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Abstract—Hardware Performance Counters (HPCs) have been
available in processors for more than a decade. These counters
can be used to monitor and measure events that occur at the CPU
level. Modern processors provide hundreds of hardware events
that can be monitored, and with each new processor architecture
more are added. Yet, there has been little in the way of systematic
studies on how performance counters can best be utilized
to accurately monitor events in real-world settings. Especially
when it comes to the use of HPCs for security applications,
measurement imprecisions or incorrect assumptions regarding
the measured values can undermine the offered protection.

To shed light on this issue, we embarked on a year-long effort
to (i) study the best practices for obtaining accurate measurement
of events using performance counters, (ii) understand the chal-
lenges and pitfalls of using HPCs in various settings, and (iii)
explore ways to obtain consistent and accurate measurements
across different settings and architectures. Additionally, we then
empirically evaluated the way HPCs have been used throughout
a wide variety of papers. Not wanting to stop there, we explored
whether these widely used techniques are in fact obtaining
performance counter data correctly. As part of that assessment,
we (iv) extended the seminal work of Weaver and McKee from
almost 10 years ago on non-determinism in HPCs, and applied
our findings to 56 papers across various application domains.

In that follow-up study, we found the acceptance of HPCs
in security applications is in stark contrast to other application
areas — especially in the last five years. Given that, we studied
an additional representative set of 41 works from the security
literature that rely on HPCs, to better elucidate how the intri-
cacies we discovered can impact the soundness and correctness
of their approaches and conclusions. Toward that goal, we (i)
empirically evaluated how failure to accommodate for various
subtleties in the use of HPCs can undermine the effectiveness of
security applications, specifically in the case of exploit prevention
and malware detection. Lastly, we showed how (ii) an adversary
can manipulate HPCs to bypass certain security defenses.

Index Terms—Hardware Performance Counters; Malware De-
tection; Exploit Defense; Non-determinism;

I. INTRODUCTION

Modern processors (such as Intel, AMD, ARM) support

a variety of hardware performance counters for monitoring

and measuring events during process execution related to

instructions (e.g., instruction retired, cycles), memory accesses

(e.g., cache hits or misses, main memory hits or misses), and

the execution behavior on the CPU pipeline, among others. In

Intel processors, the functional unit that facilitates the use of

HPCs is called the Performance Monitoring Unit (PMU).

The hardware events supported by performance counters

can be classified as either architectural or non-architectural

events (the latter are also known as micro-architectural events).

Architectural events comprise events that remain consistent

across different processor architectures, e.g., instructions,

branches, cycles. Non-architectural events consist of events

that are specific to the micro-architecture of a given processor,

e.g., cache accesses, branch prediction, and TLB accesses.

Unlike architectural events, non-architectural events vary among

processor architectures and may also change with processor

enhancements. Table I presents a list of commonly used

architectural and non-architectural events in Intel processors.

A more comprehensive list of events is provided by Intel [1].

Although performance counters were initially introduced

for debugging purpose, they have been used in a myriad of

applications, such as dynamic software profiling [2], CPU

power modeling [3], vulnerability research and malware

defenses [4][5][6]. Additionally, several profiling tools (e.g.,
PAPI [7], perf event [8], VTune [9]) have been designed using

performance counters for different environment settings. These

tools allow for performance counter data to be obtained using

several methods, but that flexibility comes at a price: these

techniques can yield different counter values for the same

application. Consequently, it is imperative that performance

counter implementations, and proposals that rely upon them,

follow certain principals in order to obtain trustworthy values.

To that end, we studied a number of tools, techniques and

papers to understand how issues related to non-determinism

and overcounting in HPCs are commonly dealt with. Our

painstaking analyses led to several intriguing revelations. First,

we found mixed opinions on using HPCs: more than 45% of the

papers in application areas that include performance analysis

and optimizations, high performance computing and OS support

do not recommend using HPCs. The main stated reasons for

dismissing HPCs are the lack of determinism in performance

counter values [10–23] and lack of portability of HPC events

(e.g., some events may be present in one architecture but not

in another [24–27]). These factors limit the applicability of

performance counters in different application domains.

Yet, we found that the use of HPCs for security purposes is

in stark contrast to other areas, as evidenced by the increasing

number of techniques that rely on HPC measurements for

offensive and defensive research. Only 10% of these papers

acknowledged the non-determinism issues in HPCs. None of

them attempt to address the measurement error, and only a

few of the papers [28–31] explicitly argue why their approach

can tolerate non-determinism and overcounting effects.

As we show later, while non-determinism may not have dire

consequences for certain applications (e.g., power estimation

or high performance computing), it can have significant impact

on approaches whose security rests on having accurate and
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consistent HPC measurements. For example, malware and

exploit defenses [5, 6, 32] are susceptible to non-determinism

effects and contamination of events. This is mainly because in

security applications, the attack models rely on small variations

in performance counter data to differentiate suspicious from

benign behaviors [6, 32]. Even a minor variation of 1-5% in

counter values [28], can lead to poor performance of those

models. Therefore, it is particularly important that in security

settings, these challenges are addressed.

In bringing these challenges and pitfalls to the forefront, we

make several contributions, including:

• Summarizing proper techniques for instantiating and using

hardware performance counters.

• Studying nearly 100 papers to synthesize how HPCs have

been used and adopted in different application domains.

• Extending the seminal work of Weaver & McKee [33] in

order to better examine what problems persist in modern

processors 10 years after the original study.

• Contrasting HPC-based monitoring techniques and pre-

senting ways to improve them.

• Empirically demonstrating how failure to cover key aspects

in the collection of HPC events can undermine the

correctness of approaches that rely on accurate HPC

measurements for security purposes.

• Demonstrating how an adversary can manipulate HPCs

to bypass certain security defenses.

• A set of recommendations regarding the use of HPCs.

II. BACKGROUND AND CHALLENGES

For pedagogical purposes, we present a primer on hardware

performance counters and then discuss the implementation

challenges that are involved in accurately monitoring events.

To obtain performance counter information from the hard-

ware, the counters must first be configured according to the

events of interest. Afterwards, at run time, the counters can be

read using two techniques, namely polling or sampling. We

discuss each step in turn.

1) Configuring the counters: Performance counters must

be configured in kernel mode, but they can be read in user

mode. Moreover, although hundreds of events are available

for monitoring, only a limited number of counters can be

used simultaneously. Therefore, one must carefully pick and

configure which events to monitor using the available counters.

The number of available counters varies between processor

architectures, e.g., modern Intel CPUs support three fixed

and four programmable counters per core [1]. Fixed counters

monitor fixed events such as instruction retired, logical cycles,

and reference cycles, while programmable counters can be

configured to monitor architectural and non-architectural events.

The configuration of performance counters is performed by

writing into model specific registers (MSRs).

2) Reading Counter Values: Performance counters can be

read by either sampling or polling.

• Polling: The counters can be read at any instant. Counters

are read using the MSRs. For that purpose, Intel uses

specific instructions (rdmsr, wrmsr) to read from and

write to MSRs, respectively. Reading counters from user

space can be done using the rdpmc instruction. Fig. 1

presents an example of how polling can be used to measure

a user space process.

• Event-based sampling: HPCs also support sampling of

various metrics based on the occurrence of events. This

feature is enabled in most CPUs through a specific

interrupt, called Performance Monitoring Interrupt (PMI),
which can be generated after the occurrence of a certain

number of events. For instance, one can configure HPCs

with a certain threshold, which will result in the generation

of a PMI once a counter exceeds that threshold. Fig. 2

shows how an event is configured with a specific threshold,

n, for the number of instructions retired that should

generate a PMI. At each PMI (i.e., after every n retired

instructions), the numbers of cycles and arithmetic, call,

direct call, and return instructions are read.

A. Challenges and Pitfalls

Unfortunately, the seemingly simple nature of using HPCs for

performance measurements becomes complicated due to several

sources of contamination, which may lead to discrepancies in

the actual measurement of events1. Reasons that can lead to

inaccurate measurement include:

• External sources: The runtime environment may vary

across runs. For example, OS activity, scheduling of

programs in multitasking environments, memory layout

and pressure, and multi-processor interactions may change

between different runs. Similarly, micro-architectural state

changes may cause discrepancies in the events’ count.

• Non-determinism: Weaver et al. [34] provide an overview

of the impact of non-deterministic events (e.g., hardware

interrupts like periodic timers) in HPC settings. Many

sources of non-determinism can be hard to predict and

mostly depend on OS behavior and the other applications

(besides the measured one) running on the system.

• Overcounting: Performance counters may overcount cer-

tain events on some processors. For instance, on Pen-

tium D processors, the instruction retired event may be

overcounted on several occasions, most notably, during

x87/SSE exceptions, lazy floating point handling by OS,

and execution of certain instructions such as fldcw,

fldenv, and emms [34].

• Variations in tool implementations: Many tools have

been developed to help obtaining performance counter

measurements. Oftentimes, these tools yield different

results even in a strictly controlled environment for the

same application. The variation of measurements may

result from the techniques involved in acquiring them,

e.g., the point at which they start the counters, the reading

technique (polling or sampling), the measurement level

(thread, process, core, multiple cores), and the noise-

filtering approach used.

