
MaxNet: Neural network architecture for continuous
detection of malicious activity

Petr Gronát

Avast Software

Prague, Czech Republic

gronat@avast.com

Javier Aldana-Iuit

Avast Software

Prague, Czech Republic

aldana@avast.com

Martin Bálek

Avast Software

Prague, Czech Republic

balek@avast.com

Abstract—This paper addresses the detection of malware activ-
ity in a running application on the Android system. The detection
is based on dynamic analysis and is formulated as a weakly
supervised problem. We design an RNN sequential architecture
able to continuously detect malicious activity using the proposed
max-loss objective. The experiments were performed on a large
industrial dataset consisting of 361,265 samples. The results
demonstrate the performance of 96.2% true positive rate at 1.6%
false positive rate which is superior to the state-of-the-art results.
As part of this work, we release the dataset to the public.

Index Terms—Android; malware detection; dynamic analysis;
recurrent network

I. INTRODUCTION

Machine learning and especially deep learning has become

an extremely useful and interesting topic in cybersecurity

in the last few years. In this context, malware detection

has received a significant amount of attention in the past

years[1, 2, 3]. This paper addresses the problem of detecting

Android malware activity on a system in the time domain by

looking at behavioral sequences on a large amount of industrial

data.

When malware application is being executed on a system,

its behavior consists of a number of different activities placed

along the time axis, and there is just a subsequence of

actions which results in malicious activity. Very often, the

malware application behaves as a goodware and at some point

of execution, the malicious activity is formed. Hence, the

challenging goal is to identify such a subsequence within the

whole sequence of events.

Being equipped with this paradigm, we develop a behav-

ioral model that analyses a dynamic behavior of the appli-

cation in the system during execution. We use a sequence

of API/function calls generated by the application at the

runtime as input and design a recurrent neural network (RNN)

architecture enabled to detect malicious activity. Without a loss

of generality, this specific work focuses on malware activity

detection on Android device, however, it can be applied to

other systems. The model has been trained and tested on a

large portion of industrial data consisting of 361,256 samples
generated on an emulator farm.

Many mobile phone vendors pursue on-device hardware

acceleration to provide with better support to these AI frame-

works. Therefore we consider deploying an RNN based model

directly to a device as one of the security layers to be a viable

solution.

Contribution. The contribution of this work is three-fold;

(i) we formulate malware detection as a weakly supervised

problem, (ii) we propose RNN architecture for identifying the

malicious subsequence within a sequence, and (iii) provide

a large scale dataset consisting of both malware and benign

samples and release it to the public for research purposes. To

the best of our knowledge ‘maxNet’ is the first anti-malware

tool that utilizes devoted RNN architecture for detection of

malicious activity within a sequence of events.

Paper organization. The rest of the paper is organized

as follows; Section IV presents a method overview, a brief

description of the features being used in this work can be

found in Section V, Section VI describes proposed neural

network architecture for malware detection, the training, and

evaluation phase, and Section VII details architecture and

dataset description, implementation details, and experimental

results.

II. MOTIVATION

Increasing usage of smartphones within the last decade

comes with the growing prevalence of mobile malware. For

instance, according to the G DATA report[4] a new instance

of Android malware emerges nearly every ten seconds.

Malware authors use many techniques to evade the detection

such as code obfuscation, encryption, including permissions

which are not needed by the application, requesting for un-

wanted hardware, download or update attack in which a benign

application updates itself, some of them may bypass offline

security checks, e.g. by relying on the so-called droppers,

that load the malicious payload after being activated. All such

techniques often make it difficult to identify the malware using

the static analysis (e.g. exploiting permissions, intent filters,

API usage, static call graphs).

It is thus favorable to add another layer of detection based

on continuous monitoring of the running system and using

modern machine learning tools to detect malicious activity

directly on the device. We address this problem by developing

a behavioral model amenable of reliable training on a large

amount of industrial data. We learn the behavior of an ap-

plication on runtime where the behavior can be viewed as a

28

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, Petr Gronát. Under license to IEEE.
DOI 10.1109/SPW.2019.00018

sequence of actions. A certain subsequence of the actions in

a specific order can be responsible for the malicious activity,

e.g. accessing SMS code and then logging to your banking

account, while the same subsequence in a different order can

be benign.

