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Abstract—In recent years, the research community has in-
creasingly focused on understanding the security and privacy
challenges posed by deep learning models. However, the security
domain and the privacy domain have typically been considered
separately. It is thus unclear whether the defense methods in one
domain will have any unexpected impact on the other domain. In
this paper, we take a step towards enhancing our understanding
of deep learning models when the two domains are combined
together. We do this by measuring the success of membership
inference attacks against two state-of-the-art adversarial defense
methods that mitigate evasion attacks: adversarial training and
provable defense. On the one hand, membership inference attacks
aim to infer an individual’s participation in the target model’s
training dataset and are known to be correlated with target
model’s overfitting. On the other hand, adversarial defense
methods aim to enhance the robustness of target models by
ensuring that model predictions are unchanged for a small
area around each sample in the training dataset. Intuitively,
adversarial defenses may rely more on the training dataset and be
more vulnerable to membership inference attacks. By performing
empirical membership inference attacks on both adversarially
robust models and corresponding undefended models, we find
that the adversarial training method is indeed more susceptible
to membership inference attacks, and the privacy leakage is
directly correlated with model robustness. We also find that the
provable defense approach does not lead to enhanced success
of membership inference attacks. However, this is achieved by
significantly sacrificing the accuracy of the model on benign data
points, indicating that privacy, security, and prediction accuracy
are not jointly achieved in these two approaches.

I. INTRODUCTION

The security and privacy issues of deep learning models

have come to a forefront in recent years, as these models were

not originally designed to be robust in adversarial settings [1].

From the security perspective, an adversary’s objective is

to cause the target machine learning model to misbehave.

Existing attack methods can be divided into two categories:

poisoning attacks and evasion attacks [2]. Poisoning attacks

manipulate part of training data to compromise the trained

deep learning model [3]–[5]. Evasion attacks, also called

adversarial examples, find vulnerabilities in deep learning

models trained on benign data and directly perturb test inputs

to induce misclassifications [6]–[10].

From the privacy perspective, an adversary’s objective is to

infer private information about the target model itself or its

training data. Well-known privacy issues include membership
inference to infer whether an input is part of the model’s

training dataset [11]–[13]; property inference to infer global

properties of training dataset, such as the fraction of a certain

class [14]; model inversion to reconstruct the model’s input

from model predictions [15]; and training data memorization

by adversarially modifying the training algorithm to memorize

sensitive training data information [16].

Along with finding novel attacks again deep learning mod-

els, the research community has also proposed defense ap-

proaches to resolve both security issues [17]–[21] and privacy

issues [22]–[25]. However, these defense approaches typically

focus solely on either the security domain or the privacy do-

main, and it is unclear whether defense methods in one domain

will have some unexpected impact on the other domain.

In this paper, we take a first step towards enhancing our

understanding of deep learning models when both the security

and privacy domains combined. In particular, we seek to

understand the impact of robust machine learning algorithms

on the privacy of sensitive training data. Specifically, we

evaluate membership inference attacks against adversarially
robust deep learning models, which aim to mitigate the threat

of adversarial examples. The membership inference attack

aims to infer whether an input to the deep learning model is

part of its training dataset or not. The success of membership

inference attacks, in the black-box setting, is shown to be

highly related to the target model’s overfitting [11], [12].

Adversarially robust models [17]–[19] aim to enhance the

robustness of target models by ensuring that model predictions

are unchanged for a small area (such as l∞ ball) around each

(training) example. Intuitively, adversarially robust models

magnify the influence of the training data on the model,

resulting in an enhanced risk of membership inference attacks.

We measure the success of membership inference attacks

against two state-of-the-art adversarial defense methods, ad-
versarial training [17] and provable defense [18], [19]. Our

experimental results show that compared to undefended natu-

rally trained models, adversarially trained models are indeed
more vulnerable to membership inference attacks. Moreover,

an increased robustness of the adversarially trained model
(model trained with larger adversarial perturbations) is cor-
related with an increase in the success of the membership
inference attack. An example is shown in Fig. 1, where we

plot the distributions of training examples’ prediction cross-

entropy loss values and test examples’ loss values for both the

adversarially trained CIFAR10 model and the naturally trained

CIFAR10 model. It is clear that members (training examples)
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(a) Adversarially trained model [17], with 99% train accuracy and
87% test accuracy.