1 Although this paper is mainly focussed on the Intel x86 architecture,
non-determinism due to HPCs has also been observed on AMD x86 processors
[34], and thus our findings may be relevant for those as well.
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TABLE I: Hardware Events

Architectural Events Description Non-architectural Events Description

1. Ins Instruction retired 9. Uops Retired All micro-operations that retired
2. Clk Unhalted core cycles 10. Mem Load Uops Retired Retired load uops
3. Br Branch instructions 11. Mem Store Uops Retired Retired store uops
4. Arith Ins Arithmetic instructions 12. Br Miss Pred Retired Mispredicted branches that retired
5. Call Near call instructions 13. Ret Miss Mispredicted return instructions
6. Call D Direct near call instructions 14. Call D Miss Mispredicted direct call instructions
7. Call ID Indirect near call instructions 15. Br Far Far branches retired
8. Ret Near return instructions 16. Br Inst Exec Branch instructions executed

17. ITLB Miss Misses in ITLB
18. DTLB Store Miss Store uops with DTLB miss
19. DTLB Load Miss Load uops with DTLB miss
20. LLC Miss Longest latency cache miss

configure_HPCs ( )

read_HPCs ( )

Configure_HPC_counters
- Monitor only user space events
- Initialize fixed Counters: 
 Ins, Clk
- Initialize programmable counters:
 Arith, Call, Call_D, Ret

Read_HPCs ( )
 - Ins, Clk, Arith, Call, Call_D, Ret

User space Kernel space

HPC_Module

3

1

//integer.c
#include <stdio.h>
int main( )
{
 __asm{int 0x2e};   //Probe point 1
  int number;
  printf("Enter an integer: ");
  scanf("%d", &number);
  //Displays the entered integer
  printf("You entered: %d", number);
 __asm{int 0x2e};   //Probe point 2
  return 0; 
}

2 Execute_program

Fig. 1: Polling: First, the counters are configured in kernel
space with the events of interest. Later, they can be read
either in user or kernel space.

configure_HPCs ( ) Configure_HPC_counters
- Monitor only user space events
- Initialize fixed Counters: 
 Ins, Clk
- Initialize programmable counters:
 Arith, Call, Call_D, Ret
- set threshold for PMI on Ins
 n = 512,000

User space Kernel space

HPC_Module
1

PMI_Handler
- Save HPCs 
- Reset threshold on Ins

2 Execute_program

//integer.c
#include <stdio.h>
int main( )
{
  int number;
  printf("Enter an integer: ");
  scanf("%d", &number);
  //Displays the entered integer
  printf("You entered: %d", number);
  return 0; 
}

3

PMI1

PMI2

PMI3

Fig. 2: Event-based Sampling: PMI is configured using instruc-
tion retired event in kernel space, with a threshold set at n. Once
instructions retired exceed n, a PMI is triggered; then all the
counters can be read in kernel space.

III. PROPER INSTANTIATION AND USAGE

Acquiring accurate measurements using performance coun-

ters requires careful consideration of operational aspects.

Context switch monitoring: Performance counters measure

system-wide events and are agnostic to which process is running

on the processor. Most processors support separation of kernel

and user space events, but per-process filtering of counter

values is not available. In order to profile the runtime behavior

of a process, performance counter values must be saved during

context switches to avoid any contamination due to events

from other processes. Monitoring context switches involves

patching the kernel, which is a non-trivial task, especially in

closed-source OSes.

Interrupt handling: Recall that performance counters are

typically used in conjunction with performance monitoring

interrupts (PMI). This feature is is not essential when reading

events in sampling mode; it can also profile events at a finer

granularity. PMIs can be handled in different ways, such as

by writing a callback routine, API hooking, or hooking the

PMI handler [35]. Note that proper PMI handling may be

challenging due to, for example, the lack of documentation or

inability to patch the operating system.

Process filtering upon PMI: Since the performance

monitoring unit operates at the hardware level, it is OS-process

agnostic. Therefore, when PMI is configured, the PMU can

generate hardware interrupts for all processes running on a

given processor core. Consequently, to accurately profile an

application, it is necessary to implement a technique for filtering

performance counter data relevant solely to the process of

interest. Otherwise, counter data will be contaminated by the

events of other processes.
Minimizing the impact of non-deterministic events:

As discussed in §II-A, performance counters suffer from

non-determinism and event overcounting. Thus, for several

applications, it is important to consider only deterministic

events. A deterministic event is defined as an event whose

value does not vary between identical runs and matches the

expected values that would be obtained through alternative

means, e.g., through code inspection. Unfortunately, this is a

daunting challenge because some events may be deterministic

in some processor architectures, but not in others [34]. We

return to this later in §VI.

IV. CONTEMPORARY APPROACHES AND TOOLS

Based on our study, we have identified two main strategies in

the literature for recording HPC measurements at runtime. The

first is via source code instrumentation. In this approach, the

source code is instrumented with probing points before and after

the main code. The probing points instruct the kernel module

when to initialize and when to terminate the monitoring of the

performance counters. For example in Fig. 1, the sample code

is instrumented using the probe points __asm{int 0x2e}.

The major challenge of this approach is that it requires source

code modification, which may not always be possible, especially

for closed-source software.

22



Alternatively, a binary-compatible approach can be taken.

One solution is to create the target process in suspended mode,

and then enable the performance counters. Once the process

terminates, performance counter values for the process are

extracted. The drawback of this method is that monitoring

starts immediately after the process is created, which is much

earlier than the actual program begins. This is because a process

is a container for a set of resources used and follows several

steps before the actual execution of the program begins [36].

An alternative is to monitor a running process by attaching to

and detaching from it after a particular condition is met. This

approach is followed by popular monitoring tools, e.g., Perf,

and Oprofile [37]. In this technique, a new thread is created in

suspended mode in the address space of the existing process,

and then the performance counters are initialized. The counters

are terminated once the process halts or after a predefined state

is reached. One can use this method to monitor events at a

finer granularity, e.g., to monitor a function.

V. DOS AND DON’TS

It should be clear by now that obtaining accurate and reliable

performance counter values can be tricky, if not frustrating.

To lessen the burden on programmers, a number of utilities

and tools have been developed to obtain performance counter

information on different platforms. To study how these tools

and techniques have been used, we selected a set of papers

that mentioned the issues of non-determinism in performance

counters that were initially highlighted by Weaver & McKee

[33]. The papers were normalized based on the citation count

and the ranking of the venue they appeared in, after which we

choose the most cited of these papers in the past 10 years. The

result was a set of 56 papers, listed in Table II.

Performance counter tools facilitate the measurement of

events at three levels of granularity:

Coarse Measurement: logs the aggregate occurrence of

the configured events for the entire execution. The most popular

tool that supports this functionality is Perf event, which uses

a polling mechanism to read the counters.

Snippet Measurement: analyzes events related to a section

of the program instead of the entire program. To support this

capability, a high-level interface is provided to obtain the

performance counter values. PAPI is one such cross-platform

tool that employs source code instrumentation to measure

events for a section of the program [7]. A polling mechanism

is used to read the counters.

Fine-grained Measurement: samples events using an

interrupt-based mechanism. HPCs are preconfigured to generate

an interrupt every n events. Perf event and Oprofile support

monitoring of an application based on the number of occur-

rences of specific events. The use of sampling can allow for

the most fine-grained measurement, e.g., when n = 1.

Table II lists a variety of works that rely on common

tools (e.g., Perf event, Pfmon, perfctr, PAPI, Intel VTune)

or custom implementations for profiling HPC information. As

described earlier, a potpourri of mechanisms are used, including

polling [69–71, 75–77] or event-based sampling [4–6, 28, 32,

68, 78, 79] to measure events at different granularities. Some

proposals [4–6, 28, 32, 78, 79] apply per-process filtering in

order to sample only the events of a specific process. Tools

such as Perf event and Intel VTune support that feature.

A. Trends and Concerns

Given the major issues of non-determinism and overcounting

in HPCs, we decided to look more closely at the 56 papers

to assess i) whether the authors acknowledged the impact

of these issues in their analysis, ii) whether they addressed

the challenges that arise due to non-determinism, and iii) the

extent to which measurement error (due to non-determinism)

was explicitly accounted for in their empirical analysis.

As noted in §I, we found mixed opinions on using HPC in

empirical analyses. The lack of determinism in performance

counter values [10–23] and the lack of portability of HPC

events [7, 25, 26, 99] were two of the main reasons for not

using HPCs in certain domains. Despite the acknowledgment

of these issues by works in all application domains, there has

been virtually no attempt towards resolving the measurement

errors resulting from them. Alas, a few approaches [70–72]

even go as far as arguing that their techniques are not affected,

claiming that measurement variations are insignificant.

That dismissal is juxtaposed by two extreme views on HPCs.

On one hand, Lundberg et al. [61] noted that non-determinism is

a commonly observed behavior in multiple CPU environments

because of OS operations and multiple applications running

on the system. Two different runs of the same program with

exactly same inputs may not be identical. Because of this fact,

the performance counter may record different event counts for

two different runs of the same program, and thus should not

be relied upon. On the other extreme, relying entirely on the

non-deterministic nature of performance counters, Suciu et al.
[73] leverage that “feature” to generate random numbers.