Challenges: There are several scientific challenges to

address; (i) how to get behavioral features and introduce the

temporally of the running application process, (ii) how to

design a sequential model that can process these features,

(iii) how to train such a model, and finally, (iv) how to get

sufficient amount of labeled data to train the model? In order

to address these challenges, we implement an observer engine
in the Android kernel that produces a sequence of events

from the running application process. We develop a recurrent

neural network architecture (RNN) called ‘maxNet’ able to

process such a stream of events. The model can observe the

activity of the executed application and eventually can block

the execution of a malicious activity before harming the user.

We cast the malicious activity detection as a weakly supervised

task and propose training procedure for the recurrent model.

Finally, we collect a dataset of 361, 265 samples and release

to the public for research purposes.

III. RELATED WORK

A. Malware detection techniques

Malware detection techniques are generally divided into

two categories: static and dynamic. In case of static detec-

tion, one extracts information from a binary without hav-

ing the application being executed. Mentioning just a few

relevant for Android systems, one can start from creating

a unique signatures[5], analyze requested permissions as in

[6], do a more detailed analysis of used API calls as in

DroidAPIMiner[7], or even model the sequence of API calls

as in MaMaDroid[8].

Anomaly-based detection model [9] continuously monitors

the different features of the device state such as battery level,

CPU usage, network traffic, etc. Measurements are taken dur-

ing running and are then supplied to an algorithm that classifies

them accordingly. CrowDroid[10] and AntiMalDroid[11] are

two different anomaly-based tools used for malware detection

on Android devices. The first depends on analyzing system

calls logs while the latter analyzes the behavior of an appli-

cation and then generates signatures for malware behavior.

In this paper, we focus on a dynamic analysis where an

application is examined by its behavior during execution.

Dealing with dynamic analysis always means to solve the

problem that not all events in one record can be attributed with

malicious behavior. Authors of [12] transform all sequences to

feature vectors via calculating relative frequencies of n-long

subsequences, reducing the dimensionality by custom feature

selection and classify via Support Vector Machines (SVM),

while [13] first cluster subsequences based on additional

information on CPU and memory usage and then train a

Random Forest classifier on each cluster (using the same

feature n-gram based feature selection procedure).

B. Sentiment analysis

Sentiment analysis or opinion mining is the computational

study of user opinions, sentiments, emotions, appraisals, and

other attitudes. The malware detection technique presented in

this work has an analogy into the sentiment analysis of a text.

Our framework lays in the field of document-level sentiment

classification, where the documents are the Android event se-

quences, under the assumption that documents are opinionated,

i.e. are labeled by an expert as positive or negative. Neither

subjectivity and sentence-level classification approaches are

suitable for our purposes since the basic information unit is the

full sequence of events of single application execution without

local labeling of sub-sequences.

Existing research has produced numerous techniques for

various tasks of sentiment analysis, which include both su-

pervised and unsupervised methods. In the supervised setting,

early papers used SVM, Maximum Entropy, Naive Bayes,

etc.[14] with different kinds of feature representations like

the bag of unigrams and feature combinations. Unsupervised

methods include various methods that exploit sentiment lexi-

cons, grammatical analysis, and syntactic patterns, i.e., fixed

syntactic phrases[15]. A decade ago deep learning has emerged

as a powerful machine learning technique[16] and produced

state-of-the-art results in many application domains, ranging

from computer vision[17, 18, 19, 20] recognition[21, 22, 23] to

NLP[24, 25]. Application of deep learning to sentiment anal-

ysis has also become very popular[25, 26] among researchers.

During the training, we are given a sequence of events col-

lected on the emulator and a label of this sequence (malware or

benign) transferred from our database of Android applications.

