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ABSTRACT

In an "open skies" era in which drones fly among us, a

new question arises: how can we tell whether a passing drone

is being used by its operator for a legitimate purpose (e.g.,

delivering pizza) or an illegitimate purpose (e.g., taking a peek

at a person showering in his/her own house)? Over the years,

many methods have been suggested to detect the presence

of a drone in a specific location, however since populated

areas are no longer off limits for drone flights, the previously

suggested methods for detecting a privacy invasion attack

are irrelevant. In this paper, we present a new method that

can detect whether a specific POI (point of interest) is being

video streamed by a drone. We show that applying a periodic

physical stimulus on a target/victim being video streamed by a

drone causes a watermark to be added to the encrypted video

traffic that is sent from the drone to its operator and how

this watermark can be detected using interception. Based on

this method, we present an algorithm for detecting a privacy

invasion attack. We analyze the performance of our algorithm

using four commercial drones (DJI Mavic Air, Parrot Bebop 2,

DJI Spark, and DJI Mavic Pro). We show how our method can

be used to (1) determine whether a detected FPV (first-person

view) channel is being used to video stream a POI by a drone,

and (2) locate a spying drone in space; we also demonstrate

how the physical stimulus can be applied covertly. In addition,

we present a classification algorithm that differentiates FPV

transmissions from other suspicious radio transmissions. We

implement this algorithm in a new invasion attack detection

system which we evaluate in two use cases (when the victim

is inside his/her house and when the victim is being tracked

by a drone while driving his/her car); our evaluation shows

that a privacy invasion attack can be detected by our system

in about 2-3 seconds.

I. INTRODUCTION

The proliferation of consumer drones over the last few years

[1], [2] has created a new privacy threat [3], [4], [5], [6], [7].

We are living in an era in which anyone with a drone equipped

with a video camera can use it to perform a privacy invasion

attack by flying the drone in order to: detect a cheating

spouse [3], spy on people [4], [5] or celebrities [6], or video

stream a neighbor’s sunbathing daughter [7]. The president of

the United States signed a memo allowing drones to fly in

Fig. 1. Legitimate and illegitimate use of a drone from the same location:
(a) A drone (framed in yellow), two people (framed in green), and a window
of an organization (framed in red), (b) Illegitimate use of the drone camera
to film an organization, and (c) Legitimate use for selfie purposes.

populated/urban areas in 2017 [8] as part of the new "open

skies" policy, an act which is expected to make the detection

of privacy invasion attacks more challenging, as increasing

numbers of business and companies begin to adopt drones for

various legitimate purposes. Drones are now being used for

pizza delivery [9], the shipment of goods [10], filming [11],

and many other legitimate purposes [12], and their presence is

no longer restricted in populated areas. Given that, how can
we tell whether a drone that is passing near a house is
being used for a legitimate purpose (e.g., delivering pizza)
or an illegitimate purpose (e.g., taking a peek at a person
showering in his/her own house)?

Geofencing methods for drone detection based on the

drone’s location have been suggested in recent years [13], [14],

[15], [16], [17], [18], [19] as a means of detecting drones used

for malicious purposes in restricted areas (e.g., in order to drop

weapons and drugs into prison yards [20], smuggle goods and

drugs between countries over borders [21], and crash on the

White House lawn [22], [23]). However, the use of a traditional

geofencing method as a means of detecting a privacy invasion

attack in non-restricted areas (e.g., residential neighborhoods)

will fail to distinguish between the legitimate use of a nearby

drone and illegitimate use that invades a subject’s privacy, a

distinction that depends on the orientation of the drone’s video

camera rather than on the drone’s location. Differentiation
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Fig. 2. (a) Secured FPV channel scheme, and (b) GOP structure - I, B, and P-frames.

between illegitimate and legitimate use of a drone can only be

accomplished by determining the exact POI (point of interest)

being streamed over the video channel and not according to

the drone’s location, as demonstrated in Figure 1.

The detection of a POI that is being video streamed by

a drone/unmanned aerial vehicle (UAV) from an FPV (first-

person view) channel has interested armies and militaries

for many years. There are several known cases in which an

army managed to detect the streamed POI from an intercepted

unencrypted FPV channel of a rival’s drone [24], [25], [26],

[27]. However, there is only one known case in which a

video stream was extracted from encrypted UAV traffic [28].

In general, detecting whether a target POI is being streamed

from an intercepted encrypted video stream, without prior

knowledge about the keys, remains a challenge.

In this paper, we present a new method that can detect

whether a specific POI is being video streamed by a drone.

We show that applying a periodic physical stimulus on a

target/victim that is being video streamed by a drone causes a

watermark to be added to the video traffic that is sent from the

drone to its operator, a watermark that can be detected using

interception. Based on this method, we present algorithms

for (1) detecting a privacy invasion attack, and (2) locating

a spying drone in space. We evaluate their performance using

four commercial drones (DJI Mavic Air, Parrot Bebop 2, DJI

Spark, and DJI Mavic Pro) in two use cases (when the victim

is inside his/her house and when the victim is being tracked

by a drone while driving his/her car) and show that a privacy

invasion attack can be detected in about 2-3 seconds.

In this paper, we make the following contributions: First, we

(1) present an improved method for classifying a suspicious

transmission as an FPV channel and show that it can be used to

distinguish between a drone and other moving IoT devices in

just a few seconds. Then, we prove that the watermark added

after applying a periodic physical stimulus (flickering) on an

object for just two seconds enables us to (2) detect a spying

drone (from a distance of 100 meters) and (3) identify its

GPS coordinates and altitude (using a single Wi-Fi receiver),

and can be used to (4) distinguish between the legitimate

use of a drone that does not invade a subject’s privacy and

illegitimate use, even (5) when the target is moving. In contrast

to the anti-drone market (expected to grow to a $1.85 billion

[29] by 2024) which offers very expensive hardware solutions

[30], we present a method that can be implemented using (6)

inexpensive devices: a single Wi-Fi receiver and LED strips. In

addition, we show how to (7) disguise the flickering so it will

be invisible to the drone’s operator. Finally, we (8) shatter the

commonly held belief that the use of encryption to secure an

FPV channel prevents a passive eavesdropper from extracting

the POI that is being video streamed.