After noticing the rise of HPC usage in security for offensive

(e.g., [109]) and defensive techniques (e.g., [5, 6, 32]), we

decided to extend our analysis to cover 41 security papers

(shown in Table III) that used HPCs and appeared in the

past 10 years2. In Table III, we display whether HPCs were

recommended or not. In order to make that determination,

we used the following criteria for ‘yes’: the authors either

explicitly advocate using HPCs (irrespective of whether they

acknowledge issues related to non-determinism) or HPCs are

used for the main application domain of their approach, even

if the paper disregards HPCs for a specific purpose. For

instance, Gruss et al. [100] showed that HPCs cannot be

used for detecting “flush+flush” attacks, but explicitly state

that HPCs can be used for their main application domain,

such as for detecting cache attacks, rowhammer attacks, and

also “flush+reload” attacks. Only 4 (10%) out of these papers

acknowledged the non-determinism issues associated with using

HPCs. While all of them recommend using HPCs for security

purposes, none attempt to address the measurement error due

to non-determinism, and only a few [28–31] argue why their

approaches are not affected (e.g., because they observed only

minor variations in the measurement of events). While it may

be true that some approaches (e.g., [31]) may not be adversely

2We normalized the papers based on the citation count and the ranking of
the venue they appeared in.
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TABLE II: Hardware Performance Counters Usage in Selected Papers

Application Authors Non-determinism
acknowledged

Non-determinism
challenges
addressed

Measurement
error addressed

Recommend
using HPCs

Auto-tuning/Profiling

Zaparanuks et al. [38] � � � �
Weaver [8] � � � �
Weaver et al. [34] � � � �
Weaver & Dongarra [39] � � � �
Rohou [40] � � � �
Nowak et al. [41] � � � �
Lim et al. [42] � � � �
Moseley et al. [43] � � � �

Debugging O’Callahan et al. [44] � � � �

Performance Analysis
and Optimization

Chen et al. [45] � � � �
Chen et al. [46] � � � �
Mushtaq et al. [27] � � � �
Tuduce et al. [47] � � � �
Segulja & Abdelrahman [48] � � � �
Wang et al. [49] � � � �
Bird [10] � � � �
Michalska et al. [11] � � � �
Flater & Guthrie [12] � � � �
Röhl et al. [50] � � � �
Hoske [51] � � � �
Born de Oliveira [52] � � � �
Lim et al. [13] � � � �
Michalska et al. [14] � � � �
Akiyama & Hirofuchi [53] � � � �
Chang et al. [15] � � � �
Doyle et al. [16] � � � �
Stevens et al. [54] � � � �
Melhus & Jensen [55] � � � �
Wicht et al. [56] � �� �� �

High Performance
Computing

Zhou et al. [17] � � � �
Bock & Challacombe [57] � � � �
Mushtaq et al. [18] � � � �
Hussein et al. [58] � �� �� �
Merrifield et al. [59] � � � �
Teabe et al. [60] � × × ×
Pruitt & Freudenthal [19] � �� �� �
Lundberg [61] � × × ×
Molnár & Végh [20] � � � �
Ozdal et al. [62] � � � �
Peraza et al. [63] � � � �
Torres & Liu [64] � × × �
Al-hayanni et al. [65] � × × �
Torres & Liu [66] � × × �

OS Support
Bergan et al. [67] � � � �
Lu et al. [21] � � � �
Stefan et al. [68] � � � �
Lu et al. [22] � � � �

Power Analysis

Singh et al. [69] � × × �
Davis et al. [25] � � � �
Davis et al. [26] � � � �
Goel [70] � � � �
Singh [71] � � � �
Hussein et al. [24] � � � �
Da Costa et al. [72] � � � �

Random No. Generation Suciu et al. [73] � � � �
Marton et al. [74] � � � �

� Yes � No × Not Applicable based on column 3 �� Respondent’s answer inconsistent with description provided in the paper

affected by minor variations in measurements, an adversary

can deliberately skew measurements to have higher variations,

to defeat security defense mechanisms. We show precisely that

later on in §VIII.

As noted earlier, for an accurate profiling of a given

application, its counter data must not be contaminated by

events from other processes. Since security applications will

have significant impact even due to minor variations in the

measurement of events (as discussed in §I), we mainly focused

our attention on security approaches. Our painstaking analysis

of these works revealed several common mistakes. For the

sake of brevity, Table IV highlights some observations for

the security research area. We selected these security papers

because they represent the state of art techniques and their

methodologies are clearly stated.

In short, we found evidence of:

• No per-process filtering: As discussed in §IV, performance

counters measure events across the same CPU core. Any

implementation that does not apply per-process filtering

will capture events from other processes (e.g., [77]).

• PMI-based filtering only: Many approaches [5, 6, 79]

filter performance counter data relevant to a process while
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TABLE III: Analysis of security papers using HPCs

Application Authors Non-determinism
acknowledged

Non-determinism
challenges
addressed

Measurement error
addressed

Recommend using
HPCs

Exploit

Xia et al. [80] � × × �
Yuan et al. [81] � × × �
Aweke et al. [82] � × × �
Zhou et al. [77] � × × �
Pfaff et al. [32] � × × �
Torres & Liu [83] � × × �
Wang & Backer [78] � × × �
Das et al. [79] ∗ � × × �
Herath & Fogh [84] � × × �

Malware

Demme et al. [5] † � × × �
Tang et al. [6] ∗ � × × �
Wang & Karri [4] � × × �
Bahador et al. [85] � �� �� �
Wang & Karri [86] � × × �
Kazdagli et al. [87] † � �� �� �
Wang et al. [88] � × × �
Garcia-Serrano [89] � × × �
Zhang et al. [90] � × × �
Singh et al. [76] ∗ � × × �
Jyothi et al. [91] � × × �
Patel et al. [92] � × × �
Peng et al. [93] ∗ � × × �

Side-channel Attack

Martin et al. [94] � × × �
Uhsadel et al. [95] � × × �
Bhattacharya & Mukhopad-
hyay [96]

� × × �
Chiappetta et al. [97] � × × �
Maurice et al. [98] � × × �
Hunger et al. [99] � × × �
Gruss et al. [100] � × × �
Payer [101] � × × �
Zhang et al. [102] � × × �
Nomani & Szefer [30] � � � �
Gulmezoglu et al. [103] � �� �� �
Irazoqui [29] � � � �
Allaf et al. [104] � × × �

Firmware Verification
Wang et al. [105] � × × �
Wang et al. [106] � × × �

Integrity Checking
Malone et al. [28] � � � �
Bruska et al. [107] � × × �

Virtual Machine Introspection Vogl & Eckert [108] � × × �
Vulnerability Analysis Copos & Murthy [31] � � �� �
�Yes � No × Not Applicable based on column 3 �� Respondent’s answer inconsistent with description provided in the paper ∗ Windows † Android

Others: Linux

TABLE IV: Subset of Papers in the Security Domain

Authors Per-process filtering PMI-based filtering

Malone et al. [28] � �
Wang & Karri [4] � �
Tang et al. [6] � �
Demme et al. [5] � ��
Singh et al. [76] � �
Pfaff et al. [32] � �
Zhou et al. [77] � �
Wang & Backer [78] � �
Das et al. [79] � �
� Yes � No �� Respondent’s answer inconsistent with description
provided in the paper. Notes: [77] uses polling but with no per-
process filtering of HPCs. [5, 6, 79] filter process at PMI but do not
monitor context switches. [6, 79] explicitly mention the issue of data
contamination due to context switches.

handling PMIs. However, they do not save and restore the

counter data during context switches, thereby suffering

from contamination of counter data from other processes

(§IV). A common solution is to obtain performance

counter data by applying process filtering only at PMI,

but doing so still does not monitor context switching. Not

preserving the performance counter information at context

switches will lead to errors in the HPC measurements. In

§VII, we evaluate the extent to which counter values using

this approach differ from the more accurate measurement

approach that takes context switches into account.

• Lack of compensation for non-determinism and overcount-
ing: As explained in §V-A (also shown in Table III), the

non-determinism and overcounting issues are significant

oversights. We further highlight this problem in §VI by

performing a deeper analysis of the non-determinism and

overcounting issues that can undermine many security

approaches that rely on HPCs.

It is prudent to note that we supplemented our understanding

of these works with responses we received to questions listed

in Appendix A. We sent our questionnaire to the lead authors

of papers listed in Table II and III. Even after repeated attempts,

the response rate was only 28%. Given the recent adoption of

HPCs in security applications, it is not surprising that the

majority of the responses came from the security domain

(>21%). One factor for the lower number of responses from

other areas may be because those works are older.
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VI. NON-DETERMINISM AND HPCS — A RE-EXAMINATION

10 YEARS LATER

In the newer generations of processors, hardware perfor-

mance counters are expected to have matured and provide

error-free measurements. Given our observations in §V, we

decided to revisit the HPC accuracy experiments originally

performed by Weaver & McKee [33] to investigate what of the

authors’ findings still hold in modern processors, and whether

new issues have arisen.

A. Experimental Setup

Our experimental platform was based on Linux (Ubuntu-

16.04, x64) running on Intel processors. The experiments were

conducted across different processor architectures, including

Sandy Bridge, Haswell, and Skylake, all configured to use

only a single core. We use only one core to ensure that the

performance counter information obtained is from the same

core that we configured, and to avoid any noise (events) from

other cores. We used the Perf tool v4.4.90 to obtain performance

counter measurements. Perf is incorporated in the Linux kernel

and has an accompanying user-space utility.