In the context of sentiment analysis, each event can be viewed

as a word, hence the whole sequence forms a ‘text’. The label

is analogous to the sentiment of a given text, negative or

positive. Each event (or word) can be turned into the one-

hot encoded sparse vector and, the one-hot sparse vector is

embedded into a low-dimensional dense vector space repre-

sented by an embedding matrix. This embedding is trainable

and represents a meaningful space where two semantically

related events are kept close to each other.

C. Recurrent neural networks

Recurrent Neural Network (RNN)[27] is a class of neural

networks whose connections between neurons form a directed

cycle. Unlike feed-forward neural networks, RNN can use

its internal ‘memory’ to process a sequence of inputs, which

makes it important for processing sequential information. RNN

performs the same task for every element of a sequence with

each output being dependent on all previous computations,

which is like ‘remembering’ information about what has been

processed so far. Theoretically, RNN can make use of the

information in arbitrarily long sequences, but in practice, the

standard RNN is limited to looking back only a few steps due

to the vanishing gradient or exploding gradient problem[28].

Researchers have developed more sophisticated types of RNN

to deal with the shortcomings of the standard RNN model, for

29

instance, Bidirectional RNN[29], Deep Bidirectional RNN or

Long Short Term Memory (LSTM)[30].

LSTM is a special type of RNN, which is capable of

learning long-term dependencies. A common LSTM unit is

composed of a cell, an input gate, an output gate and a forget

gate. The cell is responsible for ‘remembering’ values over

arbitrary time intervals. Gated Recurrent Unit (GRU) can be

viewed as a simplified version of the LSTM unit. It was intro-

duced by [31], where the authors achieved semantically and

syntactically meaningful representation of linguistic phrases.

It has been shown that GRUs exhibit better performance on

smaller datasets[32]. It is worth mentioning that in the context

of Windows malware, [33] uses RNN architecture but only for

embedding, not for final classification. Due to the sequential

nature of the task, in the experiments, we used both the GRU

and the LSTM units.

IV. METHOD OVERVIEW

When a software process is labeled as malicious, we typi-

cally assign a single malicious label to it. But not everything

that the process does is malicious. The process can be repre-

sented as a sequence or a stream of events �e = (et)
∞
t=0. The

malicious activity is hidden within a sequence of many benign

events. The goal is to train a prediction function f(·) and to

find threshold Θ such that

f(�eτ)

{
> Θ if eτ belongs to the malicious subsequence

≤ Θ otherwise,

(1)

where �eτ = (e0, e1, ..., eτ) is a sequence of events from the

beginning of the process up to time step τ . The inference

function (1) is represented by a recurrent neural network

(RNN) model that is fed by a stream of events from the

sequence �e one by one, and at each time step the function (1)

provides the inference about the current event eτ belonging

to the malicious activity. If this can be done accurately, an

interesting corollary is that the malware may be detected at

the beginning of the malicious activity.

Since for each stream generated by the process, we only

have a binary label (malware or benign) for the entire stream

we deal with a weakly-supervised problem as we do not know

which portion of the stream belongs to malicious activity.

Our task can be treated as sentiment analysis of a text

(for instance user reviews) from the NLP domain. One of

the models being utilized in the sentiment analysis is a

many-to-one RNN, where the text is fed word by word into

the model. The details will be discussed in Section VI-A.

However, this approach is not well suited for our problem,

hence in Section VI-B, we modify the objective function

such that backpropagation is not tied to the last output node,

which allows the model to focus its attention to the malicious

subsequences.

Finally, it is necessary to find a threshold Θ to achieve

the optimal performance of the model. The threshold Θ
will be established dynamically during the training procedure

accordingly to the target (desired) false positive rate perfor-

mance. The procedure for establishing the threshold Θ will be

described in Section VI-C.

V. FEATURES

To obtain the features from the running process, the ob-
server engine has been implemented in the Android kernel.

From the running application, the engine gets the behavioral

features (events) which are used by the model to distinguish

between malicious and benign applications.