(b) Naturally trained model, with 100% train accuracy and 95% test
accuracy. Around 23% training and test examples have zero loss.

Fig. 1: Histogram of CIFAR10 models’ loss values of training data (members) and test data (non-members). The large divergence

between the loss distribution over members and non-members increases the privacy risk of adversarially trained models.

and non-members (test examples) can be distinguished more

easily for the adversarially trained model, compared to the

naturally trained (undefended) model.

We also find that the provable defense approach [18], [19]

does not significantly increase the models’ vulnerability to

membership inference attacks. However, this is achieved by

significantly sacrificing the accuracy of the model on benign

data points, indicating that privacy, security, and accuracy are

not achieved in these two approaches.

II. BACKGROUND AND RELATED WORK

A. Robustness against Adversarial Examples

For a standard classification task with the training dataset

Dtrain over pairs of inputs x and corresponding labels y, the

natural training algorithm tries to learn a model that minimizes

the prediction loss over all training examples, which can be

formulated as a minimization problem:

min
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

L(Fθ(x), y), (1)

where Fθ(·) is the prediction function of the learning model

with parameters θ, and L is an appropriate loss function, such

as the cross-entropy loss for neural networks.

Adversarial examples: Although deep learning models have

achieved tremendous success in many classification scenarios,

they have been found to be easily fooled by adversary exam-

ples [6]–[8], which induce misclassifications by the models via

the addition of imperceptible perturbations to input examples.

Corresponding to the learning algorithm shown in Equation

(1), the generation of adversarial perturbation can be expressed

as a maximization problem:

max
δ∈Δ

L(Fθ(x+ δ), y), (2)

where Δ represents the constraint of allowed adversarial

perturbation, such as the l∞-ball within a small distance value

(||Δ||∞ ≤ ε) in the image classification task [8], [10].

To defend against adversarial examples, a robust training al-

gorithm can be formulated as a min-max optimization problem

by taking the adversarial attack into consideration [17]–[19]:

min
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

max
δ∈Δ

L(Fθ(x+ δ), y). (3)

However, it is usually hard to find the global maximum of

the inner maximization problem for deep neural networks due

to the highly non-concave function with many local maxima

[17]. Adversarial training [17] and provable defense algorithm

[18], [19] try to solve Equation (3) in different ways.

Adversarial training: Madry et al. [17] adopt the adversarial

training method to train robust models by approximating the

inner maximization problem in Equation (3) via the adversarial

perturbations generated from a multi-step projected gradient

descent (PGD) attack method, i.e.,

δt+1 = ΠΔ(δt + α sign(∇x+δtL(Fθ(x+ δt), y))), (4)

where α is the value of step size, ∇ denotes the gradient

computation, and ΠΔ means the projection onto the perturba-

tion constraint. Compared to the other defense algorithms, the

obtained models from adversarial training have been shown

to be the most robust models against the majority of the

adversarial attack methods [17], [26].

Provable defense: Different from the empirical defense strat-

egy of adversarial training [17], Wong et al. [18], [19] propose

a provable defense method for robust training by finding an

upper bound of the inner maximization problem in Equation

(3) via its relaxed dual problem. Due to the space limit, we

refer interested readers to Wong et al. [18], [19] for more

details. The approach computes an upper bound of the loss

value in the adversarial setting, yielding a quantification of the

robust error bound for the defended model. So, it bounds the

fraction of input examples that can be adversarially perturbed

under the predefined perturbation constraint. One shortcoming

of this defense method is that the trained model usually
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has much reduced accuracy performance on benign data: the

provably defended CIFAR10 model with the l∞ perturbation

budget of 8/255 has 29% test accuracy [19], compared with

87% test accuracy for the adversarially trained model [17].