II. FIRST-PERSON VIEW CHANNEL

Modern drones provide video piloting capabilities (FPV

channel), in which a live video stream is sent from the drone to

the pilot (operator) on the ground, enabling the pilot to fly the

drone as if he/she was onboard (instead of looking at the drone

from the pilot’s actual ground position). This allows a pilot to

control a drone using a remote controller, as demonstrated in

Figure 2a. A typical FPV channel is intended to be used for

two purposes: video streaming using data that is captured

by the drone’s camera and sent to the pilot’s controller, and

maneuvering and controlling the drone using commands sent

from the controller to the drone. In the following subsections,

we describe the stages of video streaming.

A. Video Encoding Algorithms

Video encoding [31], [32], [33], [34] begins with a raw

image captured from a camera. The camera converts analog

signals generated by striking photons into a digital image

format. Video is simply a series of such images generally

captured five to 120 times per second (referred to as frames

per second or FPS). The stream of raw digital data is then

processed by a video encoder in order to decrease the amount

of traffic that is required to transmit a video stream. Video

encoders use two techniques to compress a video: intra-frame

coding and inter-frame coding.

Intra-frame coding creates an I-frame, a time periodic

reference frame that is strictly intra-coded. The receiver de-

codes an I-frame without additional information. Intra-frame

prediction exploits spatial redundancy, i.e., correlation among

pixels within a frame, by calculating prediction values through

extrapolation from already coded pixels, for effective delta

coding (the process is described in Appendix XIV). Inter-
frame coding exploits temporal redundancy by using a buffer

of neighboring frames that contains the last M number of

frames and creates a delta frame. A delta frame is a description

of a frame as a delta of another frame in the buffer. The

receiver decodes a delta frame using a previously received

reference frame. There are two main types of delta frames:

P-frames and B-frames. P-frames can use previous frames as

data in the decompressing process and are more compressible
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TABLE I
PURE WI-FI DRONES

Manufacturer Models
Wi-Fi
Video

Downlink

Distance
(FCC

compliance)
Weight Price

DJI
Spark 2.4/5.8 GHz 4 KM 300 g $399

Phantom 3 SE 2.4/5.8 GHz 4 KM 1236 g $555
Go-Pro Karma 2.4 GHz 3 KM 1006 g $899

Parrot
Bebop 2 FPV 2.4/5.8 GHz 2 KM 500 g $499

Disco 2.4/5.8 GHz 2 KM 750 g $499

Xiro
Xplorer 2 2.4 Ghz 1 KM 1400 g $1,499
Xplorer V 2.4 GHz 0.5 KM 1202 g $500

Husban
H501A X4 2.4 Ghz 0.4 KM 500 g $209

H507A 2.4 Ghz 0.3 KM 450 g $109

than I-frames. B-frames can use both previous and upcoming

frames for data reference to obtain the greatest amount of data

compression (the process is described in Appendix XIV).

The order in which I, B, and P-frames are arranged is

specified by a GOP (group of pictures) structure. A GOP is a

collection of successive pictures within a coded video stream.

It consists of two I-frames, one at the beginning and one at

the end. In the middle of the GOP structure, P and B-frames

are ordered periodically. An example of a GOP structure can

be seen in Figure 2b. Occasionally B-frames are not used in

real-time streaming in order to minimize delays.

Video compression techniques were integrated into the

MPEG-1 standard in the 1990s and boosted the transmission

rate from 1.5 Mbps (MPEG-1) to 150 Mbps (MPEG-4).

Naturally, integrating these techniques into the protocol creates

a variable bitrate (VBR) in the transmission of a video which

is influenced by changes between frames and the content of

the frame itself. A frame that can be represented as a set of

prediction blocks of a similar neighboring frame (that belongs

to the same GOP) requires a smaller amount of data to be

represented. On the other hand, a frame with less similarity

to other neighboring frames (e.g., as a result of the movement

of several objects) necessitates that a larger amount of data be

represented as a set of prediction blocks of other frames.

B. Wi-Fi FPV

There are two types of technologies dominating the FPV

market: Wi-Fi FPV and analog FPV [35]. Wi-Fi FPV is, by far,

the most popular method used to include FPV in budget RC

drones (according to [35], [36]) because: (1) any Android/iOS

smartphone (or tablet) on the market can be used to operate

the drone; (2) the only additional hardware required is a Wi-

Fi FPV transmitter (which is connected to the camera of the

drone), instead of an additional controller with a screen that is

equipped with a dedicated radio transceiver which is required

by other types of FPV (e.g., 2.4/5.8 GHz analog FPV); (3)

drone manufacturers were able to boost the Wi-Fi FPV drone

flight range to four kilometers using dedicated hardware [37],

[38], [39]; and (4) Wi-Fi FPV drones support 4K resolution.

Some types of drones are considered pure Wi-Fi FPV drones

(e.g., DJI Spark, DJI Phantom 3 SE, Parrot Bebop 2), and other

kinds contain Wi-Fi FPV along with their dedicated analog

FPV (e.g., DJI Mavic pro, DJI Mavic Air). Almost every FPV-

enabled drone selling for less than $100 uses Wi-Fi FPV [35],

and there are dozens of kinds of Wi-Fi FPV drones available

for purchase [40], [41], [42], ranging from $30 to hundreds

and thousands of dollars.

TABLE II
INFORMATION LEAKAGE FROM VBR STREAMS - RELATED WORK

Transmitter Purpose Publication
Required
Stream
Duration

Analyzed
Protocols Interception

Video
Hosting
Services
(Netflix,
YouTube,
etc..)

Classify
video
stream

[43] - USENIX 07
[44] - ISC 10
[45] - USENIX 17
[46] - CODASPY 17
[47] - CCNC 16

Minutes DASH Internal

IPTV
Classify
video stream

[48] - GLOBECOM 08 Minutes RTP Internal

IP
Camera

Lights on/off,
Hand movement
Detecting hidden
camera

[49] - GLOBECOM 15
[50] - MobiSys 18

Immediate RTP Internal

PC
Language extraction,
Phrase detection,
Transcripts

[51] - USENIX 07
[52] - S&P 08
[53] - S&P 11

Varies VoIP Internal

Drone Detecting
streamed POI S&P 19 2 seconds RTP External

In order to boost the flight range of Wi-Fi FPV drones,

manufacturers sell a dedicated controller (without a screen)

that broadcasts/receives the signal with a much more powerful

transceiver (25-27 dB) than the one that is integrated into

smartphones/tablets (10-15 dB). When Wi-Fi communication

is sent from the drone to the smartphone via the dedicated

controller and vice versa, the controller is used as a proxy

between the drone and the smartphone (which is used mainly

as a screen). In this study, we focus on Wi-Fi FPV drones.