The observer engine modified the C++ implementation of

Android’s Process Management system to intercept Binder

transactions in binary format prior to each transaction passing

through to the Android kernel binder driver. By reconstructing

the fields of the binary payload and extracting the unique

integer ID referencing an API (or function call), the pattern

and/or frequency of every inter-process communication (IPC)

call sent system-wide was counted and stored in a memory

structure for processing and analysis. While nearly 50,000

unique binder calls are possible, for optimal performance

the observer engine only tracked a subset of 1383 IDs most

relevant to the running application picked based on our expert

knowledge.

Hence, in total, we gather 1383 distinct API/functional calls,

and a stream of integers from 0 to 1382 forms a sequence of

events �e captured within the first 60 seconds of execution of

the application. A detailed description of the observer engine

can be found in [34].

VI. NEURAL NETWORK ARCHITECTURE

In this section, we first review existing sentiment analysis

architecture from the NLP domain, Section VI-A. Second, in

Section VI-B, we discuss its modification for malware activity

detection by introducing the max-loss objective function. The

problem of establishing the optimal threshold Θ is tackled in

Section VI-C, and finally, the usage of the model during the

evaluation is described in Section VI-D.

A. Sentiment analysis approach

Sentiment analysis problem can be solved by using a many-

to-one RNN architecture. The RNN unit has its internal

state responsible for ‘remembering’ information provided by

previous inputs. As the network receives one input at the

time, at each time step the internal state is updated and can

be modified. The prediction is then inferred on top of the

RNN output after receiving the last input. The situation is

schematically shown in figure 1. The right part illustrates an

unrolled representation of the graph depicted in the left, from

the time step τ back to time step 0. At each time step, the

recurrent block A receives current input event et and updates

its both hidden state ht, output ŷt, and passes the hidden

state ht to the next time step. The recurrent block A contains

RNN unit (GRU or LSTM) and shares the parameters. More

details on the recurrent block A will be provided later in the

section VII-B.

30

Figure 1: An illustration of an unrolled many-to-one archi-

tecture and backpropagation path with a standard objective

function as defined by (3).

The way the state evolves with the input depends on the

parameters of the RNN unit and the initial state of the unit.

More formally it can be written in a form of recurrent function

�ht = fθ(ht−1, et) (2)

where θ are parameters we wish to learn. As we modify

the parameters, the recurrent unit will perform a different

behavior. The parameters θ are being trained via backprop-

agation through time algorithm. For sentiment analysis, the

backpropagation is performed after receiving the last input eτ ,

hence the objective function can be written as follows

L(ŷ, y) =
1

2
||ŷ(eτ)− y||L2 (3)

where ŷ is the network prediction and y is the target. As shown

in figure 1, the backpropagation always starts at the last output

node after receiving the last input eτ .

B. Training phase with max-loss

The approach just described can be applied to malicious

activity detection. However, the problem is that the objective

function (3) is not well suited for the goal of identifying

malicious activity as soon as it occurs. It is rather designed for

the case when the inference step is performed after receiving

the last output. In fact, we aim at one-to-one architecture,

where for each input the network outputs the probability that

current event et belongs to the malicious activity. To train such

a network it is necessary to have a target label for each input

event et. Such a label would tell us if the current input is a

part of a malicious subsequence. However, in practice, it is

not feasible to collect such labels. For each sequence, we can

only have a weak label telling us if a malicious subsequence

(or more subsequences) is present in the whole sequence or

not.

It is important to note that at the evaluation phase on a

system, for each input in turn, the model outputs prediction,

and if the prediction exceeds the threshold Θ, the whole

sequence is labeled as malware regardless the future inputs.

This weakly supervised problem can be tackled by relaxing

the loss function (3) as follows

Figure 2: An illustration the backpropagation path with a

propsed objective function as defined by (4). The backpropa-

gation starts at the output node with the time stamp t∗.

Figure 3: ROC curve using our model on AV-test data[35]

from January 2018.

