2019 IEEE Security and Privacy Workshops (SPW)

Defending Against Neural Network Model Stealing
Attacks Using Deceptive Perturbations

Taesung Lee!

Benjamin Edwards®!
IBM Research AIL3

Tan Molloy?®
Independent?*

Dong Su®f

ltaesung.lee@ibm.com 2bjedwards@gmail.com >molloyim@us.ibm.com *sudong.tom@gmail.com

Abstract—Machine learning architectures are readily
available, but obtaining the high quality labeled data
for training is costly. Pre-trained models available as
cloud services can be used to generate this costly
labeled data, and would allow an attacker to replicate
trained models, effectively stealing them. Limiting the
information provided by cloud based models by omit-
ting class probabilities has been proposed as a means
of protection but significantly impacts the utility of the
models. In this work, we illustrate how cloud based
models can still provide useful class probability informa-
tion for users, while significantly limiting the ability of
an adversary to steal the model. Our defense perturbs
the model’s final activation layer, slightly altering the
output probabilities. This forces the adversary to dis-
card the class probabilities, requiring significantly more
queries before they can train a model with comparable
performance. We evaluate our defense under diverse
scenarios and defense aware attacks. Our evaluation
shows our defense can degrade the accuracy of the
stolen model at least 20%, or increase the number of
queries required by an adversary 64 fold, all with a
negligible decrease in the protected model accuracy.

I. INTRODUCTION

The success of neural networks has resulted in many web
services based on them, including services providing APIs
to label input samples for small sums of money. Many state-
of-the-art neural network architectures are readily available
in the literature or online, and unlabeled data (e.g., images
and corpus) are also often abundant on the web. But
labeling data to train a machine learning model is expensive,
difficult, and error-prone even for simple tasks [1]. It is even
more difficult for domains requiring expert knowledge (e.g.,
coreference resolution in the medical domain). However,
once an adversary acquires enough labels using the web
services, the attacker can replicate the neural network and
no longer needs to pay for the service [2]. For example,
current image classification services charge around $1-
$10 per 1,000 queries, depending on the sophistication
or customization of the model [3]-[5]. Moreover, replicating
neural networks allows for the execution of other attacks,
such as the creation of adversarial examples [6].

In this paper, we seek to frustrate such neural network
model stealing attacks by perturbing the output while
maintaining the utility. That is, we consider a scenario that
an attacker uses the probability values returned by the base

T This work was done while the authors were at IBM Research.

© 2019, Taesung Lee. Under license to IEEE.

DOI 10.1109/SPW.2019.00020

43

model on the cloud service to boost the model stealing
process. The cloud service often provides probability values
to show confidence. When stealing models, [2] claim that
using probabilities instead of labels alone reduces the
number of required samples by 50-100x. We also confirm
that using probabilities can improve the convergence, and
also increases the converged model accuracy in Sec IV-A
and IV-D. Our goal is defeating attacks using probabilities,
and leaving only a suboptimal attack of discarding the
probabilities. We test a variety of possible noise forms and
find a ‘reverse sigmoid’ to be the most effective defense.

To evaluate the performance of our defense, we consider
two types of attacks. First, we consider an attacker unaware
of the defense that can replicate an unprotected model
quickly. ! Second, we consider variety of defense-aware
attacks, including the attacker implementing of the same
defense layer, inverting the added noise, using a different
loss function, and using only labels. Our evaluation consid-
ers diverse datasets, attack parameters, neural networks
architectures and domains (images and text). We show that
for a defense unaware attack our approach can degrade
stolen model accuracy by 20% or more while keeping the
protected model accuracy almost intact. We show that a
variety of defense aware attacks fail to improve the stolen
models accuracy, and require as much as a 64x queries to
obtain accuracy similar to the original model.