To validate the measurements, we also implemented two

additional tools for comparison. The first is based on Intel’s

Pin [110], and the second is a custom instruction debugger

denoted INS-Dbg. Pin is a popular dynamic binary instru-

mentation tool commonly used for profiling the dynamic

behavior of programs. Our Pin tool uses instruction-level

instrumentation to step at each instruction and extract the

necessary information about the program execution. In our

experiments, we intercept each instruction to measure the

number of instructions, branches, and memory operations (store

and load instructions). INS-Dbg traps on each instruction

executed by the program. The trap flag of the processor is set

to single-step on each instruction.

B. Benchmarks

Our set of benchmark programs consists of the original 21

handcrafted assembly programs provided by Weaver & McKee

[33]. A brief description of each program is given below:

• x86 64: executes 1 million instructions.

• brs predictable: executes 1 million branches.

• brs random: executes 2 million branches.

• rep stosb: uses the string instruction with the rep prefix

to repetitively execute 1 million store operations.

• floating point: reports the instruction retired count when

there is an execution of a floating point operation.

• ins type: A set of benchmarks that execute specific types

of instructions, as indicated by the benchmark’s name,

e.g., arithmetic, logic, string, SSE, system call.

C. Findings

Our first objective was to investigate the non-determinism

and overcounting issues of performance counters across differ-

ent platforms. Our experiments consisted of measurements of

the most commonly used events, i.e., instructions and branches

retired. Since our benchmark programs consist of a small

amount of handcrafted assembly code, we were able to easily

inspect them and calculate the expected measurement value

in each case. To minimize the reported error, we executed

these programs 100 times and computed the mean value of the

events for each tool. Overall, we found that:

• In all three processor architectures, the reported number

of events is the same, for both instruction and branch

retired events, across all the tools.

• Each benchmark program has a minimum of one overcount

for both instruction and branch retired events using

performance counters, while both Pin and INS-Dbg yield

the exact number of instructions and branches retired.

• Unlike the findings by Weaver & McKee [33], we do not

see an overcount of instructions retired due to floating

point initialization. Instead, there is an overcount in

instruction and branch retired events, which is seen

regardless of the presence of floating point operations.

Therefore, this overcount cannot be accounted for by

floating point initialization, so that issue may have been

resolved in modern processors.

• The rep stosb instruction shows a large undercount of

instructions retired. Although the store operation stosb
was executed one million times, the performance counter

shows a count of only 253 instructions. More importantly,

despite the absence of branch instructions in the code, the

HPC tool reports 246 branch instructions. While Weaver

& McKee [33] noted the inconsistency of performance

counters in handling the rep instruction prefix, they did

not investigate the root cause of the problem. We return

to this issue later in §VI-D.

• The ins string program, which solely executes string

instructions, exhibits an undercount of instructions and an

overcount of branch retired events, similar to rep stosb.

Similarly, ins branch and ins systemcall report a signifi-

cant overcount of branch instructions retired.

Our findings related to instructions retired undercount and

branches retired overcount are a cause for concern, as other

events (besides instruction and branch retired events) may

exhibit similar inconsistencies. To better understand why these

discrepancies occur, we further investigated the cases involving

string instructions to uncover their root cause.

D. Analysis of String Instruction Benchmarks

To further investigate the behavior of HPCs with string-

related instructions, we wrote 20 variants of the original

rep stosb program. These benchmarks comprise all 10 string op-

erations, which include one-byte instructions (lodsb, stosb,

movsb, scasb, cmpsb) and two-byte instructions (lodsw,

stosw, movsw, scasw, cmpsw). These instructions perform

load, store, copy, scan, and comparison operations. Each of

these variants executes one string operation 1 million times.

We also investigated the implementation of equivalent repeated

string operations using the loop instruction, as an alternative to

the rep prefix. Table V presents the results of this experiment

for instruction count and branch retired events. We can make

the following observations:

1) There is an undercount of instructions and an overcount

of branch retired events when the rep prefix is used.
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TABLE V: An analysis of rep and loop instructions for instruction and branch retired

Expected values HPC Pin INS-Dbg

Benchmark Ins Br Ins Br Ins Br Ins Br

rep lodsb 1000007 0 254 247 1000007 0 1000007 0
rep stosb 1000007 0 253 246 1000007 0 1000007 0
rep scasb 1000007 0 254 247 1000007 0 1000007 0
rep movsb 1000008 0 499 491 1000008 0 1000008 0
rep cmpsb 1000008 0 498 490 1000008 0 1000008 0
rep lodsw 1000007 0 497 490 1000007 0 1000007 0
rep stosw 1000007 0 497 490 1000007 0 1000007 0
rep scasw 1000007 0 497 490 1000007 0 1000007 0
rep movsw 1000008 0 987 979 1000008 0 1000008 0
rep cmpsw 1000008 0 986 978 1000008 0 1000008 0

loop lodsb 2000007 1000000 2000253 1000247 2000007 1000000 2000007 1000000
loop stosb 2000007 1000000 2000252 1000246 2000007 1000000 2000007 1000000
loop scasb 2000007 1000000 2000253 1000247 2000007 1000000 2000007 1000000
loop movsb 2000008 1000000 2000501 1000494 2000008 1000000 2000008 1000000
loop cmpsb 2000008 1000000 2000500 1000493 2000008 1000000 2000008 1000000
loop lodsw 2000007 1000000 2000496 2000490 2000007 1000000 2000007 1000000
loop stosw 2000007 1000000 2000497 1000491 2000007 1000000 2000007 1000000
loop scasw 2000007 1000000 2000496 1000490 2000007 1000000 2000007 1000000
loop movsw 2000008 1000000 2000988 1000981 2000008 1000000 2000008 1000000
loop cmpsw 2000008 1000000 2000985 1000978 2000008 1000000 2000008 1000000

2) Using the rep prefix, string instructions that involve

two memory accesses (e.g., movsb) show nearly twice

the number of instructions and branches than string

instructions with a single memory access (e.g., lodsb).

Similarly, word (2-byte) instructions (e.g., movsw) have

roughly twice the number of events than their counterpart

byte instructions (e.g., movsb).

3) When the loop instruction is used, HPCs, Pin, and

INS-Dbg have small measurement variations, which

seem to follow a certain pattern. For example, the

loop lodsb benchmark shows an overcount of 246 in-

structions and 247 branches, compared to the expected

values. Those inconsistencies follow the same pattern that

was observed for the rep cases. Also, the overcounts

double in the case of string instructions with two memory

accesses. Upon further investigation, we noticed that the

amount of overcount in instruction and branch events is

equal to the number of page faults, which explains the

correlation with the number of memory accesses. We

present our detailed analysis to verify the effect of page

faults on event count in Appendix B.

4) To dig deeper, we also investigated the memory load

and store instructions for rep and loop cases. The

measurement for the store instruction event is unaffected

by page faults in both the rep and loop cases, but the

load instruction event is directly affected by page faults

(discussed later in Appendix B).

E. Summary and Impact of Findings

Overall, our analysis sheds light on challenges and pitfalls

stemming from the use of HPCs that were not reported before.

Our findings show that almost 10 years after the initial study

by Weaver & McKee [33], numerous issues related to non-

determinism with HPC measurements still persist in modern

processors. We find that the most commonly used events

(including instruction, branch, and memory load and store

events) are affected by non-determinism and overcounting; the

root cause of the measurement errors in instruction, branch and

load events can be minimized; but the rep string instruction

shows how the performance counter measurements significantly

differ from other non-HPC approaches. We note that our study

is not exhaustive, that there may be more cases of inconsistency

not covered here, and that other hardware events may be

affected, further exacerbating the measurement errors.

Taken as a whole, our investigation indicates that the issues

of non-determinism and overcounting could severely impact the

correctness of any techniques that solely rely on performance

counter measurements. As a matter of fact, for critical use-

cases such as security-related applications, these issues can

have catastrophic consequences. For instance, most of the HPC-

based security defenses we studied [4–6, 32, 77–79, 84, 88,

93, 101, 106], at their core, depend on threshold values of

a particular event. An adversary can induce page faults to

significantly affect the accuracy of the measured events, as

we discuss further in Appendix B. Using such techniques, an

adversary can manipulate the count of events to undermine a

HPC-based defense. Under such an adversarial model, most of

the security defenses listed in Table III can be undermined. We

present a case study on the actual implementation of one such

evasive technique in §VIII. Before doing so, we first provide

guidance to researchers on how to properly use HPCs, with

a key focus on illustrating how the recording methodology

used in a set of representative works can drastically impact the

ability to build robust models.

VII. CASE STUDY I: ON WEAK SECURITY FOUNDATIONS

Two of the most prominent areas of security research that

have used performance counters include exploit protection [32,

77–79, 84, 101] and malware detection [4–6, 88, 93, 106]

(see Table III for others). Accordingly, for our case study, we

selected representative approaches [5, 6, 78] from both areas.

In §V we highlighted three common mistakes that are

encountered in security applications involving HPCs. The first

two are related to the incorrect retrieval of HPC information

for a given process. These mistakes arise due to improper

handling of performance counter information during context

switches. While a PMI-based filtering approach is better than
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no per-process filtering at all, it still does not preserve the

event counts during context switches.

For our case study, we implemented a custom module by

augmenting the PMI approach with context switch monitoring.

We refer to our implementation as CS-PMI. An overview of

the CS-PMI implementation is given in Alg. 1 in Appendix C.

In addition to sampling HPCs at performance monitoring

interrupts, our approach monitors context switches in order to

save and restore the counter values of the process of interest.