L(ŷ, y) =
1

2
||max

t
ŷ(et)− y||L2 (4)

where the term maxt ŷ(et) represents the maximal output of

the recurrent unit for the whole sequence along the training.

The consequence of the relaxation (4) is that during the

training, the backpropagation starts at the node where the

maximal output of the recurrent unit happened. The situation

is depicted in figure 2. For a particular sequence, the network

parameters θ are being modified during the training. Notice

that in each epoch, the maximum appears on a different node.

The intuitive corollary of the objective (4) is that the network

is forced to pay attention to the malicious subsequences as

soon as it appears.

C. Establishing threshold during training

The last problem to address is how to establish the thresh-

old Θ. For a malware detection engine in industrial applica-

tions, it is critical to achieve very low false positive detection

rate (FPr) while achieving a sufficiently high true positive

detection rate (TPr). The tradeoff between FPr and TPr at

various threshold settings Θ can be expressed by the receiver

operating characteristic (ROC) curve. For illustration, figure 3

shows the ROC curve on AV-test data[35] from January 2018.

The challenge is how to pick the threshold Θ such that

for unseen data in the wild the FPr is close to a target

31

FPr. We define the target FPr as desired FPr performance on

unseen data. The distribution of the unseen data, however, is

different from the data seen by the model during the training.

Hence its ROC curve differs from the one on training data or

validation data. If the ROC curve on unseen data was known,

one could pick a threshold Θ corresponding to the target FPr

performance. Unfortunately, this is never the case in practice.

To address the issue, we propose establishing the threshold

Θ during training from the test data for every training epoch.

The procedure is captured in Algorithm 1.

Algorithm 1 Establishing threshold Θ

Input: Trained model and Validation batches

Output: Optimal threshold Θ∗ for given model

1: procedure ESTABLISHING THRESHOLD Θ∗

2: targetFPr← target false positive performance, e.g. 0.01

3: TPrs← empty list

4: Θs← empty list

5: for each validation batch do
6: construct the ROC curve

7: Θ′ ← threshold corresponding to the targetFPr

8: TPr’← TPr performance at given Θ′

9: interpolate Θ’ and TPr′ if necessary

10: Θs.add(Θ′)
11: TPrs.add(TPr′)

12: Θmean ← mean(Θs)

13: Θstd ← std(Θs)

14: TPrmean ← mean(TPrs)

15: TPrstd ← std(TPrs)

16: Θ∗ = Θmean + k ·Θstd

Consider a single epoch during the training. After updating

the model, for each batch of test data, we construct the ROC

and compute a threshold Θ such that the FPr upon using this

threshold corresponds to the target FPr.

The Θs array (record of all Θ values) is assumed to be

generated by a normal distribution.

After evaluating all test data batches, we compute the mean

and standard deviation of the recorded values in Θs array, and

the optimal threshold for the current epoch is computed as

Θ∗ = μΘ + k ∗ √σΘ (5)

where μΘ and
√
σΘ denote mean and standard deviation of

values in the list Θs and k is a hyperparameter. In our scenario,

we set k = 2 to cover 93% of the threshold population.

Finally, we also keep track of the mean and variance of the

corresponding TPr in order to improve the early stopping

policy discussed later in Section VII-B.

D. Evaluation phase

During the evaluation, the trained recurrent model along

with the corresponding threshold Θ discussed above is de-

ployed on a device or a backend. When the unknown appli-

cation is run, the model is fed by events produced by the

observer engine introduced in Section V. After receiving an

input event, the model outputs an inference and if it is greater

than Θ the process is labeled as malware regardless of the

following events.

VII. EXPERIMENTS

A. Dataset description

We took 361, 265 Android applications, and for each, we

generated a behavioral sequence on our emulator farm. The

sequences were assigned with the label and timestamp of the

application from our industrial database. The dataset covers

the time period from January 2012 up to January 2018.