II. RELATED WORK

The problem of inferring secret machine learning model
parameters by observing the output classification to a given
set of inputs has been recently studied. [2] demonstrated
an attack that, using high-precision confidence values and
class labels obtained from a machine learning cloud service,
can steal several types of models including decision trees,
logistic regression, support vector machines and simple
neural networks. For simple parametric models such as
logistic regression, they solve a linear system from the
obtained probabilities. For decision trees, they develop a
path-finding algorithm to exploit the confidence value as
pseudo-identifiers for paths in the tree to discover the tree
structure. For neural networks, they leverage a method we
denote by Sample that uses a set of samples and query

IWe observe that a defense-aware attack performs worse on an
unprotected model.

a randomly drawn batch, and train the network with
the output from the base model, similarly to [7]. [8] also
consider stealing a machine learning parameter, but is
limited to the regularization parameter used during training
not any of the model parameters themsleves.

[6] proposed a method for stealing a neural network
model to generate adversarial examples. They assume
the attacker has a limited amount of training data, and
propose to use a Jacobian-based heuristic in order to
find examples defining the decision boundary of the
target model, which we denote by Jacobian Augmentation
in our experiments. We extend the analyses of Sample
and Jacobian Augmentation with six datasets, five neural
network architectures as well as other attack methods to
leverage in our defense evaluation. To our knowledge, this
is the first study mitigating such model stealing attacks.

III. METHODS

In this section, we propose adding a new activation layer
that can be applied to most neural network classifiers to
protect against model stealing attacks. That is, instead
of attempting to detect an attack, we leverage this layer
adding a small controllable perturbation mazimizing the
loss of the stolen model while trying to preserve the
accuracy of the original model. The attacker essentially
approximates the loss hypersurface to find parameters for
the stolen model with the minimum loss value. To protect
a model, the activation layer manipulates the estimated
loss surface to keep the attacker away from the optimal
parameters.

We consider neural networks that extract features from
the input data and aggregate them throughout the layers
to generate class probabilities of the input. Typically, the
last layer is an activation function producing probability
values ranging from 0 to 1 and sum to 1, given logits,
the unbounded vector from the previous layer. In most
cases, the softmax function without parameters is used.
That is, most neural network classifiers of K classes
can be represented as y f(x) o(g(x)), mapping
input x to output y, where g(-) is a function to a K-
dimensional real vector, and o(-) is the final activation
function (e.g., softmax) mapping a vector to K probability
values summing to 1.

An attacker with samples X = {2} can query a neural
network on the remote server (base model) to obtain the
corresponding pseudo-labels Y = {y’}, and train their own
neural network (stolen model). The completely replicated
network should have the minimum loss L with respect to
Y, which is usually defined using the cross entropy loss
function. That is,

Li(X.Y) = =32 yjlog f(");

(1)

where gy} and f(z'); represent j-th dimension of " and
f(x?), respectively.

44

In this setting, we propose altering the server response
Y = {y'} to Y = {§’} which results in a high loss value
L for a model fopr with the optimal parameters with Y.
The high loss value would cause the attacker’s optimizer to
ill-train a network using ¥ and deviate from the optimal
parameters. That is, we want L. (X, V) > L¢(X, Y) for
some model f with a low accuracy.

We achieve this by perturbing the softmax activation
function. In particular, the perturbed probability vector
* should have the following properties. First, the sum
across the dimensions must be 1. Second, we should be
able to control the magnitude of the perturbation. Last, the
accuracy should ble preserved, ie., gj; > Q; forj=1,....K
and k such that y; > y; We c_onside_r additive perturbation
with normalization: §; = a'(y;—7(y;)) where o is a sum-to-
1 normalizer for y*, and 7(y;) is the perturbation function
we seek with the following parameterization:

r(y;) = B(s(zj) —1/2)
where s(+) is a sigmoid function, z; is a perturbation, and
[is a positive magnitude parameter; with a constraint
Qi > g; for j = 1,..., K preserving the accuracy. Using
a derivative test, we can find L(z,¢) has critical points
when z; — +inf. In particular, L(z,¢) is maximized when
Zp = inf for £ such that Y = Yj forj=1,......, K, and
z; — —inf for j with low y;. _