A. Using HPCs for ROP detection

For applications such as Return-oriented programming

(ROP) attack detection, a PMI-only approach would not have

significant impact on accuracy due to the relatively short

instruction sequences that make up a ROP payload. For instance,

the ROP chain used by the Metasploit exploit for CVE-2012-
4792 consists of only 27 instructions. The odds of encountering

context switches during such a small code segment is very

low. Hence, it is feasible that by setting a low PMI one could

attempt to detect ROP execution, as was done by Wang &

Backer [78]. To substantiate this conjecture, we performed a

case study on a ROP defense model using the PMI approach.

Many ROP defenses [32, 77–79] use heuristics which

leverage branch misprediction events that occur at return

instructions. A ROP chain consists of several gadgets (i.e.,

instruction sequences) that end in return instructions. These

return instructions do not have their corresponding call instruc-

tions, and therefore the CPU encounters branch mispredictions

during their execution.

We evaluated the effectiveness of the CS-PMI and PMI

approaches for detecting a ROP chain using the recently

proposed model of Wang & Backer [78]. We performed the

experiment on a bare-metal environment running Windows 7

(32-bit) on top of a Sandy Bridge processor (Intel i7-2600).

To replicate a realistic real-world environment, we ensured

that CPU utilization is above 60% 3. We used the Metasploit

exploits for CVE-2012-4792, CVE-2013-1347 and CVE-2012-

1535, which are commonly used to test exploit protections [6,

32, 77–79]. They represent typical examples of ROP attacks,

which in most cases have a small footprint.

Similar to Tang et al. [6], we instrument the start and

end of the ROP chain using int3 instructions (0xCC) in

order to specifically model the ROP stage of an exploit. We

configured the performance counter to generate a PMI for

every 6 mispredicted return instructions as done by Wang &

Backer [78]. At each PMI, we monitor two additional events —

instruction retired and return instructions, using programmable

counters. A typical ROP chain in Metasploit consists of 12–

13 return instructions, generating the same number of return

mispredictions. Therefore, a ROP execution will likely have

2 PMIs (each of 6 return mispredictions corresponding to 6

gadgets), which will reflect the signature of a ROP attack.

To detect a ROP attack, we set a threshold using the

instruction retired event Wang & Backer [78]. The number of

instructions retired I = number of gadgets * average number of

3To ensure that CPU load is above 60% during the experiments, we executed
a few Chrome processes, running 4K and live videos on YouTube.

instructions in a gadget. For our samples, the average number

of instructions in a gadget is 3. Therefore, for a PMI, if number
of instructions retired <= 6*3, it is considered as a ROP attack.

For true positives, we measured how many of the PMIs between

the start and end of the ROP chain have the signature of a

ROP attack. For false positives, we measured the number of

PMIs that do not occur as a result of the execution of the ROP

chain, but still match the signature of a ROP attack.
Results: We ran each exploit 20 times and averaged the

results. The CS-PMI approach correctly raises an alert 79

times, whereas the PMI approach does so 77 times. Hence both

approaches have ample opportunities to detect the prescribed

signature for a ROP attack. On the other hand, the numbers of

false positives using the two approaches are 2019 and 2078,

respectively. We note that although the heuristics that are used

in these works are too poor to be used in practice, for the

study in this paper, it appears that a PMI-only approach is

not significantly worse than its CS-PMI counterpart. This is

primarily due to the fact that there are not many opportunities

for a context switch to occur during the small number of

instructions that are executed in the ROP chain.

B. Using HPCs for Malware Detection
In contrast to ROP prevention, the PMI approach directly

impacts the accuracy of malware classification techniques due

to the longer execution trace induced by malware. Yet, several

works [5, 6] have employed PMI-based filtering to model

malicious behavior. To highlight the pitfalls of using the PMI

approach in this setting, we performed a case study on malware

classification at a fine-grained level. Similarly to previous

works [5, 6], we use a machine learning (ML) approach for

the classification of malware and benign programs.
Experimental setup: We used a machine with a Sandy

Bridge processor (Intel i7-2600). Performance counter traces

were collected on VMware virtual machines (VMs) running

Windows 7 OS (32-bit), with each VM pinned to a separate

physical core. Performance counters were configured to monitor

events of the guest VM only (hypervisor events are excluded).

Empirically, we verified that there is no contamination of events

between the processor cores.
Dataset: We used 313 malware samples obtained from

Vxheaven [111]. These malware samples were first seen during

2006–2011, as reported by VirusTotal. We labelled the samples

into 137 malware families using the state of the art malware

labeling tool, AVClass [112]. Our benign dataset contains

real world applications, comprising Internet Explorer, Firefox,

VLC player, WMplayer and Adobe Reader. The Alexa top-20

websites were loaded on Internet Explorer and Firefox, 10

media files were played on VLC and WMplayer, and 10 PDF

files were opened using Adobe Reader.
Data collection: To compare the approaches in a real-world

setting, we ensured that the CPU utilization was above 60%

during the experiments. We profiled each malware sample in

a fresh VM to avoid any affect of other malware executions.

Each sample was allowed to run for one minute, during which

the HPC traces were collected.
In this case study, we choose the heuristics proposed by Tang

et al. [6] for malware classification, as they are representative
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TABLE VI: Performance evaluation of K-way classification: Decision Tree (J48)

TPR FPR Precision Recall F-Measure ROC Area

Class PMI Δ PMI Δ PMI Δ PMI Δ PMI Δ PMI Δ

poshkill 0.363 -0.015 0.050 -0.002 0.342 0.002 0.363 -0.015 0.351 -0.006 0.763 0.001
bonk 0.345 0.001 0.045 0.001 0.353 -0.001 0.345 0.001 0.349 0.000 0.772 -0.007

alcaul 0.358 -0.016 0.044 0.004 0.369 -0.030 0.358 -0.016 0.363 -0.022 0.765 -0.002
thorin 0.976 0.022 0.002 -0.002 0.970 0.024 0.976 0.022 0.973 0.023 0.988 0.011
toffus 0.720 0.213 0.023 -0.018 0.693 0.236 0.720 0.213 0.706 0.225 0.878 0.098
werly 0.955 0.009 0.003 -0.001 0.959 0.010 0.955 0.009 0.957 0.010 0.980 0.004
afgan 0.925 0.046 0.005 -0.003 0.929 0.044 0.925 0.046 0.927 0.045 0.964 0.023
smee 0.892 0.043 0.008 -0.004 0.884 0.056 0.892 0.043 0.888 0.050 0.948 0.023

bonding 0.727 0.221 0.019 -0.014 0.731 0.200 0.727 0.221 0.729 0.210 0.875 0.099
delf 0.624 0.325 0.028 -0.023 0.619 0.314 0.624 0.325 0.621 0.320 0.836 0.142

cisum 0.889 0.041 0.008 -0.002 0.894 0.029 0.889 0.041 0.891 0.035 0.948 0.019
tiraz 0.931 0.021 0.005 0.000 0.934 0.009 0.931 0.021 0.933 0.015 0.968 0.010
bube 0.819 0.079 0.012 -0.004 0.836 0.065 0.819 0.079 0.827 0.072 0.914 0.041

leniog 0.873 0.060 0.008 -0.004 0.890 0.057 0.873 0.060 0.881 0.059 0.943 0.030
IE 0.794 0.050 0.014 -0.005 0.806 0.068 0.794 0.050 0.800 0.059 0.906 0.023

Weighted Avg. 0.746 0.078 0.018 0.006 0.747 0.076 0.746 0.078 0.746 0.077 0.897 0.036

Δ = Difference between the approaches (i.e., CS-PMI - PMI)

of the state of the art. Accordingly, the PMI is set at 512, 000
instructions retired and 4 additional events are monitored using

programmable counters — store micro-operations, indirect

call instructions, mispredicted return instructions and return

instructions.4 Thus, each PMI consists of a tuple of five events.
Feature construction: To build a feature vector, we use

the temporal model proposed by Tang et al. [6]. We choose

temporal model over non-temporal because Tang et al. [6] show

that malicious behavior cannot be sufficiently represented by

performance counter events of one PMI. A feature vector

consists of N (= 4) consecutive tuples, where each tuple

contains 5 events collected at a PMI, totaling 20 features.
We selected the unique feature vectors in each family. Some

malware families may generate substantially lower numbers

of feature vectors than others. To avoid biasing [113] the

classification, we selected the top 14 malware families that

generated the highest number of feature vectors. To further

negate bias by an individual family, we used an equal number

of feature vectors, randomly selected from each of the 14

families. Similarly, in the case of benign applications, an equal

number of feature vectors was chosen randomly from each

application. The total feature vectors obtained from benign

applications and malware samples were balanced.
1) Classification Results: We use the Weka toolkit [114]

for ML classifier training and testing purposes. Similar to

other works [5, 6], we performed our evaluation using three

standard ML classifiers — Decision Tree, K-Nearest Neighbors

(KNN), and Support Vector Machine. Based on the standard

practices, we selected the J48, IBk, and SMO algorithms

corresponding to the aforementioned classifiers [115] (with the

default configuration parameters of Weka). It is possible that

by fine-tuning the advanced ML classifiers the results can be

improved, but nonetheless, we believe that the same difference

will still persist between the CS-PMI and PMI approaches.