Table I lists various types of pure commercial Wi-Fi FPV
drones and their properties and prices.

Wi-Fi communication between the drone and the controller

(dedicated controller/smartphone) is sent over a secured access

point (WPA 2) that is opened by either the drone or the

controller (both parties are connected to the access point) and

follows the OSI model. The video that is captured by the drone

camera is streamed to its controller using real-time end-to-end

media streaming protocols (RTP) through UDP packets. The

last layer of encryption is applied on layer 2 of the OSI model

according to IEEE 802.11 standards.

III. RELATED WORK

In this section, we describe: (1) methods that exploit in-

formation leakage of an encrypted video stream to extract

insights about the stream, and (2) methods for nearby drone

detection. In the area of video hosting services and IPTV,

several studies exploited variable bitrate (VBR) protocols of

video streams to classify a video stream sent from a video

hosting service (e.g., YouTube, Netflix , etc.) [45], [47], [46],

[43], [54], [44]. In the area of VoIP, several studies showed

that VBR leakage in encrypted VoIP communication can be

used for the detection of the speaker’s language [51] and

phrases [52], and to extract conversation transcripts [53]. In

terms of the attack model, the abovementioned studies [45],

[47], [46], [43], [54], [44], [51], [52], [53] require the attacker

to: (1) create a large dictionary of video streams that must

be classified before classification is applied, (2) intercept a

few minutes of video stream in order to obtain good results,

and (3) compromise a computer in the targeted network in

order to capture network traffic. Our study does not require

the abovementioned conditions, since we watermark a video

stream and observe the changes instead of comparing the

video stream to an existing dictionary. In addition, only a
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Fig. 3. (a) Detection scheme, and (b) Creating a Bitrate Signal using interception.

few seconds of interception are required to determine whether

the captured video stream is watermarked or not. In research

using IP cameras, a recent study analyzed VBR video streams

and showed that it is possible to detect hand movement and

ambient light changes [49]. Two studies which were performed

in parallel to our work showed a method to detect hidden

Wi-Fi cameras using probing [50] and traffic analysis [55].

Table II summarizes studies on information leakage from VBR

streams.

In the area of drone detection, various methods were

introduced over the last few years to detect a nearby consumer

drone. These methods are widely used for geofencing purposes

such as detecting the presence of a drone in restricted areas

(e.g., drones that were used for purposes of dropping weapons

and other contraband into prison yards [20], smuggling goods

and drugs between countries over borders [21], and crashing

on the White House lawn [22], [23]). Active radar is a

traditional method of detecting drones, however the detection

of small consumer drones requires expensive high frequency

radar systems [13], in order to prevent drones from evading

such systems [23]. Two other methods suggested using passive
radar (i.e., a Wi-Fi receiver) to detect a consumer/civilian

drone controlled using Wi-Fi signals. The first method [18],

[56] analyzes the protocol signatures of the Wi-Fi connection

between the drone and its controller. The second method [19]

analyzes the received signal strength (RSS) using a Wi-Fi re-

ceiver. Several studies suggested computer vision techniques
that use a camera to analyze motion cues [14], [15], in order

to detect a drone. However, these methods suffer from false

positive detection due to: (1) the increasing number of drone

models, and (2) similarities between the movements of drones

and birds [15]. Several studies used sound techniques to

analyze the noise of the rotors captured by microphones [16],

[15]. However, very expensive equipment is required in order

to address the challenges arising from the ambient noise and

the distance between the drone and the microphone [16]. A

hybrid method was suggested by [17], however this method is

very expensive to deploy. A recent study [30] from DEF CON

25 that reviewed 33 commercial products that implement the

abovementioned methods [13], [14], [15], [16], [17], [18], [19]

called these systems "overkill" due to their expensive price

compared to the price of a drone.

Populated areas are no longer considered restricted for

drones; in 2017, the president of the United States signed a

memo allowing drones to fly in urban areas [8]. As a result,

applying geofencing methods as a means of detecting privacy

invasion attacks is irrelevant. All of the methods for drone

detection described in this section [13], [14], [15], [16], [17],

[18], [19] fail to distinguish between the act of taking a selfie

and spying on an organization, as demonstrated in Figure 1. In

contrast to the abovementioned drone detection mechanisms,

our method does not have this weakness. In this research, we

demonstrate a method for determining whether a specific POI

is being filmed, that comparing to other commercial drone

detection mechanisms does not require an expensive hardware.

IV. ADVERSARY MODEL & DETECTION SCHEME

There are four parties involved in a privacy invasion attack

perpetrated by drones: a malicious operator that controls the

drone, a target/victim, an interceptor, and a watermarker. In

this study, we define the malicious operator as any person

who uses a drone for the illegitimate purpose of streaming a

victim for any reason. We assume that the malicious operator
is using a Wi-Fi FPV drone and is located up to four kilometers

from the victim. We consider the target/victim any subject,

building, or facility that is of interest to a malicious operator

and being video streamed by the drone, and consider the

interceptor an automated model (described in Algorithm 1)

for privacy invasion attack detection that runs on a PC/lap-

top/smartphone with a connected RF scanner (e.g., network in-

terface card, software-defined radio) and an adequate antenna

and amplifier. The watermarker is a laptop/microcontroller

that controls a device that can launch a periodic physical

stimulus (flickering) and turn it on and off. In practical de-

ployment, the victim/target may decide to activate the physical

stimulus (flickering) only when needed, e.g., when a drone

is detected (based on the drone’s RF transmission) and it is

unclear whether the drone is being used to spy on the victim. In

addition, flickering can be launched using a variety of devices,

including LED strips, smart bulbs, a portable projector, smart

film, and other devices that can be programmed to change their

color and force pixel changes between consecutive frames.

The watermarker can be deployed inside or outside the target

house/car. In cases in which the watermarker is deployed

inside a house/car, infrared lighting can be used for flickering,

so it will be invisible to people in the house/car (in Section IX

we show that a drone’s camera is sensitive to infrared lighting,

meaning that infrared flickering can be used to watermark the
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FPV channel). In cases in which the watermarker is deployed

outside the target house/car, there is likely no need for an

additional device given existing visible programmable lighting

and its infrastructure. One example of this involves the use

of exterior building lights, commonly used these days for

decoration in many buildings (residential, offices, government)

and facilities (stadiums); often such existing lighting uses a

changing lighting pattern which can be leveraged.