Instead of directly setting z; to maximize the]oss, we
use a heuristic approximation to 4inf when y; is the
largest and —inf otherwise, not to completely lose the
probability values: z; = ’ys‘l(y;) where ~ is a positive
dataset and model specific convergence parameter, and
571 (y!) is the pseudo-logit of y} that amplifies the behavior
of y; and makes the perturbation comparable to the original
probability. With this approximation, we obtain Reverse
Sigmoid perturbation r(y;)

r(ys) = B(s(vs™ () — 1/2) (3)

This function has a shape of flipped sigmoid function as
shown in Fig 1, and the final perturbed probability value
is computed as follows:

g = ot (i — B(s(rs~' (1)) — 1/2)

This function is non-invertible as can be seen in Fig 1.
The main advantage of using Reverse Sigmoid
s(ys~(y})) in r(y}) is two-fold. First, the original prob-
ability values are largely preserved in contrast to always
returning the same values for top-1 and bottom-1 classes.
Also, the top-1 class changes only when the original
probabilities of the top-1 and the top-2 are very close to 0.5.
Second, this function form adds ambiguity that prevents a
simple inversion. As we can see in Fig 1, the final deceptive
probability curve has two y; values that have the same gj;

(2)

(4)

in the range [0, #] and [a’(1 — £),1], except where the
first derivative is zero, making the exact inverse function
impossible and approximate inversion difficult. In fact, an

adversary attempting to invert the output would have to
choose one of two possible pre-activation for each output
class, resulting in 2% possible pre-activation vectors per
sample. In Sec IV-D we explore other defense aware attacks
including using the Reverse Sigmoid, using mean squared
errors as the loss function, or training a neural network to
attempt to invert the defensive activation.

1.0

o
©
!

Sigmoid _
Reverse Sigmoid e, NE

o
o

Activation

| ===*== Final Curve

I
~

f—
———

o
N

T~

.
.
.,
e, :
g
.....

0.0 :
Input

Fig. 1: Example Reverse Sigmoid activation function.

IV. EXPERIMENTS

In this section, we evaluate the proposed defense method.
We consider two types of attacks. We evaluate previously
proposed model stealing attacks (Sec II) against an unde-
fended model, examining query generation, parameters, and
different model architectures Sec IV-A. Then, we evaluate
our defensive activations on five image datasets, one text
dataset, and one multivariate dataset using five different
measures in Sec [V-B. We discuss the relationship between
the base models and the stolen models in Sec IV-C. We
further evaluate the defense against possible attacks when
the attacker is aware of the defense in Sec IV-D, and
show that these attacks cannot achieve better performance
than using only labels, which is a lower bound of the
best attack for the accuracy-preserving defense. Basic
data augmentation (shift/flip) is applied in all training [9].
MobileNet [10] and Xception [11] are optimized with
Adam optimizer [12], AllConv is optimized with the vanilla
stochastic gradient descent as in its original paper [13],
and RMSProp [14] is used otherwise to achieve the best
performance for each individual model.

To measure the performance of attack and defense, we
mainly use agreement, top-1 model accuracy of the stolen
model treating the base model as ground truth. Agreement
does not use labels of the test dataset, and focus on the
intrinsic model replicability.

We use seven datasets including IMDB sentiment
dataset [15], MNIST [16], FASHION-MNIST [17], CIFAR-
10, and CIFAR-100 [18], and STL-10 [19], and IRIS [20].
These classification datadats have various characteristics
including input domains (image vs. text), # classes (e.g.,
10 vs. 100), and the input dimensions. Also, they cover
different degrees of difficulty, and a model for an easy
dataset is easier to attack and harder to defend as shown in
Sec IV-B. Because simpler models built on simple datasets
are easier to steal, if we can defend them, it’s likely we can
defend larger models built on more sophisticated datasets

45

as well. For the image datasets, we randomly hold out
33% of the original training data, uniformly from each
class, to assign a portion of them to the attacker after
removing the labels and the probability values. Note that
this partitioning will allow only 67% of the original training
data for the base model on the cloud, and result in a
small drop in model accuracy for each of the base models
compared to the state-of-the-art. For the text dataset, we
instead split the test data in the same way due to the small
training data.