Hence, each application in the dataset is represented by

(i) an integer sequence �e representing events acquired by the

observer engine described in Section V, (ii) a label transferred

from the database and (iii) Unix timestamp representing when

the application appeared for the first time. In total, the dataset

contains 100, 595 malware and 260, 670 benign samples and

there exist 1383 distinct events within all sequences.

B. Architecture and training details

We experimented with different setups. We used different

embedding matrix sizes, single or double layers of LSTM

or GRU units followed by one to three fully-connected

(FC) layers and tried different regularization (L2, L1, batch-

norm, dropout) functions and optimizers (ADAM, RMSprop,

Nestorov momentum). The best performing and least complex

model is described next, the architecture is shown in figure 4.

a) Hyper parameters: Each input event et is encoded

into a one-hot vector, which is passed to the embedding matrix

of size 1384×16, since in the dataset there exist 1383 distinct

features and one extra token is used for padding. Each event is

embedded into 16-dimensional dense vector which is passed

into the GRU layer of size 256 which is followed by the

FC layer of size 128 followed by dropout and combined into

a single neuron. The output is finally passed to a sigmoid

function to produce the prediction ŷ.

During training, we use a keep probability of 0.7 for the

dropout layer and ReLU nonlinearities. We observed that

stacking GRU units or adding optional FC layers did not

improve the results. The batch size of 512 was used throughout

the experiment and the best results were achieved with the

RMSProp optimizer with the learning rate of 2.3 · 10−3. The

learning rate is decayed by a factor of 0.6 if there is no

improvement in the training loss for two epochs.

The early stopping policy is set such that the training

is terminated if the estimated TPr (Section VI-C) on the

validation set is not improving for 8 epochs. The convergence

to the best model was typically achieved in 30 epochs. The

constant k in formula (5) was set to 2.0 for the model threshold

estimation.

b) Data split: The standard practice is to split the dataset

in training-test sets by selecting the samples randomly. For

the case of malware, our industrial experience has proved that

this is not a good strategy. It is likely that a randomly selected

training set could contain modified copies of the same malware

re-packed as in the testing set. This would lead to artificially

32

Figure 4: The max-loss RNN, each input e is one-hot encoded

and is passed to trainable embedding layer. Its output is passed

to the RNN unit and then to the FC layer with a single

prediction node. The objective function L identifies the node

producing the maximal output and the loss is computed.

good performance, but the classifier would fail to generalize

on new malware samples.

To prevent this problem, we split our data timewise, such

that the most recent samples are in the testing set, but not in the

training set. Our dataset was split to training, validation and

testing data as follows: all the events sequences were ranked

w.r.t. the timestamps and split in a ratio of 90% / 10%. The

latter is being used as a test set. The bigger chunk is further

randomly shuffled and 10% of it is used for validation and the

rest for training.

To summarize, 36.3k newest samples belongs to the test set,

293.7k samples are used for training the model, and 32.6k
samples are used for validation. For chosen batch size and

GPU memory constraints, each sequence is padded or cropped

to the length of 1024 if necessary.

C. Results

A comparison of the proposed method with several state-of-

the-art results is provided by table I where we compare with

both dynamic and static methods. The maxNet architecture is

superior to most of the competitor’s results. It significantly

outperforms the other techniques in terms of the FPr (1.6%)

which is critical for industrial applications. Moreover, the TPr

performance is much better compared to with performances of

others and is marginal to Amos et al.[36] who experimented

with a smaller dataset and reported TPr of 97.3% but obtained

FPr of 31.0%. As shown in table I, our method achieved the

highest F1-score. A similar score was achieved by Morales-

Ortega et al.[37] who also reported 0.96.

It is worth noticing that our dataset is significantly bigger

than datasets of our competitors shown in table I (for some by

(a) malware

(b) benign

Figure 5: Examples of the network output at each time step.

Output from malware sample (top) exceeds threshold Θ during

malicious activity. The output from a benign sample (bottom)

never exceeds threshold Θ.

