a suitable risk-

based approach was taken.

III. RISK ASSESSMENT MODEL

This section elaborates on the proposed privacy risk as-

sessment model that extends FAIR [13] with specific privacy

and data subject risk factors. It is decomposed following the

structure from Figure 1 from left to right and top to bottom. By

decomposing privacy risk, the model unifies: (i) data subject

risk by incorporating information on data subjects and types

of their data being processed, (ii) technical risk originating

from the system context and applicable security and privacy

countermeasures, and (iii) the risk from an organizational

perspective by scaling the impact according to the number

data subjects and records involved.

A. Risk

The risk is decomposed into two underlying factors: (i) the

Loss Magnitude, which represents the impact on the data

subject(s); and (ii) the Loss Event Frequency, which represents

the frequency of successful attacks from an adversary. These

factors need to be multiplied to calculate the overall risk.

Risk = LM �LEF

= [LM 1 × LEF 1,LM 2 × LEF 2, . . . ,LM S × LEFS ]

B. Loss Magnitude (LM)

The Loss Magnitude, representing the impact, is decomposed

of the following four factors: (i) Data Type Sensitivity, (ii) Nbr.
of Records, (iii) Data Subject Type, and (iv) Nbr. of Data
Subjects. These factors comprise both the impact derived from

the involved data types as well as the involved data subjects.

Each of these factors are discussed in more detail below. The

loss magnitude can be obtained by multiplying them all together

as follows:

LM i = DTS i × NRi ×DST i × NDS i
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Fig. 1. Risk Decomposition
This figure shows the decomposition of how the risk can be calculated for a single system context (sc), a single threat type (tt), a single attacker profile (ap), a
single data subject type (dst), and a single data type (dt). The risk values can be aggregated along these parameters as needed, which, for the total risk, would
lead to:

∑SC ∑TT ∑AP ∑DST ∑DT Risk(sc, tt , ap, dst , dt)

Data Type Sensitivity (DTS) The Data Type Sensitivity
represents the privacy risk inherent to the types of data that

are being processed in the system. To distinguish between data

types of different sensitivity levels, data types can be ordered

on a numerical scale according to their sensitivity. This allows

the risk assessment to factor in the impact of threats involving

sensitive data such as medical information, in contrast to, for

example, contact information such as home addresses.

Number of Records (NR) This factor represents the number
of records of a certain data type for a certain data subject

type. This value can be used for expressing two cases. First, if

multiple records of a data type are being collected or processed,

the risk value can be scaled appropriately with this factor.

Second, if a value of this data type is only present for a

fraction of the data subjects (e.g., only processed for half the

data subjects), a fraction for this factor can be used to scale

the risk value down accordingly.

Data Subject Type (DST) The Data Subject Type is used to

specify the risk inherent to the type of data subject whose data

are being processed. This factor is used to take into account

special cases of vulnerable data subject types such as minors.

Nbr. of Data Subjects (NDS) This factor represents the

number of data subjects of a certain type (i.e. the DST above).

This is a scaling factor, analogous to the number of records,

so the impact can be scaled according to the number of data

subjects involved in the data processing operations.

C. Loss Event Frequency (LEF)

The second factor of the risk is the Loss Event Frequency.
It represents the total frequency of successful attacks by

an adversary. This frequency is obtained by combining the

frequency of attacks (TEF ) with the probability of a successful

attack (V ). For an attacker a, the LEF is calculated as follows:

LEF = V · (RP �TEF )

D. Retention Period (RP)

The Retention Period represents the duration during which

data is stored or processed and present for an adversary to be

potentially exploited. This enables distinguishing between long-

running processing operations that pose a higher risk versus

very short-lived transactions after which the data is no longer

retained. A threat event can only be successful when the data

is available at the time of the attempted attack.