A. Threat Model and Attacks

For the evaluation, we consider the following adversarial
model. The adversary knows the architecture of the model
being attacked, has a given number of unlabeled input
samples (# samples), and can send a fixed number of
(adaptive) queries to the base model to obtain labels and
probability values. We do not assume the adversary is
computationally bounded for training.

We compare the following attack strategies to generate
queries and use the response as the training data.

o Sample: The attacker has a certain number of data
samples in hand, and queries them to the base model,
using the resulting probabilities for training.

o ArgmaxSample: Same as Sample, but the attacker does
not use probabilities and uses the top-1 class label only.

o Random: The attacker does not rely on any existing data
samples, and instead generates uniform random queries.
The attacker knows the ranges and the dimensions of
the input values.

o Jacobian Augmentation: The attacker has a certain num-
ber of data samples, and generates more samples using
the Jacobian method [6]. The stolen model is trained
using the response from the base model for both the data
samples, and the generated samples. The trained model
is used to generate more samples. We set A = 0.1 and
substitute training epochs p = 40.

The attacks also use randomized image augmentation
that shifts, and/or flips images during the training?. As
a neural network is trained for multiple epochs, the same
training sample is used multiple times. Adding slight change
to the image in every epoch provides much better general-
ization power, and results in better test agreement [9].

We compare these attacks with various parameters,
identify the attack most successful at replicating the base
model, and evaluate our defenses against the strongest
attack. We use a simple convolutional network, denoted by
Simple, for both the base and the stolen models: 64 3 x 3
conv, 64 3 x 3 conv, 2 X 2 max pooling, 128 3 x 3 conv,
128 3 x 3 conv, 2 X 2 max pooling, 256 dense, 256 dense,
and softmax layers.

Query Generation: The most limiting resource for
an adversary might be real data samples to query the
base model (e.g., medical records). Thus, we test query

2Flipping is not applied on the MNIST dataset.

—— Probabilities === Jacobian = =--- Random —e— Argmax

Accuracy

Agreement Cosine Similarity

1.00 4 1.00 4

0.75 0754 ,

0.50 1 0.50 1

0.25 1 0.25 1

0.00 T
ST R Y
CENENAONINANISAN
'\,’b‘o,glzqy@q‘o'é}

Number of Samples

Fig. 2: Performance of four model stealing approaches.

generation strategies and find the importance of using
real data samples. We evaluate the attacker methods on
varying # samples first, and set attacker budget to 50,000
queries, and training steps to 16,000 with 64-sized batch.
Fig 2 shows the performance of the three attack strategies
against the number of samples on the MNIST dataset.
We can see that Sample attack performs best for various
samples. All attack methods including Sample leverage
data augmentation. Our preliminary experiment showed
that using data augmentation significantly improved the
test accuracy (approx. 85% increase with 150 samples).
ArgmaxSample also steals the model with high accuracy, but
its replication is much slower especially at the beginning.
For example, with data augmentation, Sample reaches 97%
agreement with 300 samples, but ArgmaxSample goes only
up to 96% with 19200 samples (~ 64x samples).

The Jacobian augmentation is used to push samples
towards the boundaries of each class in the direction of
greatest increase in the loss function to generate samples
defining the decision boundary. When applied to the input
image, it successfully probes the classification boundary of
the model, but results in generating imperceptible pertur-
bation to an image so that the neural network misclassifies
the input [21]. Thus, using Jacobian generates adversarial
examples that are misclassified by the base model. Thus,
leveraging these labels from the base model results in
teaching the replicated model the wrong classification.