Method TPr FPr #malware #benign F1 score type
maxNet (ours) 96.2 1.6 100,959 260,670 0.96 D
Canfora et al. [12] 95.9 4.2 1000 1000 0.95 D
MaMaDroid [8] 95.5 6.4 2974 2568 0.95 D
Ferrante et al. [13] 70.6 38.0 1523 1709 0.66 D
Amos et al. [36] 97.3 31.0 1,330 408 0.94 S
Morales-Ortega et al. [37] 96.2 3.7 1,377 1,377 0.96 S
Kurniawan et al. [38] 85.3 14.7 200 200 0.85 S
Ahmadi et al. [39] 72.0 7.5 9,664 10,058 0.80 S

Table I: Comparison of maxNet with state-of-the-art results.

Type: S-static, D-dynamic

a factor of 100) and and consists of dozens of families [34].

The train and validation set came from a period from

January 2012 to September 2017 while the test set contains

samples that appear within three months after, hence the test

set contains the unseen type of malware. The results show

that the proposed method is robust and capable of catching a

zero-day malware.

We also tested our model in-the-wild on the challenging

industrial AV-test benchmark[35] with unseen data. As shown

in figure 3 the model achieved 94% TPr at 1.6% FPr. Despite

the TPr is slightly lower compared to table I, it demonstrates

that our model generalizes reasonably well.

Finally, the figure 5 shows a prediction of our model for

malware and the benign application input sequence of the

length of 1024 events. In the subfigure 5a the output of the

network exceeds the threshold Θ at the 20-th input event. The

malware detection engine can block the malicious process

execution at this point. On the other hand, as shown in

subfigure 5b, our model does not trigger with a benign sample,

whose threshold never exceeds Θ.

33

VIII. CONCLUSION

We formulate malware detection as a weakly supervised

problem and design a sequential RNN model capable of

detecting malicious activity within the process as soon as it

happens. It was shown how to train this model by a relaxation

of the objective function from many-to-one RNN architecture.

As part of this work, we release a public dataset consisting

of 361k samples[34]. The experiments on this dataset demon-

strate the performance of 96.2% true positive rate at 1.6% false

positive rate which is superior to the state-of-the-art results.

ACKNOWLEDGMENT

We thank Rajarshi Gupta for driving and supporting the

project, to all team members who did the engineering work on

feature acquisition: Pablo Sole, Hiram Lew, Vladislav Iliushin,

Filip Havlicek.

REFERENCES

[1] B. Amos, H. A. Turner, and J. White, “Applying machine

learning classifiers to dynamic android malware detection

at scale.,” in IWCMC, 2013.

[2] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and

K. Rieck, “DREBIN: Effective and explainable detection

of android malware in your pocket.,” in NDSS, 2014.

[3] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. A. Porras,

“DroidMiner: Automated mining and characterization of

fine-grained malicious behaviors in android applications,”

in ESORICS, 2014.

[4] C. Lueg, “8,400 new Android malware samples every

day.” https://www.gdatasoftware.com/blog/2017/04/

29712-8-400-new-android-malware-samples-every-day,

2017. (Accessed on 04/09/2018).

[5] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:

Semantics-based detection of android malware through

static analysis,” in SIGSOFT, 2014.

[6] A. P. Felt, D. Song, D. Wagner, and S. Hanna, “Android

permissions demystified,” in CCS, 2012.

[7] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining

API-level features for robust malware detection in an-

droid.,” in SecureComm, 2013.

[8] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristo-

faro, G. Ross, and G. Stringhini, “MaMaDroid: Detecting

android malware by building markov chains of behavioral

models,” arXiv:1612.04433, 2016.

[9] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and

Y. Weiss, “”Andromaly”: A behavioral malware detection

framework for android devices,” JIIS, 2012.

[10] “Strace.” https://sourceforge.net/projects/strace/.

[11] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, “AntiMalDroid:

An efficient SVM-based malware detection framework

for android.,” in ICICA, 2011.

[12] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio,

“Detecting android malware using sequences of system

calls,” in DeMobile, 2015.