According to widely held practices [116], training and testing

were performed using a 10-fold cross-validation model.
a) Binary classification: First, we perform a coarse-

grained binary classification, where feature vectors are divided

4The corresponding performance events in the Intel manual are
mem uops retired.all stores, br inst exec.taken indirct near call,
br misp exec.return near, br inst exec.all indirect near return.

into two classes, malware and benign. An equal number

of feature vectors are selected from the benign and malware

samples for both the CS-PMI and PMI approaches. Our results

show that the average classification accuracy (F-Measure) using

the three algorithms is 89% with the CS-PMI approach versus

87% with the PMI approach. However, the difference is far

greater under the more fined-grained K-way classification.

b) K-way classification: A K-way classification across

15 classes, including 14 malware families and one benign

application, Internet Explorer (IE), was performed. The results

for decision tree and KNN classifiers are shown in Table VI

and VIII (Appendix D). The results for the KNN classifier

is also given in Appendix D (e.g., Fig. 5), but we omit the

figures for the support vector machine classifier due to space

limitations. The difference between the two approaches is

also evident from the confusion matrices (i.e., Fig. 4 and 5

in Appendix D). The overall difference using a decision tree

classifier is roughly 8%, but for the individual classes, there is

a substantial improvement: toffus (23%), bonding (21%), delf
(32%), bube (7%), leniog (6%) and IE (6%). Similarly, with

a KNN classifier, we observe a notable improvement: toffus
(10%), bonding (36%), delf (24%), cisum (7%) and leniog (9%).
Support vector machine also shows similar improvement for

the individual classes: smee (17%), bonding (26%), delf (18%),
leniog (16%) and IE (6%). Overall, 30% of the families have

roughly 17% classification improvement for all 3 classifiers.

To see why there is such a large difference between the two

approaches, it is sufficient to note that for Poshkill.1445, for

example, we observed 11, 735 context switches during the one

minute period it ran. For the PMI approach, each time this

sample is restored for execution at the context switch, there

are contaminated events from previous process. Also, at the

time of context switch from the malware to other process, the

events related to this sample are lost because they are not

saved. Therefore, on 2 ∗ 11, 735 occasions, the PMI data may

be either contaminated or incomplete. If we assume that the

context switches occurred at a regular interval, for 150, 476
feature vectors obtained from this sample, approximately 15%

of them are either contaminated or have incomplete events.

Table VI and VIII also show that 12 out of 15 classes have
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better accuracy using the CS-PMI approach for decision tree

and KNN classifiers, while 3 of the classes (i.e., poshkill, bonk
and alcaul) have marginally lower F-measures as compared

to the PMI approach. As depicted by the confusion matrices

(Fig. 4 and 5), these 3 classes also exhibit a higher confusion

rate than others. This is because they use a similar technique

to attach their code to files on the host system or network5

and may not contain enough distinctive behaviors [113].
c) Summary of Findings: Our experiments show that

differences in the way the data is recorded and the approaches

taken to do so, not only affect the accuracy of the resulting

techniques, but also impact the reproducibility of the research

findings. For that reason, we do not recommend the use of PMI-

only approaches, which unfortunately, is a common practice

when using HPCs for security applications (see Table IV).

The observant reader will note that irrespective of which

classifier was used, the confusion between the benign case

(IE) and the malicious samples is beyond what one would

expect in any practical deployment of such detectors. This,

to us, indicates that the use of HPCs for malware detection

is inadequate, since the features commonly built from such

measurements fail to correctly distinguish between benign and

malicious activities in real-world settings. The situation may

improve once we have better support for low-skid interrupts and

sampling [117]. In particular, a known issue with measurements

involving interrupts is “skid,” wherein it takes some amount of

time to stop the processor to pinpoint exactly which instruction

was active at time of the interrupt, resulting in a discrepancy

between the instruction indicated versus the one that actually

caused the interrupt. This is particularly common in modern,

out-of-order, CPU designs. Until then, we suggest that HPCs

are too fragile to be used as the sole source of features for the

studied types of security applications.

VIII. CASE STUDY II:THERE BE DRAGONS

Earlier in §V, we highlighted that the effects of non-

determinism have been overlooked in most security papers.

To shed light on the severity of this oversight, we present two

analysis efforts. The first directly shows how non-determinism

impacts the accuracy of a ROP defense model, while the second

presents a generic approach to evade a ROP defense by inducing

noise during the measurement process.

A. How Non-determinism Affects Accuracy

To concretely demonstrate the impact of non-determinism,

we revisit the ROP detection technique discussed in §VII-A.

Recall that factors that influence the accuracy of such defenses

include skid during PMI delivery, overcounting due to hardware

interrupts, where and when the PMI occurs during the ROP

chain, and the strength of the heuristic itself. The sources of

non-determinism are skid and overcounting of instructions due

to PMI events. The frequency of the PMI will impact the level

of overcounting, leading to our conjecture that as the frequency

of PMIs increases, so does the overcounting of events.

Showing this is challenging since non-determinism is a deep-

rooted issue which cannot be easily compartmentalized because

5https://www.pandasecurity.com/homeusers/security-
info/44002/information/PoshKill.B

there is no noise-free platform that can be used to give an

exact measurement. However, based on our understanding of

return-oriented programming, we can control some factors to

show the impact of non-determinism on the detection heuristic.

In what follows, we assume that:

• Similar to Wang & Backer [78], a window of 6 gadgets

(correspondingly, 6 return misses) is used as the trigger

for detecting a ROP chain. Thus, for a chain of 12 gadgets,

there are two windows of opportunity for detection.

• For a given ROP chain, we can compute the threshold

value for the number of instructions retired for an arbitrary

set of gadgets. For example, in the case of the Metasploit

exploit (CVE-2012-4792), for 6 gadgets, the number of

instructions retired is <= 15, whereas, for 7 gadgets, the

number of instructions retired is <= 17.

We used the same setup and exploit samples as in §VII-A.

We obtained HPC measurements using PMI by varying the

number of return misses, i.e., ret miss = α, for α = 6, 3, 2, 1.

We use the CS-PMI approach for data collection. The exploits

were executed 20 times for each PMI setting. We evaluated

the true positive rate (TPR) and false positive rate (FPR) based

on the criteria above. Each exploit run included the execution

of ROP chain and non-ROP (i.e., benign) code. For example,

when the exploit is run in Internet Explorer, the run consists of

both benign code and the ROP chain execution. A true positive

is specific to the ROP chain execution, whereas a false positive

is specific to the non-ROP part. To demarcate the ROP chain,

we instrument the start and the end of ROP-chain using “int3”

instruction (as also described in §VII-A). The TPR is evaluated

as the number of true positives over all the total windows of

opportunity to detect the ROP chain.
In our evaluation, we ensured that a window of 6 gadgets

was considered, per the original heuristic. For example, in the

case of PMI set to ret miss = 1, we take 6 consecutive PMIs as

one window of opportunity to detect the ROP exploit. Similarly,

for a PMI set at ret miss = 3, we take 2 consecutive PMIs

as one window to detect the ROP chain. We do not consider

ret miss = 4 or 5, since the original heuristic is based on a

window of ret miss = 6, and 4, 5 are not divisible of 6.
Results: Empirical results show that as the frequency of

PMI increases (smaller values of α), the true positive rate

decreases: TPRs at α = 6, 3, 2, 1 are 19.17%, 11.67%, 9.17%,

0%, respectively. Furthermore, the false positive rate increases

with the increased frequency of PMI; FPRs at α = 6, 3, 2,

1 are 0.007%, 0.007%, 0.011%, 0.009%, respectively. These

results support the earlier conjecture that non-determinism will

significantly impact the performance of a model.
Summary: Taken as a whole, these results show that the

non-determinism of HPCs is indeed a serious factor, significant

enough to undermine the soundness of techniques that rely

on them as a foundation for security defenses. Adjusting the

PMI has a direct impact on the level of noise, leading to

a clear degradation in accuracy. The non-determinism with

HPCs in these experiments arises because PMI is a hardware

interrupt, and each PMI leads to overcounting of instructions.

Additionally, the skid during PMI delivery (as mentioned in

§VII) worsens the overcounting issue. To illustrate that further,

we plot in Fig. 6 (in Appendix E) the observed skid when
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PMI is set at different number of ret miss events. To observe

the skid for a PMI set at ret miss = α, we collect the actual

number of return misses recorded by HPC at each PMI during

the execution of the exploits. The skid is the difference between

the expected measurement and the measurement reported by

the HPC. For example, if one sets the PMI to be delivered after

six return misses, and the value reported by the measurement

unit equals to eight, than the observed skid is two. The result

shows that skid is inconsistent at every sampling rate.

B. Evading a ROP Defense using Non-determinism

Lastly, we show how non-determinism can be leveraged by

an adversary to evade a ROP defense. To that end, we return to

the heuristic proposed by Wang & Backer [78]. As described in

§VIII-A, the ROP detection is based on the assumption that for

a given number of return misses, α, the number of instructions

retired is lower than some threshold, Δ.

Our attack simply triggers page faults to manipulate the

number of instructions retired to defeat the ROP detection. As

discussed in §VI, we observe that page faults directly impact

the measurement of instruction retired event. In the attack, we

assume 1) the availability of classes of gadgets — namely,

arithmetic and load gadgets, and a gadget that triggers repeated

demand paging page faults; 2) the availability of a function

pointer to malloc(). Given that, the attack is straightforward:

we deliberately insert points of manipulation within an existing

ROP chain. The points of manipulation produce an overcount

of one instruction for every page fault triggered. The amount

of page faults triggered is controlled by a counter register,

and that counter can be set arbitrarily to accommodate any

parameter values l, α and Δ assumed by the heuristic. Here, l
specifies the number of gadgets in a ROP chain.