On the other hand, although Random attack has high
training accuracy, its performance on test data is poor, giv-
ing the accuracy of random guess. Most samples generated
by Random fall into one class, and this leads to train the
replicated model to predict just one class regardless the
input. This shows the importance having legitimate data
samples to query the model. Based on these results, we
use Sample attack, which can most accurately replicate the
model in the defense-unaware scenario.

Model Architecture: The attacker has a choice of their
own models to train. We test Sample to train Simple model
described above, as well as MobileNet [10], AllConv [13],
and Xception [11] models. Some complex models such as
ResNet [22] and Inception [23] are not applicable to the
test datasets we use due to the input image dimensions.

46

Simple AllConv MobileNet Xception

A

AR (0 ®

Ly
o

MNIST
Agreement
o
(2]

o

M\/

AR (s ®

.0

— T — T
,@Q bgﬁlhggqbgﬁ) ,\?)Q bg% (th%bgﬁ)

= ‘é 1.0
S 3(0 0.0 —— T T L —
,@Q bgﬁlug%bg() ,@Q bQQ(L@quQQ \?’Q bg%q’hg%qb@) \?’Q bQQrLB:QquQQ

Number of Samples

Fig. 3: Agreement with the base model for various types
of attacker model architectures.

Fig 3 shows comparisons of performance regarding
different replicated model architectures used.? As we can
expect, the simplest model learns fastest. While approaches
such as Xception and MobileNet work well with larger
data [10], [11], they are not suitable in a model stealing
scenario with relatively few samples. Also, we find AllConv
not only learns relatively fast, but also performs well for all
datasets. Therefore, we use AllConv throughout the rest of
the experiments. For the IMDB dataset, we use the most

popular approach using Bidirectional LSTM [24].

B. Defense Evaluation

Now we compare defense methods against Sample attack
method with AllConv model. As a defense, we consider
adding one of the following perturbations to the output
probability vector, where U(—1, 1) is uniform random noise
between -1 to 1, and 3, p and f are parameters.

e Uniform Random: SU/(—1,1).

e Uniform Random x Concave: [U(-1,1) x
1/6_%(74;'/'”) .
e Uniform Random x Convex: pfU(—1,1) x

(1 1) /o)

« Ranking-preserving Uniform Random: Same as
Uniform Random, but the ranking of output classes
is preserved to maintain the accuracy.

» Sine: ﬁsin(fy;-).

« Reverse Sigmoid: a stretched and reversed sigmoid
T(y;) explained in this paper.

The goal of the defense is twofold: 1) prevent model
replication (low stolen model S(M, defense) agreement),
and 2) retain the performance of the protected model
(high protected model P(M, defense) agreement). The best
parameters for the defense methods are searched using grid
search to achieve the highest cosine similarity to the original
model with at least 20% accuracy drop in stealing with
attacker budget of 19200. When we cannot find parameters
satisfying 20% accuracy drop in stealing, we instead choose
the parameters with the highest accuracy drop in stealing.

3Note that the performance degradation is due to the use of only
two third of the original training data less the attacker portion.

Reverse Rank Preserving Uniform Uniform Random Uniform Random
Sigmoid Uniform Random Random X Convex X Concave Sine
1.0
— b oo o o b oo o b o o] Lo o o o o e
c
s L
2 § 0.5 1 /—’_ —— Defended
§ ;ED === Undefended
<C
0'0- T T T T T T T T T T T T T T T T T
,@Q bg% ’LB‘QQ qbQB ,@Q bg% ’LB‘QQ o,bgs ,@Q bg% ’LD‘QQ o,bgc ,@Q bg% ’LD‘QB o,bgc ,@Q bg% D‘QB o,bgc ,&gﬁ bQQ ’LD‘QB O’ng
1.0 1
‘3% /N/’—- /N/’—- /N/’—- /N/’—- /\,’—- /\,’—-
X g 0.5 ,/, -7 P ,/, ,/, /—
& g L - %/— L _- - L _-
0.01 : : : : : :

AR @ P g 4 e (®

'X%Q ® fLB«QQ qbQQ

AR g AR (@ 4D (@ ©

Number of Samples

Fig. 4: Agreement of stolen model with base model using different defense types.