[13] A. Ferrante, E. Medvet, F. Mercaldo, J. Milosevic, and

C. A. Visaggio, “Spotting the malicious moment: Char-

acterizing malware behavior using dynamic features,” in

ARES, 2016.

[14] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?:

Sentiment classification using machine learning tech-

niques,” in Proceedings of the ACL-02 Conference on
Empirical Methods in Natural Language Processing
- Volume 10, EMNLP ’02, (Stroudsburg, PA, USA),

pp. 79–86, Association for Computational Linguistics,

2002.

[15] P. D. Turney, “Thumbs up or thumbs down?: Seman-

tic orientation applied to unsupervised classification of

reviews,” in Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL ’02,

(Stroudsburg, PA, USA), pp. 417–424, Association for

Computational Linguistics, 2002.

[16] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse

rectifier neural networks,” in AIStat, 2011.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in NIPS, 2012.

[18] K. Simonyan and A. Zisserman, “Very deep convo-

lutional networks for large-scale image recognition,”

arXiv:1409.1556, 2014.

[19] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin,

T. Yu, and A. A. Efros, “Real-time user-guided image

colorization with learned deep priors,” TOG, 2017.

[20] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and

J. Sivic, “NetVLAD: CNN architecture for weakly su-

pervised place recognition,” PAMI, 2017.

[21] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and

Y. Bengio, “Attention-based models for speech recogni-

tion,” in NIPS, 2015.

[22] S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and

L. Heck, “(almost) zero-shot cross-lingual spoken lan-

guage understanding,” in ICASSP, 2018.

[23] H. Sak, A. W. Senior, K. Rao, and F. Beaufays, “Fast

and accurate recurrent neural network acoustic models

for speech recognition,” CoRR, 2015.

[24] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and

D. Jurafsky, “Adversarial learning for neural dialogue

generation,” in EMNLP, 2017.

[25] M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and

L. Kaiser, “Multi-task sequence to sequence learning,”

in ICLR, 2016.

[26] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu,

“Adaptive recursive neural network for target-dependent

twitter sentiment classification,” in ACL, 2014.

[27] J. L. Elman, “Finding structure in time,” COGNITIVE
SCIENCE, 1990.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-

term dependencies with gradient descent is difficult,”

IEEE NN, 1994.

[29] M. Schuster and K. K. Paliwal, “Bidirectional recurrent

neural networks,” IEEE SP, 1997.

34

[30] S. Hochreither and J. Schmidhuber, “Long short-term

memory,” Neural Computation, 1997.

[31] K. Cho, B. van Merrienboer, . Glehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio, “Learning

phrase representations using RNN encoder-decoder for

statistical machine translation.,” in EMNLP, 2014.

[32] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Em-

pirical evaluation of gated recurrent neural networks on

sequence modeling,” 2014.

[33] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and

T. Yagi, “Malware detection with deep neural network

using process behavior,” in COMPSAC, 2016.

[34] Avast, “Avast research page.” http://public.avast.com/

research/. (Accessed on 12/21/2018).

[35] “Av-test — antivirus & security software & antimal-

ware reviews.” https://www.av-test.org/en/. (Accessed on

04/24/2018).

[36] B. Amos, H. A. Turner, and J. White, “Applying machine

learning classifiers to dynamic android malware detection

at scale.,” in IWCMC, 2013.

[37] S. Morales-Ortega, P. J. Escamilla-Ambrosio,

A. Rodriguez-Mota, and L. D. Coronado-De-Alba,

“Native malware detection in smartphones with android

os using static analysis, feature selection and ensemble

classifiers.,” in MALWARE, 2016.

[38] H. Kurniawan, Y. Rosmansyah, and B. Dabarsyah, “An-

droid anomaly detection system using machine learning

classification,” in ICELTICs, 2015.

[39] M. Ahmadi, A. Sotgiu, and G. Giacinto, “IntelliAV: To-

ward the Feasibility of Building Intelligent Anti-malware

on Android Devices,” in CD-MAKE, 2017.

35