B. Privacy against Membership Inference Attacks

For a target deep learning model, the membership inference

attacks aim to determine whether a given data point was used

to train the model or not [11]. The attack poses a serious

privacy risk, as the participation of a sample in the training

data can correspond to an individual’s sensitive information,

such as in the setting of health analytics [12].

In this paper, we focus on membership inference attacks in

the black-box setting, where for a certain input, the adversary

only has the knowledge of the target model’s final output.

We do not cover the analysis of white-box attacks, where the

adversary has access to the target model’s parameters [13].

Shokri et al. [11] design a membership inference attack

method based on the shadow training technique: (1) an adver-

sary first trains multiple “shadow models” which simulate the

behavior of the target model, (2) based on the shadow models’

outputs on their own training and test examples, the adversary

obtains a binary labeled (member vs non-member) dataset, and

(3) the adversary finally trains a neural network model using

the labeled dataset to perform membership inference attack

against the target model.

This method can be further simplified. Yeom et al. [12]

suggest comparing the classification loss value of a target

example with a preset threshold (equivalent to shadow models

as a linear classifier of loss values). Small loss indicates

membership. The experiment results show that the inference

strategy of using a threshold on the prediction confidence is

very effective and achieves membership inference accuracy

close to that of the shadow training method. In this paper, we

follow this simple approach, by using a linear classifier (using

a threshold) as the inference attack.

C. Other Related Work

To the best of our knowledge, there is no previous work

trying to analyze privacy issues for adversarially robust mod-

els. The closest work to our paper is Schmidt et al. [27],

where the authors show that although the adversarially trained

model generalizes well in the standard classification setting, it

overfits in the adversarial setting: for adversarially perturbed

input examples, the training accuracy is much larger than

the test accuracy. However, as shown in Fig. 1a, we find

that even without adversarial perturbations, the adversarially

trained model is vulnerable to membership inference attacks

based on predictions on benign/clean inputs.

III. PROBLEM STATEMENT

In this section, we provide a detailed description of our

membership inference adversary and the metrics adopted to

measure the privacy leakage.

A. Threat Model
In this paper, we consider membership inference attacks in

the black-box setting [11]. Let F(·) denote the classification

function of the target model, where Fi(·) means the prediction

probability of class i with
∑

i Fi(·) = 1. For each labelled

input (x, y), the adversary only knows the final prediction

vector F(x) and tries to guess whether the input is in the

model’s training dataset (member) or not (non-member).
For the adversary’s membership inference strategy, we

choose the threshold inference method (linear classifier) based

on the classification’s confidence value, which can be ex-

pressed as following.

I(F , (x, y), τ) =

{
member, if Fy(x) ≥ τ ;

non-member, if Fy(x) < τ,
(5)

where I(·) represents the inference strategy and τ is a certain

confidence threshold. The input example (x, y) will be inferred

as a member of the target model’s training dataset if model’s

prediction confidence Fy(x) is larger than (or equal to) the

threshold, and a non-member otherwise. In our experiments,

we assume the threshold is an input hyperparameter to the

attack, which could have been learned using the shadow

training method in practice.

B. Metrics for Evaluating Membership Inference Attacks
For the evaluation, we sample the input example (x, y) from

either the target model’s training dataset or test dataset with

an equal 50% probability. We use the following metrics to

evaluate our membership inference attacks against the target

deep learning models.
Inference accuracy: The inference accuracy corresponds to

the fraction of correct membership predictions made by the

adversary. The random guessing strategy would result in a

baseline accuracy value of 50%.
Precision: Precision is calculated as the fraction of examples

inferred as members that are indeed members of the target

model’s training dataset. The baseline precision value with a

random guessing strategy is also 50%.
Recall: Recall is calculated as the fraction of training ex-

amples that are inferred as members correctly. Given our

threshold inference strategy, it corresponds to the probability

that a training example has its prediction confidence value

larger than (or equal to) the preset threshold.
Area under the precision-recall curve (AUPRC): We use

different confidence threshold values to obtain the precision-

recall curve and compute the total area under the curve.