Implementation: First, an adversary allocates a memory

buffer of size m using a return-to-libc technique to call

malloc(). This buffer is allocated but not mapped in memory,

and is used to trigger demand page faults. Next, the existing

ROP chain is modified to include manipulator blocks that

produce an arbitrary overcount for every α gadgets, thus foiling

the detection heuristic. An illustration is shown in Fig. 3.

�-3 
gadgets

Init gadgets
Manipulator

gadgets
�-2 

gadgets
Manipulator

gadgets
�-2 

gadgets
….

Fig. 3: Modified ROP chain with manipulator gadgets.

We distinguish between two types of so-called manipulator

blocks: a manipulator initialization block that is executed before

any other gadget in the ROP chain, and regular manipulator
blocks that are inserted every α-2 gadgets.

1) The initialization block consists of three gadgets:

• The first gadget (e.g., pop ecx; ret) sets the value

of ecx to m.

• The second gadget (e.g., mov edi, eax; ret)

copies the value returned by malloc() stored in the

register eax to the destination register edi.

• The third gadget (e.g., rep stosd; ret) repeatedly

accesses the memory pointed by edi and triggers page

faults. Memory is accessed m times, thereby triggering

instruction overcount above the detection threshold Δ.

2) Regular manipulator blocks consist of two gadgets: one

gadget (e.g., pop ecx; ret) that sets a value of the

counter register ecx to m, and other gadget (e.g., rep
stosd; ret) that repeatedly accesses the memory

pointed by edi to trigger page faults.

Our approach increases the overall length of the gadget chain

since we introduce two extra gadgets for every α− 2 gadgets

of the original chain (see Fig. 3). Given any combination of

the parameters α and Δ used by the heuristic, an adversary

can choose a value m such that the instruction retired count

is always above Δ. The modified chain will be of length

l′ = l + 3 + 2 ∗ ⌈
(l + 3 − α)/(α − 2)

⌉
. Thus, there will be

N = l′/α opportunities for detecting the modified ROP chain.

Consequently, to evade detection, each manipulator block must

produce an overcount of x > Δ− 2 ∗ α instructions.

Results: The ROP detection mechanism [78] used a detection

window based on the number of return misses α = 6. To

demonstrate the feasibility of hiding the ROP we evaluate

the length of the expanded chain and instructions retired for

different sizes of α <= 6. Our results show that in the worst

case, the manipulators need to generate an overcount that

matches the average number of instructions. For example, for

α = 6, the average number of instructions is 11088, whereas

for α = 3, it is 5614. In the average case (as presented in [78]),

an adversary needs to generate only x > Δ−2∗α instructions

to defeat the detection mechanism. Hence, for α = 3, 4, 5, 6 an

overcount of x = 20 instructions would be sufficient to defeat

the detection mechanism.

Summary: Our evasive technique demonstrates that regard-

less of the parameters used by the detection mechanism, an

adversary can disguise the execution of a ROP chain by hiding

within deliberately introduced noise.

IX. OTHER RELATED WORK

In the past, several works have highlighted challenges with

using hardware performance counters. The most germane is

the work of Weaver & McKee [33] that showed that the

instruction retired event had a variation of 1% for the CPU

SPEC benchmarks across different x86 architectures. They

noted several sources of variations and showed that by adjusting

the measurements one could reduce the observed variation to

less than 0.002%. Later, Weaver & Dongarra [39] showed that

hardware interrupts (e.g., periodic timers) can lead to significant

overcounting of retired instructions and recommended that the

recorded measurements be compensated by subtracting the

number of hardware interrupts. Although they briefly mentioned

the influence of page faults, they did not perform a detailed

study of the effects of page faults on different events.

Furthermore, Weaver et al. [34] found that many events

on x86 64 architectures are non-deterministic, i.e., their mea-

surements vary between different runs even under strictly

controlled settings. They showed that only a small number of

events are deterministic and have no overcounting issues, e.g.,
branches retired on Sandy Bridge and Westmere architectures.

It was noted that although hardware interrupts are one of

the main sources of variation, the impact may be difficult

to measure in many systems. More recently, Weaver [118]
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summarized the available features and overhead of the most

common performance counter tools.

Other researchers [38, 43, 119] have also noted the inac-

curacy in HPC measurements, specifically for loads, stores,

floating-point operations, and branch mispredictions. However,

these works focused on micro-architectural events and attributed

the inaccuracy to the interface of their performance counter

monitoring tool (i.e., PAPI), and the lack of processor archi-

tecture details. Zaparanuks et al. [38] studied the difference

in counts reported for specific events across common HPC

tools, including perfctr, perfmon2, and PAPI. In that work, it

was observed that the measurement setup could lead to an

inaccuracy of several thousand instructions. Moseley et al.
[43] reported that HPCs have several practical issues that

hinder their usage in real-world settings, for example, lack of

verification of the events, lack of portability of events across

architectures, sampling skid during the interrupt delivery, and

the high overhead of reading the counters. Recently, O’Callahan

et al. [44] tried to get around the skid issue by interrupting

the processor some number of events earlier than the actual

desired event. Unfortunately, while most of these works do

touch on the non-determinism and inaccuracy of events, none

empirically evaluated the drawback of incorrect data collection,

such as using PMI-based filtering.

Concurrent to our work, Zhou et al. [120] showed that

under realistic settings, HPC information cannot distinguish

between benign software and malware. Interestingly, even after

cross-validating their models multiple times by taking repeated

measurements, the best F-measure obtained was 80.22% using

a Decision Tree model, which is similar to the results we

presented in Table VI. Furthermore, they also showed that

benign application infused with ransomware cannot be detected

by contemporary HPC-based malware detection. Taken together,

these works describe a cautionary tale for using HPCs for

purposes beyond their original intent.

X. RECOMMENDATIONS AND CONCLUSION

Hardware performance counters have been available for

more than a decade. Their inclusion has been a boon for

many application areas, with the biggest benefit being the

ability to identify and understand the behavior of code hotspots.

But, understanding micro-architectural interactions — which

is imperative for various types of security analysis — is

tedious and the potential gains can quickly diminish. As

noted by Moseley et al. [43], because features frequently

have vague documentation, an expert level of understanding is

required to collect and apply data from performance counters.

Consequently, users are often measuring something different

from what they expect. This, in our experience, is particularly

true in that subsequent generations of processors may be

deceptively diverse in what they measure (e.g., [43, Section

3]). Hence, users are left to treat processors as black boxes.

While we disagree with the point of view of Moseley et al.
[43] that, from an academic perspective, one motivation for

the use of hardware performance counters is that it enables

writing of more papers, we understand their frustration. Here,

we take a different approach and suggest some tenable goals

that could help minimize some of the headaches associated

with using HPCs.

• First, (for both reviewers and authors alike) empirical

results based on performance counters should not be

compared with those from other profiling tools (e.g., Pin).

As discussed in §VI, the fact that the design philosophy

varies widely between these tools, coupled with the issues

of non-determinism and overcounting, inevitably leads to

results that are not easily comparable.

• Modern processors are inherently complex, so it is

important that authors verify HPC-based findings on

different CPU architectures. While certain architectural

events may remain consistent across architectures, many

micro-architectural events vary widely. Moreover, some

events may be present in one architecture, unavailable in

another, or have an entirely different implementation.

• For profiling a specific application, it is imperative that

per-process filtering of events is applied by saving and

restoring the counter values at context switches. Failure

to do so will impact accuracy, and can call into question

the overall soundness of the approach.

• For critical applications such as security defenses, the

issues related to non-determinism and overcounting cannot

be overlooked. This is especially true when considering

adversarial models in which the adversary can freely

manipulate the counters to thwart defenses.

• Lastly, if security is to be taken more seriously as a

science [121], it is important that authors take more

precautions in documenting their work. It was rather

difficult to get even the most basic information about

HPC configuration and usage in many of the papers we

surveyed. Respondents to our survey indicated that our

questions were enlightening, and some agreed that the

lack of detail affected the reproducibility of their work.

Overall, the fact that the number of events being added to

processors is growing faster than the number of counters, is

unsettling. It has come to the point where machine learning6 is

required to manage the abundance of information. Researchers

should think carefully about the adoption of HPCs for security

defenses, as this was not the designers’ original intent for them.
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APPENDIX A

QUESTIONS FOR LEAD AUTHORS

For the reproducibility of results we suggest that answers to

the following questions be specifically addressed.

1) High-level understanding
a) For what purpose did you use HPC?

� Performance
� Power analysis
� Security
� Debugging
� Operating system support
� Other

b) How many total counters were used?
� <=4
� >4 and <=7
� >7

c) How many configurable/programmable counters were used simulta-
neously?
� <=4
� >4

d) How were the measurements taken?
� Polling
� Event-based sampling

e) Which of the following tools were used?
� PAPI
� Oprofile
� perfctr
� perfmon2
� perf event
� LIKWID
� LiMiT
� Intel VTune
� Custom

f) Was the performance counter module natively implemented in the
OS kernel (e.g., Perf event)?
� Yes
� No
� Unsure

2) Measurement granularity
a) At what level were measurements collected?