E. Threat Event Frequency (TEF)

The Threat Event Frequency represents the frequency of

attempted attacks by an adversary. These attacks are not

necessarily successful. The threat event frequency is further

decomposed into: (i) the probability of action, representing the

likelihood of an attempted attack, and (ii) the contact frequency,
representing how frequently the adversary comes into contact

with the system. The threat event frequency is obtained by

multiplying these two factors together:

TEF i = PoAi × CF i

Probability of Action (PoA) The Probability of Action is

used to determine the likelihood that an adversary will attempt

to attack users’ privacy. This probability will depend on the

type of adversary (which in turn is based on its incentives,

capabilities, and opportunities). For example, an external remote

adversary could be more likely to attempt attack when coming

into contact with the system, while an insider—an employee,
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for example—may be more or less likely to attempt an attack

depending on the monitoring controls imposed on employees

and possible repercussions when discovered.

Contact Frequency (CF) The Contact Frequency is the

frequency with which an adversary comes into contact with the

system. It again varies between different types of adversaries,

allowing to make the distinction between, for example, external

adversaries, users of the system, or insiders.

F. Vulnerability

The Vulnerability is the probability of a successful attack

(taking into account the possibility of the adversary being

an insider). The vulnerability is calculated as the maximum

of: (i) the countermeasure being defeated (CD), and (ii) the

countermeasure being bypassed (CB):

V = max (CD ,CB)

Countermeasure Defeated (CD) The Countermeasure De-
feated factor is obtained by sampling from both the threat

capability and strength distributions to calculate the fraction

of successful attacks in which the adversary manages to

defeat the countermeasures present. This calculation provides

the probability of a successful attack. A single sample i is

calculated as follows:

CD i = f(TC i, Si) with f(x, y) =

{
1 x ≥ y

0 x < y

Since we need the probability of the adversary defeating the

countermeasure, S samples are aggregated as follows:

CD =

∑S
i=1 CD i

S

Threat Capability (TC) The Threat Capability expresses

the capability of the adversary in being able to defeat the

technical security and privacy countermeasures.

Strength (S) This indicates the strength of a technical

countermeasure in resisting an adversary. The strength of a

countermeasure should be specified on the same scale as the

capability of adversaries. More specifically, a countermeasure

can resist an adversary if its strength is larger than the threat

capability of the adversary (S > TC).

Countermeasure bypassed (CB) This factor indicates

whether the adversary can bypass the measure as an insider,

without needing the threat capability to technically defeat the

measure. While the simplest representation of this factor is

binary (0/1), it could also be represented as a probability of

being able to bypass a countermeasure as insider.

G. Risk Factor Values

In order to facilitate the calculation of the risk for privacy

threats, numeric values are required as inputs in the risk

assessment calculation. Such a requirement raises the issue of

determining the appropriate values, which can be difficult. Our

approach explicitly supports and takes into account uncertainty

about these values. Every numeric value used as an input

for risk assessment is represented as an estimate with four

parameters: the minimum value, the maximum value, the most
probable value, and a confidence level value.

These four values define a modified PERT distribution [20],

a distribution commonly used in risk management for managing

the uncertainty in expert estimates.

By using this distribution, a wide range of values with

differences in certainty can be expressed. For example, in

case only the outer boundaries are known, the minimum and

maximum value can be provided, and the confidence can be

set to zero. This leads to a uniform distribution between the

provided minimum and maximum values. When there is a high

degree of certainty, closer values and high confidence lead to

a distribution with a sharp peak.

H. Parameters

The previous sections elaborated on the individual risk fac-

tors. These factors cannot be determined for the system overall,

as they depend on specific parameters. This section elaborates

on the parameters that provide the necessary information for

determining the factors for a single risk value.

System Context The first parameter that needs to be fixed is

the system context. There can be large local differences in the

system context. A localized risk value needs to take the precise

context (such as local security or privacy countermeasures)

into account. Afterwards, these specific risk values can be

aggregated to obtain the risk for the whole system.