A larger AUPRC value corresponds to more leakage. The

baseline AUPRC with a random guessing strategy is 0.5.
Kullback–Leibler (KL) divergence: The KL divergence

value captures how the distribution of the prediction cross-

entropy loss over training examples is different from that

of test examples (see Fig. 1 for an illustration of these

distributions). We compute the distribution of entropy loss,

which is the negative logarithm value of prediction confidence.

A larger divergence value means that it is easier to distinguish

training data (member) and test data (non-member).
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TABLE I: Membership inference attacks against adversarially trained models and corresponding naturally trained models. ε is

the l∞ perturbation budget used for robust training. ‘adv-train accuracy’ and ‘adv-test accuracy’ are computed with PGD attacks

under the same ε constraint. ‘adv-train’ and ‘nat-train’ represent adversarial training [17] and natural training, respectively.

Target Models Accuracy Performance Membership Inference Adversary

Dataset Architecture Train
ε

Train Test Adv-Train Adv-Test Inference Precision Recall KL Div- AUPRC
Method Accuracy Accuracy Accuracy Accuracy Accuracy ergence

CIFAR10 WRN-34-10 adv-train [17] 8/255 99.99% 87.25% 96.07% 46.59% 74.86% 69.08% 90.00% 0.72 0.76

CIFAR10 WRN-34-10 nat-train N.A. 100% 95.01% 0.00% 0.00% 57.37% 54.16% 96.00% 0.14 0.52

SVHN WRN-34-4 adv-train [17] 4/255 99.99% 93.91% 99.74% 72.17% 64.30% 59.70% 88.00% 0.33 0.67

SVHN WRN-34-4 nat-train N.A. 99.99% 95.64% 6.53% 3.86% 56.79% 53.72% 98.00% 0.13 0.53

Note that a well-generalized machine learning model with

no membership inference risk will have inference accuracy,

precision, and AUPRC values all equal to 0.5, and the KL

divergence equal to 0. Also note that the inference accuracy,

precision and recall depend on the choice of confidence

threshold, while AUPRC and KL divergence do not. In our
experiments, we set the value of confidence threshold to
achieve the highest inference accuracy value.

IV. EXPERIMENTS RESULTS

In this section, we measure the success of membership

inference attacks against adversarially robust models. All

experiments are performed on a GPU cluster with 8 NVIDIA

P100 GPUs.

A. Target Deep Learning Models

We use the code released by Madry et al. [17] and Wong

et al. [18], [19] to train the adversarially trained models1 and

provably defended models2 on the CIFAR10 dataset and the

SVHN dataset.

We train the adversarially robust models using l∞ perturba-

tion budget as an input parameter. We also train corresponding

baseline models with the natural training method (undefended)

for comparison of their privacy properties with robust train-

ing methods. The details about the model architectures and

training parameters are provided below.

Adversarial training: The code released by Madry et al. [17]

adopts a wide residual network (WRN) architecture [28] for

the adversarially trained CIFAR10 model with a perturbation

budget (ε) equal to 8/255. The WRN model contains 4 groups

of residual layers with filter sizes (16, 160, 320, 640) and 5

residual blocks for each group. The architecture is named as

WRN-34-10, following the notation of Zagoruyko et al. [28].

As suggested by Schmidt et al. [27], we use a similar WRN

architecture with filter sizes (16, 64, 128, 256) to train the

robust SVHN model (WRN-34-4) with the ε value of 4/255.

Provable defense: The code released by Wong et al. [18],

[19] provides different model architectures for CIFAR10 and

SVHN datasets. For the CIFAR10 dataset, the residual network

is also adopted but with a narrower architecture due to

scalability issues – 4 groups of residual layers with filter sizes

(16, 16, 32, 64) and just one residual block for each group

1https://github.com/MadryLab/cifar10 challenge
2https://github.com/locuslab/convex adversarial

Fig. 2: The precision-recall curve of the membership infer-

ence attack against adversarially trained and naturally trained

CIFAR10 models. This is obtained by varying the confidence

threshold value τ in Equation (5).