TABLE I: Agreements with 19200 queries. M: base model, S(-): stolen model, P(-): protected model.

Dataset MNIST FASHION MNIST CIFAR-10 CIFAR-100 STL-10 IMDB

S(M) 0.93 0.95 0.82 0.48 0.62 0.84
S(M Reverse Sigmoid) 063 27031 7 -0:29 0p 2045 T 270:98 5 0-062 {0 9-0.40
SO Uniform Random) 005 2+038 00927047 (2043 gy 2080 150043 gy 0-0.12
S(M Uniform Random x Coneave) 0030005 gor9+005 (530015 (0p2080 573035 5043
S(M Uniform Handom x Conver) 003 2F004 qop2H001 (50002 55,0080 5550089 g 0-0.2
e i Jondm] 0005013 G0 o005 Goeo-0sa 00007 o004 Go0o o
S(M Sine) 092 2003 (59 2-0.02 074 27003 (452008 (52 +0.038 (55)-001

In Fig 4 and Table I, we see the proposed Reverse Sigmoid
defense consistently slows down the replication process
(Fig 4), and drops the stolen model agreements more than
20% for all tested datasets (Table I). Also, the protected
models still have high agreements. Using a sinusoidal wave
noise does not protect the model for all tested parameter
combinations. The final perturbation made by sine is small
as the sine applied to each class can interfere each other,
and it is normalized to have only small effect. While
Uniform Random may look effective for some datasets
like FASHION MNIST, the agreements of the protected
models are not reliable. In case of Ranking-preserving
Uniform Random, we can achieve the perfect agreements,
but the effectiveness of the defense is unpredictable (e.g.,
FASHION MNIST vs. CIFAR-10).

Table II shows the side effects of the Reverse Sigmoid
defense. The protected model accuracy is well maintained
because the defense tends not to change the labels if one
class is dominating. To measure how much noise is added to
the probability vectors, we use the average cosine similarity,
the mean absolute error per dimension, and KL-divergence
of the protected model and the base model outputs. In
particular, we see that the mean absolute error is less than
0.2 in most datasets. This noise can be higher if the model

47

TABLE II: Effects of Reverse Sigmoid defense. M: base
model, P: protected model, S(P): stolen model from P.

Accuracy Distance

Dataset M P S(P) Cos MAE KL
MNIST 0.99 0.99 0.68 0.41 0.17 3.27
FASHION MNIST 0.87 0.87 0.66 0.47 0.16 1.72
CIFAR-10 0.75 0.73 0.36 0.61 0.48 1.26
CIFAR-100 0.43 043 0.02 0.33 0.02 2.30
STL-10 0.51 0.51 0.31 0.74 0.16 2.20
IMDB 0.81 0.81 0.60 0.80 0.39 0.48

prediction is more confident. However, in this case, the
decision is unlikely to be affected in many applications.
To illustrate our reverse sigmoid defense can also protect
other simple machine learning models, we tested it on a
logistic regression model trained on the iris dataset [20]
against the Tramer et al. attacks [2]. This attack solves
the system of the model equations, and almost completely
steals the model (1.00 agreement). While the attack should
be able to recover the model in 15 queries (the number
of parameters in the three-class logistic regression model),
the stolen model was much more resilient. We tested the
agreements of 100 stolen models, randing from 1 x —100x
the number of queries required to perfectly replicate the
model. The passive attack had a mean agreement of 0.81,

where the 20th and 80th percentiles were 0.83 and 0.91,
indicating there was significant volatility in the stolen
models. When querying the protected model 20kx more
than necessary for an unprotected model, the stolen model
only reached an accuracy of 0.92. The adaptive attacks
fared significantly worse, with mean accuracy of 0.65 for
the local adaptive and 0.36 for the oracle adaptive attacks.