Threat Type Second, is the considered threat type. Different

security or privacy threat types are not always applicable. Both

the local system context and the threat type itself determine

the applicability of a threat. Results can again be aggregated

over all threat types per category or over all types in general.

Attacker Profile Third, the assessment has to be performed

while considering a specific attacker profile to take into account

different attackers with different capabilities. This is also

essential for being able to make the distinction between external

attackers and insiders. The attacker profile-specific risks can

again be aggregated afterwards.

Data Subject Type Fourth, is the type of data subject. The

risk is calculated for a single type of data subject. Again,

multiple risk values can be aggregated to obtain a risk value

for all types of data subjects.

Data Type Finally, the risk is calculated for a single data

type (belonging to one or more data subjects). For invalid (data

type, data subject type) parameter combinations (i.e. the data

type does not belong to that data subject type), the resulting

risk is zero. The risk values can again be aggregated over this

parameter as well.

To obtain a total risk value, the resulting risk values can be

aggregated over the previous five parameters. Other types of

aggregation are also possible. By combining the risk values over

all parameters but the data type, an overview of the data types

and their associated risk can be obtained. Analogous analyses

are possible for the data subject types, attacker profiles, etc.
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IV. IMPACT ON THREAT MODELING

This section elaborates on the enhancements necessary to

support the automated risk assessment in a threat modeling

context, aligning these with the risk analysis parameters

discussed in Section III-H: System Context, Threat Type,
Attacker Profile, Data Subject Type, and Data Type.

A. DFD Model Extensions

The presented risk analysis model relies on a System Context.
This parameter corresponds with the system in PRIAM [16].

For risk assessment in a threat modeling context, the same

DFD system representation [21] used in traditional security and

privacy threat modeling approaches [5], [7], [9], [11] can be

relied upon. However, it does need to be extended with support

for the representation of security and privacy countermeasures

in DFDs [22] so that their effect can be incorporated as well.

B. Threat Types and Attacker Profiles

The threat types are already part of the STRIDE [7], [23]

and LINDDUN [9], [11] threat modeling approaches. They

are similar to the privacy weaknesses in PRIAM [16] (as they

lead to privacy harms), and the vulnerabilities in CORAS [14]

The traditional threat elicitation step already considers every

threat type while iterating over the DFD model elements or

interactions, no additional risk extensions are required.

In addition to the threat types, the risk assessment requires

awareness of attacker profiles. These attacker profiles specify

different types of adversaries against which to protect. They

correspond with the risk sources from PRIAM [16] and the

threats in CORAS [14]. The attacker profiles require additional

inputs as discussed in Section III-G. The Insider property of

an attacker profile is represented as a list of DFD elements for

which the attacker can circumvent the countermeasures.

C. Data Subject Types and Data Types

The presented risk model is tailored for system-specific

privacy threats. For assessing the Loss Magnitude, i.e. the

impact on the involved Data Subjects, integration with a data

protection perspective [24] is required. The data protection

viewpoint [24] includes information on data subject types and

data types, including the sensitivity of data types. By leveraging

the correspondences between the data protection viewpoint and

the DFD model, the relevant information can be extracted and

used in the context of the privacy risk assessment.

While data subjects have no direct representation in

PRIAM [16], they are included as victim in the privacy harm

attributes and as stakeholder (although stakeholders also include

controllers, third parties, etc.). CORAS [14] does not support

data subjects. Personal data is supported in PRIAM [16] as

part of the information gathering phase. It is, however, not

an explicit factor in the risk assessment phase. CORAS [14]

does not support data types, unless they are modeled as assets,

which would still lack a link to the data subjects.

Finally, the threat modeling pseudo-code introduced in Sec-

tion II-A can be extended to include the additional information

from the presented parameters from Section III-H:

Fig. 2. Screenshot of the prototype
This screenshot shows the DFD of the Patient Monitoring System. It illustrates
how a traditional DFD lacks any information on data protection concepts. The
properties pane shows how the extension links the Patient DataSubjectType to
the Sensor External Entity in the diagram. Similar links are present for all
the other elements to capture which data types of which data subjects move
through the system.