Algorithm 1 Detecting Privacy Invasion Attack

1: procedure UNDERDETECTION?
2: enableMonitoringMode()
3: suspiciousNetworkList = getNetworksInRange()
4: for (network : suspiciousNetworkList) do
5: if isFpvChannel(network) then
6: // Draw stimulus frequency and duration
7: fs = getRandomFloat(1,6)
8: duration = getRandomFloat(1,10)*1000
9: // Store stimulus beginning time

10: time = currentTimeInMillis()
11: // Launch watermarker and determine spying
12: watermarker(fs,duration)
13: if isTargetFilmed?(network,fs,time) then
14: notifyVictim()

Figure 3a presents the proposed target detection scheme

and the parties involved. The interceptor’s model for detecting

a privacy invasion attack is presented in Algorithm 1. First,

suspicious transmissions are intercepted (line 3) and extracted

to a suspiciousNetworkList. For each suspicious transmission

network, we apply the Boolean function isFpvChannel to

determine whether the network is an FPV channel (line 5).

If the network is classified as an FPV channel, the algorithm

triggers a periodic physical stimulus at a given frequency

for a given duration (in milliseconds) by calling the method

watermarker. Finally, the method isTargetFilmed? is called to

determine whether the FPV channel network is being used to

film the target/victim, and a notification is sent to the victim

upon detection of a privacy invasion attack (line 14).

V. INTERCEPTION & CREATING BITRATE SIGNAL

We used four types of drones in our experiments: two pure

Wi-Fi FPV drones (DJI Spark and Parrot Bebop 2) and two

drones which support Wi-Fi and analog FPV (DJI Mavic Pro

and DJI Mavic Air). These drones were among the top 10

most sold drones when this research was performed [57]. All

of the drones’ access points are secured by WPA 2, in order to

guarantee that the transmitted video stream is only available

for watching by the connected parties (controller).

We applied interception as follows: we used a laptop (Dell

Latitude 7480) that runs Kali Linux with a standard NIC (Intel

Dual Band Wireless-AC 8265 Wi-Fi) as the Wi-Fi receiver.

1) We enabled "monitor mode" on the Wi-Fi receiver (used

by the interceptor) using Airmon-ng [58].

2) We detected Wi-Fi networks within the range of the Wi-

Fi receiver used.

3) We used a Wi-Fi sniffer (Airodump-ng) [59] to intercept

packets of a specific Wi-Fi network.

We consider this process external interception, i.e., we

intercept a specific network’s transmissions without being

connected to the network. By intercepting packets this way,

we cannot observe encrypted layers of captured packets (since

we do not have the required key). The interception range can

be extended to detect transmissions from drones up to a few

kilometers from the victim using additional hardware such

as a dedicated antenna or amplifier, however we did not use

additional hardware to extend the range in this study.

The process of creating an intercepted bitrate signal from

the captured packets is as follows:

4) From each captured packet we extracted the following

information: (a) Packet’s arrival time in nanoseconds - infor-

mation added to each captured packet by Airodump-ng, and

(b) Packet’s size - information that was extracted from the

unencrypted meta-data (PLCP header) from the data link layer.

5) Finally, we changed the signal’s resolution from nanosec-

onds to milliseconds by aggregating all packets captured in

each millisecond.

The two bash scripts that implement stages 1-3 and 4-5 are

presented in Appendix XV. In the rest of this paper we refer to

the output of this process as the intercepted bitrate signal.
The FFT graphs and spectrograms (power spectral density)

presented in this paper were extracted from the intercepted

bitrate signal. Figure 3b depicts this process.

VI. DETECTING FPV CHANNEL

In this section, we show how a suspicious transmission can

be classified as an FPV channel and how to extract details

about its quality. We present an improved passive radar method

that relies on two detection stages: (1) moving object detection,

and (2) video channel detection. Two additional benefits from

using our method are that unlike similar passive radar methods,

we can distinguish between a drone and other moving IoT

devices, and we are able to extract the FPV channel quality

(FPS and resolution) as well.

A. Detecting Moving Objects

Passive radar methods for classifying an intercepted trans-

mission as an FPV channel were suggested by [18], [56],

[19]. These methods analyzed RSSI (received signal strength

indicator) measurements that are added by a static radio

receiver (e.g., NIC, SDR, etc.) in order to detect a moving

drone. These studies presented classification methods based

on unique RSSI patterns that are the result of a drone’s

movement. However, these studies did not validate the quality

of their methods against other ubiquitous moving IoT devices

that transmit radio signals such as robotic vacuum cleaners,

smartwatches, smartphones, etc. In this paper, we show that

a drone’s RSSI behavior can be similar to other moving IoT

devices and argue that moving object detection is not adequate

for distinguishing a drone from other moving IoT devices.

1) Experimental Setup: In this experiment, a laptop was

placed on the ground and used as passive radar. One of the

authors walked a distance of 25 meters from the laptop for 100

seconds (at a very slow speed) with a smartphone (Galaxy S8)

in his pocket and a smartwatch (LG smartwatch Urbane 2nd
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Fig. 4. (a) Similar RSSI patterns obtained from smartwatch, smartphone, and drone, (b) A spectrogram (power spectral density) of the intercepted bitrate
signal of a drone access point when the FPS was changed, and (c) Classification results of Algorithm 2.

Edition) on his wrist. After 100 seconds, he returned to the

laptop on the same path. We flew a drone (DJI Mavic Pro), at

an altitude of two meters from the ground, along the same path

(the operator stood near the laptop). In addition, we intercepted

the traffic sent by the smartwatch, smartphone, and drone via

the laptop (as described in Section V).

2) Results: Figure 4a presents the RSSI measurements

from transmissions sent from the drone, smartwatch, and

smartphone as they were captured by the laptop using external

interception. As can be seen from the results, the RSSI

measurements and patterns are similar for the smartphone,

smartwatch, and drone. This experiment proves that relying

on moving object detection methods as a means of classifying

an FPV channel using RSSI analysis requires an additional

stage to filter out moving IoT devices that are not drones.

B. Detecting Video Stream & Extracting its Quality

In this subsection, we present a new method for classifying

an intercepted transmission as a video stream that can extract

details about the video stream’s quality (FPS and resolution).

1) Experimental Setup: We conducted the following ex-

periment using the Bebop Parrot 2 which supports three FPV

transmission rates (24, 25, and 30 FPS). We positioned the

drone on the ground and used its application to change the

FPS rate every two minutes (from 24 FPS to 25 FPS and then

from 25 FPS to 30 FPS). We intercepted the traffic that was

sent from the drone and created the intercepted bitrate signal

(as described in Section V).