C. Base Model Accuracy v. Protection Effectiveness

TABLE III: Base model and stealing on CIFAR-10.

Model M acc. P acc. Sacc. Acc.drop
AllConv 0.75 0.73 0.36 0.37

Simple 0.70 0.69 0.50 0.19
Xception 0.36 0.36 0.23 0.13
MobileNet 0.24 0.22 0.21 0.01

Since we add noise to the confident classes, the output
probability of a model can affect the performance of the
Reverse Sigmoid defense. To see this, we train different
models on CIFAR-10 dataset, resulting in different accura-
cies. Then, we apply the Reverse Sigmoid protection, and
try the attack with AllConv. In Table III, we see that if
the original accuracy (M accuracy) is higher, the defense
is more effective (higher accuracy drops). This is especially
important because when the accuracy of the original model
is high, there is higher demand of protection.

= g 151

S 0.8 S

£ £0104

@ g

2067 === FullProbabily | &

3 —— Labels Only e

CUbif — e mmFono e
LSS LSS S e 1, xR Ve (O
RNV S '\/Q('\:,)% '\‘/O'\, ,&b [MAANRSRE ’X}h'\ﬁm’\:&'\b%’\«%b

Attacker Budget

Fig. 5: Performance difference of model stealing using all
class probabilities vs. only the top-1 label on CIFAR-10.

D. Robustness against Defense-aware Attack

We test the robustness of the Reverse Sigmoid defense
on CIFAR-10 when the attacker knows more information.
Attack using the same defense layer: If the defense
and the parameters get to be known by the attacker, the
attacker can use exactly the same defense layer in their
model. The Reverse Sigmoid defense is not a standard neu-
ral network layer, and have ambiguity that multiple logit
values are mapped to the same probability by the defense
layer. This essentially propagates wrong gradient values to
the model, degrading the stealing process (Table IV).
Attack using the mean-squared-error loss function: To
replicate the model output more precisely, the attacker may
use the mean-squared-error (MSE) loss function instead of
the more common cross entropy loss function which the
Reverse Sigmoid defense is designed for. However, for the

48

TABLE IV: Agreements of attack variants.

Attack Agree.
Same Defense Layer 0.10
MSE Loss 0.18
Inversion (MLP) 0.22
Argmax 0.78

same reason as the attack using the same defense layer,
this loss function is not free from the ambiguity, and still
shows poor performance as shown in Table IV.

Attack using an inversion mapping: We now evaluate
the adversary’s ability to recover the original unprotected
class probabilities from the protected model assuming they
have full knowledge of the parameters of the protection,
i.e., y', 9" pairs. We use a multilayer perceptron (MLP)
model with two hidden layers (5 x K and 3 x K neurons),
and K input and output values. The model is trained
on 16,670 real output pairs from the base model M and
the protected model P (y*,§" pairs) and optimizing over
the loss KL(P, M). We find that the MLP attack did not
increase the stolen model agreement, as shown in Table IV.

Attack using labels only (ArgmaxSample): As shown
in Sec IV-A, using argmax requires a larger budget than
attacks using the probabilities (=~ 64x queries compared
to Sample). But still, the attacker can take the top-1
class of the result which is usually correct. This approach
achieves much better replication of a defended model given
enough budget as shown in Table IV. Still, by forcing the
attacker to discard probability values, the attacker has
to use 4x as many queries in our evaluation on CIFAR-
10 dataset. That is, with probability values, the attacker
needs only 4800 queries to reach 0.7813 agreement, while he
needs 19200 queries to reach the same agreement without
probability values. Besides the agreement, we can see
lower cosine similarity and high KL-divergence, Fig 5, even
with 19200 queries, meaning that while top-1 decision is
quickly learned, the trait of the network including output
distributions takes more queries to replicate. This difference
can limit the generalization power, and it can be especially
important if the attacker further wants to use the model
for adversarial example generation [6]. Finally, note that
this is a degenerate attack that applies to any defense that
maintains top-1 accuracy.