1 SystemModel systemModel
2 f o r each sc in systemModel :
3 f o r each t t in ThreatTypes :
4 f o r each ap in A t t a c k e r P r o f i l e s :
5 f o r each dst in DataSubjectTypes :
6 f o r each dt in DataTypes :
7 i f ( t t . a p p l i c a b l e ( sc ) &&
8 Risk ( sc , tt , ap , dst , dt ) > t h r e s h o l d ) :
9 document ( sc , tt , ap , dst , dt )

V. VALIDATION & ILLUSTRATION

First, the prototype implementation of the risk assessment

model is discussed. Next, the prototype implementation is

used to apply the risk assessment on an eHealth application,

followed by a description of potential risk analysis scenarios.

A. Prototype Implementation

To evaluate the feasibility of the presented risk assessment

model, we implemented a proof of concept. Figure 2 shows

a screenshot of the prototype implementation. The prototype

implements: (i) the presented risk assessment model, (ii) the

necessary threat modelling enrichments, and (iii) the integration

with the data protection view [24] by extending previously

developed tool support for security threat modeling [25].

The prototype uses Eclipse Ecore meta-models for repre-

senting the DFD model, threat types, attacker profiles, and the

data protection view. They are extended with the necessary
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TABLE I
EXCERPT OF INDIVIDUAL RISK ASSESSMENT RESULTS ACROSS THE FIVE PARAMETERS

System Context (DFD) Threat Type Attacker Profile Data Subject Type Data Type Risk

storeData Linkability Motivated, limited capability Patient ECG Measurement 4.542
storeData Identifiability Motivated, limited capability Patient Risk level 6.632
storeData Detectability Opportunist Patient Risk level 10.409
patientData Disclosure of Information Opportunist Patient Body temp measurement 3.66
retrieveData Linkability Motivated, capable Patient Risk level 1.084
retrieveData Detectability Disgruntled employee Patient Risk level 0.035
GP Detectability Motivated, capable, organized General Practitioner Credentials 0.423
. . . . . . . . . . . . . . . . . .
. . . (6793 rows omitted) .

For a system with 16 DFD elements, 6 threat types, 5 attacker profiles, 2 data subject types, and 4 data types. These entries can be aggregated across the
different dimensions to gain insights into which parameters are the biggest contributors to the privacy risk.

properties from Section IV. To perform the risk assessment,

these models are queried with patterns. These model query

patterns are defined in VIATRA and support querying concrete

models for: (i) applicable threats, (ii) data subject types,

(iii) data types, and (iv) the mapping from data types to the

DFD elements where they are processed or stored.

B. Application on an eHealth Application

The resulting prototype implementation is used to apply

the risk assessment on a concrete eHealth case. The eHealth

application case is a Patient Monitoring System for monitoring

cardiovascular disease patients. Patients are equipped with

wearable sensors that measure health parameters, such as

body temperature and ECG. Those health parameters are

communicated via a mobile app to the back-end, which will

perform a clinical risk assessment based on the received infor-

mation. The analysis results are subsequently made available

to a general practitioner (GP) via the GP Portal. Figure 2

shows a screenshot of the application prototype with the DFD

of the patient monitoring system. Besides the (visualized)

DFD model, there is a corresponding data protection model

containing the information on the data subject types and the

data types, including links to all the DFD elements where the

corresponding data types are being processed or stored.

Running the privacy assessment on this application case

results in Table I. Each row of this table corresponds with

risk documentation step in line 9 of the pseudo-code in

Section IV. The table provides a very fine-grained view on the

risk associated with each combination of parameters.

Once the data in Table I is calculated, it can be aggregated in

multiple different ways to offer interesting insights into where

high risk is situated and which parameters are the biggest

contributors to such high risk.

Figure 3 provides a visualization of such an analysis activity.