2) Results: As can be seen from the spectrogram extracted

from the intercepted bitrate signal (presented in Figure 4b),

the power around each of the FPV transmission frequencies

(FPSs) outperforms any other frequency. Video streams can

be detected by comparing the frequency with the strongest

magnitude of the intercepted bitrate signal to known FPS rates

used by video streams. By detecting the FPS of a captured

video stream, we can also use the intercepted bitrate signal to

infer the resolution of the video stream, and find the resolution

for the H-264 standard published in [60], [61], [62].

C. Classifying FPV Channels

Algorithm 2 presents a method for classifying FPV channels

based on the observations mentioned above. It receives a

suspicious intercepted network, and it classifies the network

as an FPV channel if a connected MAC address was found

to be a moving object (line 5) that transmits traffic at known

drone FPS video rates. (line 10). In prior research, methods

to classify an IoT device as a moving object based on RSSI

analysis have been applied to detect moving smartphones [63]

and smartwatches [64]. The distance between a moving radio

transmitter and a static receiver can be derived from RSSI

measurements, and this has been used for indoor localization

of smartphone users [63]. However, we are interested in

detecting moving objects, a task which is much simpler than

localizing objects. Therefore, we implemented an algorithm

for object detection suggested in a prior study that is based

on RSSI measurements obtained from the receiver [65].

Algorithm 2 Classifying an FPV Channel

1: procedure ISFPVCHANNEL?(network,time)

2: frequency = 70
3: for (macAddress : network) do
4: //Detecting Moving Objects
5: if (isMovingObject(macAddress)) then
6: bitrate[] = extractBitrateSignal(macAddress)
7: fft [] = FFT(bitrateArray,frequency)
8: index = frequencyWithStrongestMagnitude(fft)
9: //Detecting video channel

10: if (index==24 || index==25 || index==30) then
11: return true
12: return false

1) Experimental Setup: We evaluate the performance of

Algorithm 2 given a device that was already found to be a

moving object; therefore, we are aiming to determine how

much time it takes to classify a moving object as a drone.

In order to accomplish this, in this experiment we intercepted

1000 seconds of traffic (as described in Section V) from the

Bebop Parrot 2 and DJI Spark (500 seconds from each drone)

while they flew in the air (at an altitude of 30 meters). We

also intercepted 1000 seconds of traffic from moving IoT

devices as follows: 290 seconds from a robotic vacuum cleaner

(Roborock S50) as it was performing routine home cleaning,

290 seconds of traffic from a smartwatch (LG G W150), and

420 seconds of traffic from a smartphone (OnePlus 5). The

smartwatch was worn on the wrist of a person walking with

a smartphone in his pocket.
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Fig. 5. Experimental setup - drone
(framed in white) located in front of
a white board with four LED strips
(framed in red, green, purple, and black)

Fig. 6. influence of flickering: (a) a bulb according
to a 3 Hz square wave, (b) six bursts from one
second of the intercepted bitrate signal of a drone
that streams a 3 Hz flickering LED strip.

Fig. 7. A spectrogram (power spectral density) of the
intercepted bitrate signal of a drone located in front of
an LED strip that flickers for one minute at frequencies of
0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 Hz.

2) Results: We obtained the intercepted bitrate signals for

each of the devices and divided the intercepted signals into

smaller signals (each signal was five seconds long). This

process resulted in 200 intercepted bitrate signals obtained

from drones and 200 intercepted bitrate signals obtained from

other moving IoT devices. Figure 4c presents the results

(accuracy, TPR, and FPR) after applying Algorithm 2 on the

data with various interception windows (1-5 seconds). As can

be seen in Figure 4c, once a device has been identified as

a moving object it takes just four seconds to classify its

transmissions as an FPV channel. After four seconds, accuracy

of 0.99 and a true positive rate (i.e., drone detection rate) of

1.0 is obtained. The confusion matrices from this experiment

are presented in Table VI in Appendix XVII.

In the remainder of the paper, we assume that (1) a

suspicious transmission can be classified as an FPV channel

by applying Algorithm 2 on the intercepted bitrate signal

(extracted as described in Section V), and (2) the quality of

the FPV channel (FPS and resolution) can be extracted from

the intercepted bitrate signal.

VII. WATERMARKING FPV CHANNEL

In this section, we assess the influence of a periodic physical

stimulus which is applied to a target/victim that is being

streamed by a drone, by analyzing the intercepted bitrate

signal. We consider the algorithm that controls the periodic

physical stimulus a watermarker (described in Algorithm 3).

Algorithm 3 Physical Watermarking

1: procedure WATERMARKER(frequency,duration)

2: onOffDuration = 1000
2∗frequency , N = duration

onOffDuration
3: for (i = 0; i < N; i++) do
4: if (i%2 == 0) then
5: turnOnPhysicalStimulus()
6: else turnOffPhysicalStimulus()
7: sleep(onOffDuration)
8: turnOffPhysicalStimulus()

Algorithm 3, which runs from a computer/controller, con-

trols a device that creates a periodic stimulus (e.g., flickering)

whose frequency can be programmed. The algorithm receives

two parameters: frequency (amount of stimuli per second) and

duration (in milliseconds). The algorithm creates a square

wave at the given frequency, and based on this, turns a physical

stimulus on and off for the specified duration.

1) Experimental Setup: We attached four LED strips, each

of which was connected to a microcontroller, to a white board

(as can be seen in Figure 5) and performed the following

experiment. We programmed the microcontroller that was

connected to the top LED strip (framed by black dots in Figure

5) so that it would flicker at various frequencies (0.5, 1, 1.5, 2,

2.5, 3, 3.5, 4, 4.5 Hz) for one minute per frequency. We then

positioned a DJI Mavic Pro [66] consumer drone in front of

the board at a distance of 1.5 meters (as can be seen in Figure

5), intercepted the traffic sent from the drone, and created the

intercepted bitrate signal (as described in Section V).