(WRN-10-1). Two defended CIFAR10 models with different ε
values (2/255 and 8/255) are provided; we report on the model

with the smaller ε, as the other model has the classification

error higher than 70%. For the SVHN dataset, a simple 4-layer

convolution neural network (CNN) architecture is adopted

with the adversarial perturbation value equal to 2.55/255.

B. Membership Inferences against Adversarial Training

According to Table I, the adversary can have a membership

inference accuracy of 74.86% on the adversarially trained CI-

FAR10 model, compared to the inference accuracy of 57.37%
on the naturally trained CIFAR10 model. Similarly adversarial

training for the SVHN model also causes the membership

inference accuracy to increase from 56.79% to 64.30%. Com-

bined with Fig. 1, we can find that for the adversarially trained

CIFAR10 model, the loss distribution of training dataset differs

greatly from that of the test dataset with the KL divergence

value of 0.72. While the two distributions for the naturally

trained CIFAR10 model are quite close with the KL divergence

value of 0.14. Thus, adversarial training increases the
information leakage about the training data, as it makes

members and non-members more distinguishable. This is true

for all different attack threshold values, as presented in the

precision-recall curve in Fig. 2.

Adversarially trained models generalize well (and have high

test accuracy) in the standard benign setting. However, as
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Fig. 3: Accuracy performance and privacy leakage over different training steps for the adversarially trained CIFAR10 (left) and

SVHN (right) models. We can see that for adversarially trained models, although the train and test accuracy do not diverge

much during the training process, the adv-train accuracy and the adv-test accuracy have a larger gap, which correlates with a

higher membership inference accuracy.

shown in Table I, they fail to generalize in the adversarial

setting (and have much reduced adv-test accuracy values)

where we perturb the input examples using the PGD attack

method in Equation (4). For example, by applying PGD attacks

on the adversarially trained CIFAR10 model, the adv-train

accuracy is 96.07%, however, the adv-test accuracy is reduced

to 46.59%. Thus, the membership information leakage
seems to be directly related to the generalization of the
robust training algorithm.

To better understand the relation between privacy leakage

and the generalization of robustness in the defended CIFAR10

and SVHN models, we compute their benign accuracy and

adversarial accuracy performance along with membership in-

ference accuracy over different training steps, plotted in Fig.

3. We can clearly see that the privacy leakage has a strong

correlation with the (lack of) generalization of adversarial

robustness : as the number of training steps increases, (1)
the train accuracy and the test accuracy values are close to
each other, while (2) the adv-train accuracy and the adv-test
accuracy have a larger divergence, and (3) the membership
inference accuracy is correspondingly higher.

Table II illustrates the membership inference attack results

for varying perturbation budgets during adversarial training.

We obtain three adversarially trained models with ε equals to

2/255, 4/255, 8/255 for both CIFAR10 and SVHN datasets.

Recall that a model trained with a larger ε value is more

robust since it can defend against larger adversarial pertur-

bations. We find that more robust models leak more
information about the training data. With a larger ε value,

the adversarially trained model relies on a larger l∞ ball

around each training point and will overfit more, leading to a

higher membership inference attack accuracy.

C. Membership Inferences against Provable Defense

The results for provably defended models are provided in

Table III. We can see that both provably defended models

TABLE II: Membership inference attacks against adversarially

trained models with different robustness budgets.

Dataset Perturbation Budget Inference Accuracy AUPRC
CIFAR10 2/255 64.40% 0.62

CIFAR10 4/255 69.34% 0.69

CIFAR10 8/255 74.86% 0.76

SVHN 2/255 60.69% 0.61

SVHN 4/255 64.30% 0.67

SVHN 8/255 68.09% 0.70

and naturally trained models leak negligible information about

training data membership. In fact, the provably defended

models have inference accuracy values closer to 50%, at the

cost of much reduced standard training and test accuracy

performance. For example, the provably trained CIFAR10

model with ε = 2/255 has both train and test accuracy values

around 67%, but the naturally trained CIFAR10 model has

standard accuracy values higher than 85%. We also find that

as opposed to the adversarially trained models, the provably

defended models have similar adv-train and adv-test accuracy

values under the PGD attacks, which may explain why the

provable defense method does not incur more privacy leakage.