By aggregating the risk per system context (column 1 in Table I)

and data subject type (column 4 in Table I), i.e. by aggregating

for every combination of these two parameters, an overview

is obtained of where the risk is the highest for every (system

context, data subject type)-pair. This aggregated information

can be visualized as a heatmap, by overlaying a 2d density plot

on top of the DFD, making it easily detectable which system

(a) Patient Risk Heatmap

(b) General Practioner Risk Heatmap

Fig. 3. Heatmaps of data subject type risks
The two images illustrate the distribution of risk in the DFD for different data
subject types. The heatmaps are constructed by overlaying a 2d density plot
on top of the DFD. Figure 3a shows the distribution of the patient risk. Note
that the sendData and sendSensorData data flows in this diagram do have a
non-zero risk value, but it is very small. Figure 3b shows the distribution of
risk of the general practioner.
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elements have the highest risk associated with them for each

data subject type. This can assist in prioritizing privacy efforts.

While the heatmaps in Figure 3 visualize the risk aggregates

for the different data subject types, such visualizations could

also be created for any other combination of parameters. This

supports other analyses of the risk distribution for, for example,

different data types, attacker profiles, etc.

VI. DISCUSSION AND FUTURE WORK

This section discusses the implications of the presented

privacy risk assessment model and outlines our future work in

this context. First, Section VI-A outlines approaches towards

accurate estimation and calibration of the individual risk factors.

Then, Section VI-B discusses the extent to which the underlying

assumption of independence of the involved risk factors holds

in a realistic context. Finally, Section VI-C discusses the value

and relation of the present risk model in the context of risk

assessment activities specifically aimed at legal compliance.

A. Estimation and calibration of risk factors

Any risk assessment model that involves estimation of

individual risk factors depends highly on the correctness and

accuracy of these input values. While this is no different in the

proposed privacy risk assessment model, the presented approach

does explicitly take into account uncertainty by representing

input values as estimates to parameterize a distribution from

which to sample. This explicitly supports taking into account

various ranges of input values for the factors.

Furthermore, the numerical values can also be used to rank

elements for a relative ordering. For example, different data

types can have ordered sensitivity values associated with them.

Such assignments could be reused by collecting them in a data

type catalog. These catalogs can contain assignments These

could be provided in a data type catalog, with values assigned

according to, for example, GDPR sensitivity interpretations, to

allow easy reuse across multiple models, or be constructed from

the severity scale from the CNIL PIA knowledge bases [26].

B. Independence of the Risk Factors

As discussed in Section III-H, the current risk assessment

model is rooted upon the assumption that the risk factors are

independent from each other. While such an assumption greatly

simplifies the risk calculation, the reality is, unfortunately, more

complex. Below, we provide some example illustrations of

dependencies between these factors:

ThreatType–AttackerProfile: The capability and attack fre-

quency can vary depending on the considered threat type. An

external adversary may be more likely to attempt a linkability

attack, while an insider may be more likely to identify users

as some countermeasures could be bypassed by this adversary.

ThreatType–DataTypeSensitivity: The impact of a certain

threat type manifesting itself may depend on both the threat

type and the data type sensitivity. For example, the information

disclosure of a certain data type may have a bigger impact (on

the data subject) than a detectability threat. In other cases, the

reverse may be true. For example, the result of a medical test

may be negative (with limited information disclosure impact),

while detecting that this information is in a database of test

results for certain medical condition may have a bigger impact.

AttackerProfile–DataTypeSensitivity: The sensitivity of data

types may vary depending on the adversary. For example,

medical data may be considered more sensitive when the

external adversary is the insurance company compared to, for

example, a doctor at a hospital who is not authorized to look

at other patients’ records.

The independence of the factors reduces the amount of

information that is (and needs to be) available for each factor.

Necessarily, the resulting risk score will be less precise. This

issue can be partially mitigated by choosing the boundaries of

the provided estimates in such a way that the variation (because

of the other factors) is still captured.