2) Results: Figure 6b presents one second from the inter-

cepted bitrate signal that was captured during the time that

the top LED strip flickered at 3 Hz (see Figure 6a). As can

be seen from Figures 6a and 6b, a 3 Hz flickering LED strip

creates a 6 Hz phenomena within the intercepted bitrate signal

by producing six bursts per second. Each time the LED strip

was turned on/off a larger amount of data was sent from

the drone which is expressed as a burst of bytes in the time

domain. This is due to the fact that a larger amount of P-frames

was required to encode the changing macroblocks (changing

pixels) compared to an unchanging video stream. Figure 7

presents a spectrogram that was produced from the intercepted

bitrate signal of the entire experiment. As can be seen,

frequencies of 1-9 Hz were influenced by this experiment. The

flickering LED watermarks the frequency of the intercepted

bitrate array exactly at the point which is twice its flickering

frequency. We concluded that the flickering object’s frequency

can be detected using this method by analyzing FPV traffic,

and moreover, that it can even be used as a means of detecting

whether the drone’s camera is being used to stream a flickering

object when the channel is encrypted. However, since the

slowest FPS rate among the four drones supports just 24 FPS,

the maximum frequency of a flicker that can be detected by

analyzing the intercepted bitrate signal is limited to a 6 Hz

flickering rate that watermarks the 12 Hz frequency of the

intercepted bitrate array (Nyquist frequency). In the rest of
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the paper we measure the influence of a flickering object on

the intercepted bitrate signal. We refer to the ratio between

the magnitude after a flicker was triggered (noise) and the

magnitude before a flicker was triggered (signal) around the

influenced frequency as the signal to noise ratio (SNR).

VIII. LOCATING DRONE IN SPACE

In this section we first show how to calculate the distance

and angle between the watermarker and the drone. Then, we

leverage our findings to create a drone locating model and

evaluate its performance.

A. Detecting Drone’s Distance

1) Influence of Distance on SNR: Here we show the influ-

ence of distance on a fixed sized flickering object.

Experimental Setup: We aimed a portable projector [67]

at the exterior wall of a building; the projector was used to

project a video of a flicker (3.5 Hz) onto a specific portion of

the wall (a rectangle 2.5×2.5 meters in size). We flew a DJI

Mavic Pro various distances (10m, 20m, .., 90m, 100m) from

the flickering rectangle. As in real surveillance, we zoomed

the drone’s camera (2x) on the flickering rectangle (that was

considered as the target in this experiment). A laptop was

placed near the projector to intercept the traffic sent from the

drone during the experiment.

Results: Figure 8 presents the SNR as a function of distance.

As can be seen, using a rectangle of 2.5×2.5 meters leaves

a watermark with an SNR that is greater than one from a

distance of 50 meters. Since the amount of pixels that are

changed as a result of a flickering object is greater from a

shorter distance, many more macroblocks are changed (as a

result of the flickering) and the SNR is greater; in contrast,

greater distances cause the flickering object to be smaller

and result in changing fewer macroblocks and a lower SNR.

However, the new DJI Mavic 2 Zoom supports 4x zoom,

which has twice the zoom capacity of the drone we used. The

DJI Mavic 2 Zoom can be detected from a greater distance,

because a fixed size object that is captured by a drone with

2x zoom from a distance of 50 meters can be captured by a

drone with 4x zoom from a distance of 100 meters [68].

2) Extracting Drone’s Distance: We aimed to extract the

distance between the drone and the flickering object. In order

to do so, we must first learn the effect of changing the

percentage of captured pixels on the traffic.

Experimental Setup: We placed the DJI Mavic Pro (con-

figured to 24 FPS and 720p) in front of a laptop monitor

located 0.5 meters away. We conducted 11 experiments using

this setup, and in each experiment a flickering rectangle (at

3Hz) of a different size was presented in the middle of the

monitor (10%, 20%, ..., 90%, 100%). In each experiment,

we intercepted traffic (as described in Section V) sent from

the drone. We obtained the 11 intercepted bitrate signals and

applied FFT to each of them.

Results: As can be seen by the SNR that was computed from

the magnitudes around 6 Hz in the experiments (presented in

Figure 9), the SNR increases as a function of the percentage

of changing pixels. By increasing the size of the rectangle,

we increased the amount of macroblocks that were changed

between consecutive frames. Encoding a larger amount of

macroblocks increases the bitrate which improves the SNR.

Based on the results of the experiments, we compared the

performance of four regression methods (polynomial, linear,

exponential, and logarithmic) to predict the percentage of

changing pixels given a specific magnitude.
Table III presents the residual sum of squares (RSS) and

coefficient of determination (R2) of the percentage of changing

pixel prediction for each regression method. The function

of the polynomial regression that yielded the best prediction

result among the tested methods is presented in Equation 1:

TABLE III
ERROR OF DISTANCE PREDICTION BASED ON REGRESSION METHODS

Method RSS R2

Polynomial Regression 56 0.994
Linear Regression 464 0.957
Exponential Regression 581 0.947
Logarithmic Regression 2523 0.770

% Changing Pixels (SNR=s) = 1.12 − 3.14×10−7s4

+ 6.96×10−5s3 − 5.12×10−3s2 + 1.87×10−1s
(1)

By applying a physical stimulus using a square shaped

flicker at a specific frequency, the interceptor can calculate the

height and width of the flickering object (in terms of pixels)

in a frame (picture) by applying the following steps:

1) Determining the FPV resolution of the FPV channel

(as explained in Section VI).

2) Triggering a physical stimulus using a square flickering

at a specific frequency (e.g., 3 Hz).

3) Calculating the percentage of changing pixels from the

intercepted bitrate signal using Equation 1.

4) Inferring the amount of changingpixels from the

FPV resolution.

5) Inferring the height and width (in terms of pixels) of

the flickering object in a frame.

For a square flickering object we conclude that the:

height (in pixels) = width (in pixels)
=

√
%ChangingP ixels(m)× FPV Resolution

(2)

By calculating the height and width (in pixels) of a flicker-

ing object (for which the real size is known), the interceptor

can infer the distance between the drone’s camera to the

flickering object [69] from the intercepted FPV channel (for

which the resolution was also determined) using Equation 3:

Distance (mm) = factor(p)× factor(d) (3)

factor(p) is defined as follows (Equation 4):

factor(p) =
realObjectHeight(mm)× imageHeight(pixels)

objectHeight(pixels)
(4)

The parameters required to calculate factor(p) have already

been calculated. factor(d) is drone dependent and defined as

follows (Equation 5):

factor(d) =
f(mm)

sensorHeight(mm)
(5)
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Fig. 8. SNR - magnitudes around 7 Hz as
a function of the distance between a drone
and a flickering object.

Fig. 9. SNR - magnitudes around 6 Hz
as a function of the percentage of changing
pixels.

Fig. 10. SNR - magnitudes around 7 Hz (SNR1)
and 6 Hz (SNR2) as a function of the angle at
the midpoint between two flickering LED strips.