V. CONCLUSION

Neural networks are becoming one of the key assets
of an enterprise, but they are vulnerable to stealing
attacks. We proposed a method that can be applied to
wide variety of neural network models, and evaluated
the protection performance with six datasets, four neural
network architectures, and diverse threat models and attack
parameters. Our approach either prevented the stealing
entirely or slowed down the stealing process up to 64x in
the worst case when the attacker knows the defense.

(1

(2]

B]

4

(5]

(6]

[7

(8]

9]

(10]

(1]

(12]

(13]

(14]

(15]

[16]
(17]
(18]

[19]

[20]

REFERENCES

E. K. Ringger, M. Carmen, R. Haertel, K. D. Seppi, D. Lonsdale,
P. McClanahan, J. L. Carroll, and N. Ellison, “Assessing the
costs of machine-assisted corpus annotation through a user study.”
in Proceedings of the 2008 International Conference on Language
Resources and Evaluation (LREC), 2008.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction apis,” in 25th
USENIX Security Symposium (USENIX Security 16), 2016.
Google. Cloud vision API. [Online]. Available: https://cloud.
google.com/vision/

Microsoft. Cognitive services pricing—computer vision API.
[Online]. Available: https://azure.microsoft.com/en-us/pricing/
details/cognitive-services/computer-vision/

IBM. Watson visual recognition. [Online]. Avail-
able: https://www.ibm.com/watson/services/visual-recognition/
pricing/index.html#pricing

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine
learning,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ser. ASTA CCS
’17. New York, NY, USA: ACM, 2017, pp. 506-519. [Online].
Available: http://doi.acm.org/10.1145/3052973.3053009

Y. Shi, Y. Sagduyu, and A. Grushin, “How to steal a machine
learning classifier with deep learning,” in 2017 IEEE Interna-
tional Symposium on Technologies for Homeland Security (HST),
April 2017, pp. 1-5.

B. Wang and N. Z. Gong, “Stealing hyperparameters in
machine learning,” in 2018 IEEE Symposium on Security and
Privacy (SP), vol. 00, 2018, pp. 629-645. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2018.00038

D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” in Computer vision and
pattern recognition (CVPR), 2012 IEEE conference on. IEEE,
2012, pp. 3642-3649.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiw preprint arXiv:1704.04861, 2017.

F. Chollet, “Xception: Deep learning with depthwise separa-
ble convolutions,” in Computer vision and pattern recognition
(CVPR), 2017 IEEE conference on, 2017, pp. 1251-1258.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A.
Riedmiller, “Striving for simplicity: The all convolutional
net,” CoRR, vol. abs/1412.6806, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6806

G. Hinton, N. Srivastava, and K. Swersky, “rmsprop: Di-
vide the gradient by a running average of its recent
magnitude,” http://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture__slides_ lec6.pdf, accessed: 2018-04-23.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,
and C. Potts, “Learning word vectors for sentiment analysis,”
in Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational
Linguistics, June 2011, pp. 142-150. [Online]. Available:
http://www.aclweb.org/anthology /P11-1015

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-MNIST:
a novel image dataset for benchmarking machine learning
algorithms.

A. Krizhevsky, “Learning multiple layers of features from tiny
images,” University of Toronto, Tech. Rep., 2009.

A. Coates, A. Ng, and H. Lee, “An analysis of single-layer
networks in unsupervised feature learning,” in Proceedings of
the fourteenth international conference on artificial intelligence
and statistics, 2011, pp. 215-223.

M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

49

(21]

(22]

23]

[24]

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on. IEEE, 2016, pp. 372-387.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770-778.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 2818-2826.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673-2681, 1997.