� Process/Application
� Processor core
� System-wide

b) Performance counters were configured for the events in:
� User space only
� Kernel space only
� Both
� Unsure

3) Context-switch monitoring
a) Was context-switching monitored?

� Yes
� No
� Unsure

b) If yes, were performance counter values saved/restored at context
switches?
� Yes
� No
� Unsure

4) Performance monitoring interrupt (PMI)
a) At each PMI, was process-based filtering performed?

� Yes
� No
� Unsure
� Not applicable

b) If measurements were obtained by event-based sampling, how was
the sampling counter configured?
� For user space only
� For kernel space only
� Both
� Unsure
� Not applicable

5) Experimental setup
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a) How was the performance counter monitoring module implemented?
� On a bare-metal system
� In a virtual machine

b) If a virtual machine was used, which of the following virtualization
software was used?
� VMware
� KVM
� Virtualbox
� Other
� Not applicable

c) How many cores were there in your virtual machine or bare-metal
system?
� One
� More than one
� Unsure

d) If more than 1 core was present, were HPCs on all cores monitored?
� Yes
� No
� Unsure
� Not applicable

6) Non-determinism and overcounting issues
a) Was the measurement error, resulting from non-determinism and

overcounting of HPCs, addressed in your approach?
� Yes
� No
� Unsure
� Not applicable

b) Would you recommend using HPCs for the main application domain
of your paper?
� Yes
� No
� Unsure

APPENDIX B

TOWARD MINIMIZING PERFORMANCE COUNTER ERROR

The results in Table V indicated that the overcount for mem-

ory operations using the loop instruction was approximately

1 overcount per 4 KB memory access. Our conjecture was

that every 4 KB memory access there was an overcount in

the branch and instructions retired counts. To validate this,

we examined the number of page faults during the program

execution. Our analysis shows that the number of page faults

directly impacts the instruction and branch count. We used

the Perf tool for measuring page faults. To see if we can

then minimize the reported error, we adjusted the number of

instructions and branches by deducting the number of page

faults that occurred.

Listing 1: Source code for page fault experiment

1

# Aim: Trigger page fault on memory access

.globl start
start :

6xor %rcx,%rcx
mov $512,%rcx # Setup a counter
mov $buffer1,%rsi

mem:
mov (%rsi),%rax # Triggers page fault

11add $4096,%rsi # Advance to next page
loop mem

exit :
xor %rdi,%rdi # we return 0
mov $60,%rax # SYSCALL EXIT

16nop
syscall # exit

.bss
.lcomm buffer1 ,8388608

To further comprehend the effect of page faults on instruction

and branch events, we specifically wrote a test program (see

Listing 1) that executes a loop, where a new memory page is

accessed to trigger a page fault in each iteration. After varying

the number of memory accesses and forcing the page faults,

we observed a direct effect of page faults on the overcount of

the instruction and branch events (shown in Table VII).

TABLE VII: Impact of page faults

Expected values HPC Adjusted-HPC

Benchmark Ins Br Ins Br Pf Ins - Pf Br - Pf

page fault test 10 1 11 3 1 10 2
13 2 15 5 2 13 3
19 4 23 9 4 19 5
31 8 39 17 8 31 9
55 16 71 33 16 55 17

103 32 135 65 32 103 33
199 64 263 129 64 199 65
391 128 519 257 128 391 129
775 256 1031 513 256 775 257

1543 512 2055 1025 512 1543 513

Pf: page faults

That analysis led to other findings. First, the adjusted mea-

surement matched the expected values with minor variations,

except rep string instructions. Second, for the rep string

instructions, the overcount in branch events was minimized

by adjusting the page faults, but the instruction retired event

showed a large undercount. We found that HPC considers rep
string instruction as one complex instruction, which performs

similar memory operations repetitively. Therefore, it increments

the instruction retired counter only when rep string instruction

is retired. Pin and INS-Dbg tools, on the other hand, consider

each memory operation as one instruction and increment the

instruction counter at each repetition.
Digging deeper, we examined the memory load and store

instructions for rep and loop string instructions. Since

the load and store instruction events are only available in

Skylake processors, we conducted this experiment only on

Skylake (Haswell and Sandy Bridge architectures monitor

load and store micro-op events). We found that the store

instruction event is consistent and unaffected by page faults both

for rep and loop cases (e.g., stosb, movsb, stosw,
movsw). Also, the store instruction event is incremented

only once for rep stosb/movsb/stosw/movsw. Con-

versely, the load instruction event is directly affected by

the page faults, but the effect is not consistent, such as in

rep stosb/movsb/stosw/movsw. Therefore, the number of page

faults cannot be directly deducted in the load instruction

measurement to adjust the values and minimize the error.

APPENDIX C

ALGORITHM FOR CS-PMI APPROACH

In Sec. VII, we presented our case study using CS-PMI ap-

proach, which augments the PMI approach with context switch

monitoring. The CS-PMI approach is shown in Algorithm 1.

APPENDIX D

EXTENDED K-WAY CLASSIFICATION RESULTS

In Sec. VII, we presented our case study on K-way

classification of malware using two approaches, CS-PMI and
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(a) CS-PMI approach

(b) PMI approach

Fig. 4: K-way classification: Decision Tree (J48).

Algorithm 1 CS-PMI approach

1: function MODULE INITIALIZATION

2: Hook context switch
3: Hook PMI interrupt
4: end function
5: function CONTEXT SWITCH HOOK

6: if Next process == Test app then
7: Test app flag = TRUE
8: if Test app runs for the first time then
9: Initialize HPC

10: else
11: Restore HPC values
12: end if
13: else if Previous process == Test app then
14: Save HPC values
15: end if
16: end function
17: function PMI HOOK

18: if Test app flag == TRUE then
19: Record HPC values
20: Reset HPC
21: Reset threshold value for triggering PMI
22: end if
23: end function
24: function MODULE UNLOAD

25: Record HPC values saved during the last context switch
26: Remove context switch and PMI hooks
27: end function

(a) CS-PMI approach

(b) PMI approach

Fig. 5: K-way classification: KNN (IBk).

PMI. Table VIII presents the results for K-way classification

using KNN algorithm. Fig. 4 and 5 show the corresponding

confusion matrices for decision tree and KNN classifiers using

two approaches.

APPENDIX E

SKID DURING PMI

We discussed the skid issue during the PMI delivery in

§VIII-A. Fig. 6 shows the observed skid when PMI is set at

different number of ret miss events.

APPENDIX F

CODE AND DATA ARTIFACTS

We provide a stepwise tutorial at https://github.com/

UNCSecLab/hpc.git on how to best use performance counters

under different settings. Our kernel module implementing

the CS-PMI approach is available on GitHub. To promote

reproducibility of our experiments, our extensions to the

benchmark suite by Weaver & McKee [33] are also available.
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TABLE VIII: Performance evaluation of K-way classification: KNN (IBk)

TPR FPR Precision Recall F-Measure ROC Area

Class PMI Δ PMI Δ PMI Δ PMI Δ PMI Δ PMI Δ

poshkill 0.366 -0.022 0.049 -0.003 0.348 -0.003 0.366 -0.022 0.357 -0.012 0.658 -0.010
bonk 0.368 -0.002 0.045 0.002 0.369 -0.010 0.368 -0.002 0.368 -0.006 0.661 -0.002

alcaul 0.359 -0.015 0.046 0.002 0.360 -0.019 0.359 -0.015 0.359 -0.017 0.657 -0.009
thorin 0.951 0.038 0.006 -0.004 0.918 0.057 0.951 0.038 0.934 0.048 0.973 0.021
toffus 0.517 0.073 0.037 -0.013 0.501 0.134 0.517 0.073 0.509 0.103 0.740 0.043
werly 0.961 0.003 0.003 -0.001 0.958 0.009 0.961 0.003 0.960 0.006 0.979 0.002
afgan 0.910 0.038 0.002 -0.001 0.964 0.014 0.910 0.038 0.936 0.027 0.954 0.020
smee 0.850 0.003 0.027 -0.011 0.695 0.105 0.850 0.003 0.765 0.061 0.912 0.007

bonding 0.434 0.437 0.028 -0.013 0.520 0.283 0.434 0.437 0.472 0.363 0.703 0.225
delf 0.386 0.300 0.040 -0.007 0.406 0.187 0.386 0.300 0.395 0.241 0.673 0.153

cisum 0.811 0.001 0.022 -0.012 0.727 0.126 0.811 0.001 0.767 0.065 0.895 0.006
tiraz 0.897 0.015 0.010 0.000 0.869 0.000 0.897 0.015 0.883 0.007 0.944 0.008
bube 0.813 0.040 0.013 -0.001 0.821 0.025 0.813 0.040 0.817 0.032 0.900 0.021

leniog 0.709 0.079 0.018 -0.008 0.736 0.106 0.709 0.079 0.722 0.092 0.846 0.044
IE 0.663 0.025 0.012 -0.003 0.804 0.050 0.663 0.025 0.726 0.036 0.826 0.014

Weighted Avg. 0.666 0.073 0.024 0.005 0.666 0.075 0.666 0.073 0.665 0.074 0.821 0.039

Δ = Difference between the approaches (i.e., CS-PMI - PMI)

Fig. 6: Observed skid at different ret miss based sampling:

X-axis denotes the value of the return miss counter at which

the interrupt is expected to happen (i.e., α). Y-axis shows the

value of return misses at the PMI delivery. The whiskers of the

box plot, and the dots indicate the skid in the measurement.
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