The parameters f(mm) and sensorHeight(mm) are pub-

lished online in the specifications for each of the drones [66],

[70], [71]. The sensorHeight(mm) for each drone is 1/2.3"

(11.0434783 millimeters). The lens’ length of each drone

varies between 24 and 35mm, so factor(d) is in the range

of (Equation 6):

0.31 < factor(d) < 0.46) (6)

Based on Equations 6 and 3, we can see that the distance

between the drone and the flickering object varied in the range

of (Equation 7):

0.31× factor(p) < Distance (mm) < 0.46× factor(p)
(7)

For factor(d) = 0.385, we obtain a maximum error of

0.075×factor(p) for the distance estimation. If the exact type

of drone can be detected from the intercepted FPV channel

(e.g., according to a unique FPS rate), the computed distance

is accurate.

B. Detecting Drone’s Angle

Next, we aimed to investigate the effect of the angle between

the flickering object and the drone.

1) Experimental Setup: Using the white board presented in

Figure 5, we programmed the microcontrollers of the LED

strip on the left to flicker at 3 Hz and those of the LED strip

on the right to flicker at 3.5 Hz simultaneously. We positioned

the drone at 17 different angles (10◦, 20◦, ..., 160◦, 170◦).

The distance between the drone and the middle of the strips

was the same for each of the 17 positions. We intercepted the

traffic sent from the drone and created the intercepted bitrate

signal (as described in Section V).

2) Results: The SNR around the frequencies of 7 Hz

(referred to as SNR1, i.e., the SNR around the frequency that

is influenced by the left flickering LED) and 6 Hz (referred to

as SNR2, i.e., the SNR around the frequency that is influenced

by the right flickering LED) is presented in Figure 10. As can

be seen, the SNR at those frequencies behaves as a mirror

around 90◦(due to the fact that flickering objects of the same

size have the same effect). However, the magnitude of the

LED strip that was far from the camera when the drone

was located diagonal to the white board decreases, since a

flickering object that is farther away is smaller compared to a

flickering object that is closer. The ratio between SNR2 and

SNR1 (SNR2
SNR1 ) is also presented in Figure 10. As can be seen,

the ratio decreases as the angle increases. We compared the

performance of four regression methods (polynomial, linear,

exponential, and logarithmic) to predict the angle between

the drone and the middle of the two LED strips, based on

the ratio between SNR2 and SNR1. Table IV presents the

residual sum of squares (RSS) and coefficient of determination

(R2) of angle prediction for each regression method. The

function obtained based on exponential regression is presented

in Equation 8:

TABLE IV
ERROR OF ANGLE PREDICTION BASED ON REGRESSION METHODS

Method RSS R2

Exponential Regression 979 0.976
Polynomial Regression 1062 0.973
Logarithmic Regression 1450 0.964
Linear Regression 10011 0.754

Angle(SNR1, SNR2) = 192.72 ∗ e−0.71∗SNR2
SNR1 (8)

C. Locating Drone’s Location

In Subsection VIII-A, we obtained a formula to detect

the distance r between a drone and a flickering object. In

Subsection VIII-B, we obtained a formula to detect the angle

of a planner that spreads from a drone to the middle of two

parallel flickering objects attached to a white board. Figure

11 leverages our findings for locating a drone in space using

a white board (framed in yellow) with two pairs of parallel

flickering objects. As can be seen in the figure, the objects that

comprise the first pair of parallel flickering objects (marked

with red dots) are located at the top and bottom of a rectangle

board (framed in yellow) and spread a red planner with angle

φ along the x-axis. The objects comprising the second pair

of parallel flickering objects (marked with green dots) are

located on the left and right sides of the same board (framed

in yellow), and they spread a green planner with angle φ
along the z-axis. We consider (r,θ,φ) spherical coordinates

that give the relative location of a drone from a rectangle
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Fig. 11. Locating a drone based on four
flickering LED strips that creates r, θ,
and φ.

Fig. 12. A board with
four flickering LED
strips installed on a
balcony.

Fig. 13. Root mean square error (RMSE) results of the locating drone
experiment as a function of the amount of time that flickering was applied.

board that contains two pairs of parallel flickering LED strips.

The Cartesian coordinates (x,y,z) can be retrieved from the

spherical coordinates (r,θ,φ) using known formulas [72].

1) Experimental Setup: In order to evaluate the accuracy of

a mechanism for locating a spying drone in space according

to our formulas, we conducted the following experiment. The

white board presented in Figure 5, which has an LED strip

connected to a microcontroller on each edge, was attached

to a balcony located on the third floor of a building (21

meters from the ground) so that the side of the board with

the LED strips was facing outward, as can be seen in Figure

12. We flew the DJI Mavic Pro drone between 30 different

locations at various altitudes and distances from the balcony

while the drone conducted a privacy invasion attack against

the organization (i.e., the drone’s video camera streamed the

balcony). The exact 30 locations, as measured by the DJI-

Go application (longitude, latitude, and altitude), are listed in

Table VII (Appendix XVIII) and marked by blue dots in Figure

14. Each of the four LED strips was programmed to flicker

at a different frequency for 30 seconds. We intercepted the

drone’s FPV channel at each of the 30 locations and extracted

30 bitrate signals.

2) Results: Using the previously mentioned formulas, we

computed the spherical coordinates (r,θ,φ) for each of the

locations and computed the Cartesian coordinates (x,y,z) from

Fig. 14. Results of the locating a drone in space experiment when applying
a physical stimulus for two seconds.

the spherical coordinates according to [72]. Based on the

computed Cartesian coordinates, we calculated the GPS coor-

dinates (latitude, longitude) and altitude. Finally, we computed

the error between the actual location and the predicated

location. Figure 13 presents the mean square error (RMSE)

results for the x, y, and z-axes as a function of the amount

of time the physical stimulus was applied. As can be seen,

the accuracy along each axis is improved from an average

error of 3.5 meters (by applying flickering for two seconds)

to an average error of 1.2 meters (by applying flickering for

30 seconds). The actual locations and predicted locations (by

applying two seconds of flickering) are presented in Figure

14 and Table VII (Appendix XVIII). Considering the fact that

the measurements of the 30 real locations were obtained from

the drone’s GPS (using its application) and the known average

error of GPS devices (a 4.9 meter radius in the open sky [73]),

we can accurately locate a spying drone in space using four

flickering LED strips and a single Wi-Fi receiver by applying

flickering for two seconds.