The amount of detail in the risk factors involves a neces-

sary trade-off exercise. Each of the risk analysis parameters

(Section III-H) could be moved completely down to every risk

component (Section III). This would, however, require end-

users to enter a prohibitively large amount of information as

all combinations must be considered for every factor.

In future work, we intend to model the causality of these

(and potentially other underlying) factors, to evaluate whether a

different and independent set of risk factors can be constructed

to improve the precision of the risk assessment without

sacrificing usability in the number of required inputs.

C. Compliance Checks

The current privacy risk decomposition is very suitable for

the risk assessment of the ‘hard privacy’ threats in LINDDUN

(i.e. LINDD); it is much less suitable for assessing the risk of

the ‘soft privacy’ threats (Non-compliance or Unawareness) as

these require very different types of inputs.

For example, assessing the non-compliance risk closely

aligns to Data Protection Impact Assessment (DPIA) exercises.

Given the integration of the engineering view (Section IV-A)

with a data protection view (Section IV-C) [24], the information

in that view on data subjects and data types can be leveraged

for conducting compliance assessment activities. Repeating

such assessment activities for every part of the system enables

a localized non-compliance risk assessment.

VII. RELATED WORK

Beckers [27] compared multiple privacy requirements engi-

neering approaches. None of the considered approaches support

the notion of risk. Risk is, however, explicitly required by

privacy regulations such as the GDPR [1].

Heckle and Holden’s [28] findings suggest that neither

privacy impact assessments (PIAs) nor classic risk analysis

models are sufficient for privacy risk assessment in the

context of voting systems. Abu-Nimeh and Mead [29] propose

combining them by the IRS PIA [30] in Security Quality

Requirements Engineering (SQUARE) [31]. While such a

PIA [30] supports a detailed assessment of the realization

of privacy-by-policy in the framework of Spiekermann and

Cranor [32] given its focus on assessing compliance with
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privacy principles, a set of questions may not be the best

approach. Alshammari and Simpson [33] make the case for a

model-based approach for privacy compliance checking. The

incorporated data protection view [24] supports such a model-

based compliance assessment. Furthermore, its integration in

the risk assessment provides support for assessing the risk of

privacy threats such as identifiability and linkability, supporting

the realization of privacy-by-architecture [32].

PRIAM [16] provides a very detailed description of informa-

tion that needs to be collected for the privacy risk assessment.

The risk assessment itself requires the construction of harm

trees, in which the risk is assessed with the combination of

privacy weaknesses and risk sources for feared events which

can lead to the harm at the top of the tree. Our approach can

be considered a kind of instantiation of this approach, but

explicitly requires the assignment of numerical estimates for

the risk factors. By requiring such numerical assignments, a

completely automated assessment can be performed.

Hong et al. [34] presented a privacy risk model specifically

developed for ubiquitous computing systems, focusing on the

selective disclosure of personal information (personal privacy).
Similar as the IRS PIA [30], a set of questions is used for the

privacy risk analysis, after which the risks are prioritized.

VIII. CONCLUSION

In this paper, we presented a privacy risk assessment model

that is firmly embedded in a privacy threat modeling context. It

thus assumes a software construction point of view yet involves

extensive analysis of the privacy implications imposed on data

subjects. As such, the privacy risk assessment model allows

for a more comprehensive, systematic, and data subject-aware

privacy threat assessment. By enriching elicited privacy threats

with risk analysis information, privacy engineering efforts can

be prioritized and appropriate countermeasures, in line with

the risk posed to data subjects, can be determined.

The focus on data subjects and ensuing privacy risk im-

plications is essential to align threat modeling activities with

compliance requirements imposed by regulations such as the

GDPR. Explicit breakdown of the overall risk involved in a data

processing effort allows for a more fine-grained risk assessment,

sensitivity analysis of the impact of various parameters on the

resulting privacy risk, follow-up and management of overall

privacy risk, not only at development or system construction

time, but also in the context of system operation and evolution.
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