Furthermore, for the provably defended CIFAR10 model,

we also measure its standard and adversarial accuracy per-

formance along with membership inference accuracy over

different training steps. As shown in Fig. 4, as the number

of training steps increases, (1) the training accuracy and the

test accuracy curves in both standard and adversarial settings

do not diverge much, and (2) the adversary cannot achieve a

high inference accuracy. We note that this property comes at

the cost of relatively low benign accuracy values.

Thus, the provable defense method does not increase the
vulnerability of robust models to membership inference
attacks, in the black-box adversary setting. However, this
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TABLE III: Membership inference attacks against provably defended models and corresponding naturally trained models. ε is

the l∞ perturbation budget used for robust training. ‘adv-train accuracy’ and ‘adv-test accuracy’ are computed with PGD attacks

under the same ε constraint. ‘pro-train’ and ‘nat-train’ denote provable training [18], [19] and natural training, respectively.

Target Models Accuracy Performance Membership Inference Adversary

Dataset Architecture Train
ε

Train Test Adv-Train Adv-Test Inference Precision Recall KL Div- AUPRC
Method Accuracy Accuracy Accuracy Accuracy Accuracy ergence

CIFAR10 WRN-10-1 pro-train [19] 2/255 68.57% 66.33% 61.25% 58.43% 51.11% 50.78% 72.00% 0.01 0.51

CIFAR10 WRN-10-1 nat-train N.A. 92.80% 85.15% 12.89% 12.63% 54.37% 52.67% 86.00% 0.04 0.51

SVHN 4-layer CNN pro-train [18] 2.55/255 82.06% 79.62% 68.55% 66.15% 51.00% 51.27% 40.00% 0.01 0.51

SVHN 4-layer CNN nat-train N.A. 98.86% 84.01% 20.38% 16.64% 57.85% 54.45% 96.00% 0.15 0.54

Fig. 4: Accuracy performance and privacy leakage over differ-

ent training steps for the provably defended CIFAR10 model.

We can see that the gap between train accuracy and test accu-

racy is small in both benign and adversarial settings, leading

to low membership inference accuracy (close to random guess

accuracy of 50%).

comes at the cost of a significant drop in model’s accuracy
(for benign data).

V. DISCUSSION

Rethinking generalization from the privacy perspective:
For machine learning, generalization means the ability of

the learned model to fit on unseen instances. Usually the

gap between train and test accuracy is used to show the

generalization performance, which is not sufficient from the

privacy perspective. As shown in Fig. 1a, even with a high test

accuracy value, the target model may still leak its membership

information through the prediction loss. To guarantee privacy,

the model should avoid any differences between the output per-

formance of training examples and that of test examples. Nasr

et al. [24] and Hayes et al. [25] design privacy mechanisms

to minimize the difference between the model’s prediction

distribution over training and test data.

Membership inference attacks in the white-box setting:
Recent work has considered membership inference attacks in

the white-box setting. Nasr et al. [13] show that simply adding

all hidden layers’ outputs as additional features does not help

to enhance the membership inference accuracy. Instead, they

find that the gradients with regard to each layer’s parameters

can increase the membership inference performance in the

white-box setting. Measuring white-box membership inference

risks would be an interesting direction for the future work.

VI. CONCLUSION

Security and privacy are two important domains of computer

systems. In this paper, we have connected both domains

together for deep learning systems by asking the following

problem: are adversarially robust models more vulnerable
to membership inference attacks compared to undefended
models? Using experimental evaluation of black-box mem-

bership inference attacks, we find that: (1) the adversarially

trained model is more susceptible to membership inference

attacks, and the privacy leakage is correlated with the target

model’s robustness and generalization performance. (2) The

provable defense method does not increase the target model’s

vulnerability to membership inference attacks, yet at the cost

of a significant drop in the model’s predictive power.
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