IX. HIDING THE PHYSICAL STIMULUS

In this section, we investigate whether a physical stimulus

can be produced in such a way that it is undetectable to the

human eye. An undetectable physical stimulus should fulfill

the following three requirements: (1) it should be undetectable

by direct observation by the drone’s operator via the naked

eye, (2) it should be undetectable by indirect observation by

the drone’s operator via the controller screen, and (3) it should

watermark the FPV channel. One method that was considered

takes advantage of the eye’s limited ability to capture infrared

and UV frequencies. We tested the influence of using infrared

LEDs as a means of creating a physical stimulus. As can be

seen in Figure 15a, the drone’s camera is sensitive to infrared

frequencies and can capture them; therefore, this method does

not meet the second requirement. However, infrared flickering

can be used in cases in which the watermarker is deployed

inside a house/car, and there is no need to hide the flickering

from the drone’s operator in order to create invisible flickering

that will not disturb the people in the house/car.
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Fig. 15. (a) A picture of an infrared LED projector captured by the DJI
Mavic, and (b) A spectrogram (power spectral density) of the intercepted
bitrate signal from an experiment in which a smart bulb flickered between a
baseline color and five similar hues (as can be seen in Table V).

1) Experimental Setup: We decided to test another method

that takes advantage of a different limitation of the human eye:

its inability to distinguish between two almost identical hues

of the same color. In this experiment we aimed to determine

whether a physical stimulus that both flickers between two

similar hues (with different RGB values) and is undetectable

to the human eye can be produced and leave a noticeable

(distinguishing) effect on the FPV channel.

TABLE V
YUV AND RGB VALUES USED IN OUR EXPERIMENTS

Luma (Δ) YUV RGB
Baseline 231,26,143 253,255,51
1 230,26,143 252,254,50
2 229,26,143 251,253,49
3 228,26,143 250,252,48
4 227,26,143 249,251,47
5 226,26,143 248,250,46

We conducted two experiments. In the first experiment,

we picked a random RGB color (253,255,51) as the baseline

and transformed it to the YUV color space (231,26,143). We

created five new hues similar to the baseline color by reducing

the luma component (see Table V). We placed the DJI Mavic

Pro in front of, and .5 meters away from, a smart LED bulb

(Magic Blue) that provides the BLE protocol for controlling.

We programmed the Magic Blue to flicker between two similar

hues as follows: For the first minute, the Magic Blue was

set at the baseline color (231,26,143). For the second minute,

the Magic Blue was set to flicker at 2.3 Hz between the

baseline color and the color that we created by reducing the

luma component by one (230,26,143). For the third minute,

the Magic Blue was set to flicker at the same frequency

between the baseline color and the color that we created

by reducing the luma component by two (229,26,143). This

pattern continued until the flickering included the last color

that we created (226,26,143). In the second experiment, we

positioned the DJI Mavic Pro at various distances (3m, 6m,

10m, 15m, 20m, 25m, 30m) from the Magic Blue bulb that was

programmed to flicker between two similar hues: (231,26,143)

and (226,26,143). In both experiments, we intercepted the

traffic sent from the drone and extracted the intercepted bitrate

signal (as described in Section V).

Fig. 16. (a) SNR as a function of the change in the luma component and (b)
SNR as a function of the change in the distance.

2) Results: The hues, as they were captured by the drone’s

video camera in the first experiment, are presented in Figure

15b. The flickering cannot be detected by the human eye,

because human vision is not sensitive enough to detect such

subtle changes. We compared the magnitude of the intercepted

bitrate signal around 4.6 Hz during the entire experiment.

As can be seen in the spectrogram presented in Figure 15b

which was extracted from the intercepted traffic, the power of

the magnitude around 4.6 Hz increases as much as the delta

between the baseline and the second flickering color increases.

The SNR as a function of the delta is presented is Figure 15a.

Figure 15b shows the results of the second experiment. As

can be seen, the SNR is greater than one up to a distance of

15 meters, so this method is only effective for a range shorter

than the range of visible flickering (up to 50 meters). Based on

this experiment we concluded that the physical stimulus can

be disguised in a way that watermarks the intercepted traffic

without the awareness of the drone’s operator for much shorter

ranges. In Appendix XVI, we discuss a method for hiding the

physical stimulus.

X. INFLUENCE OF AMBIENT FACTORS

In this section we investigate the influence of ambient light

and wind on the intercepted watermarked signal.

A. Influence of Wind

The camera of a drone is installed on a stabilizer that is

designed to compensate for unwanted camera movement, so

the captured picture won’t be affected by movement resulting

from wind or maneuvering. We start by comparing the video

stream of an object obtained from the air and a stand.

We conducted two experiments. In the first experiment we

positioned the drone on a 1.5 meter high stand on top of a

four story building and filmed the landscape for 10 minutes at

a frequency of 24 FPS. We repeated the same experiment with

a minor change; this time the drone flew to an altitude of 1.5

meters (the same altitude as the stand), and the same landscape

was streamed for the same amount of time. As can be seen

from the results presented in Figure 17a, the wind mainly

affects the low frequencies (below 6 Hz), which are more

noisy compared to a static stream. In order to test whether

this observation is wind independent, we conducted another

experiment in which we positioned a fan behind a flying drone.

We used the fan to produce 14 wind speeds. We measured the
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Fig. 17. From left to right: (a) FFT graphs of streaming an object statically from a stand (orange) and air (blue), (b) four magnitudes extracted from external
interception to a drone at different wind speeds, (c) SNR as a function of the ambient light (measured in lux).

wind that hit the drone using a wind meter and observed the

magnitudes of four frequencies. As can be seen in Figure 17b,

the order of the magnitudes of the four frequencies remains

the same following the stabilizer operation. In addition, their

ranges are also stable and not highly influenced by wind.

Therefore, we concluded that frequencies that are higher than

6 Hz are immune to the wind’s influence and are less noisy

for any given altitude compared to low frequencies. In terms

of optimizing the SNR, it is better to use a physical stimulus

that can affect frequencies that are higher than 6 Hz.

B. Influence of Light

Next, we aimed to learn about the influence of ambient light

on the SNR. We placed the drone outside the lab, in front

of a flickering LED strip (at 3.5 Hz) that was connected to

an Arduino Uno and conducted 18 experiments using various

levels of ambient light, from morning to night. We repeated the

experiment for flickering smart film. In each experiment, we

used the intercepted bitrate signal to measure the magnitude

around 7 Hz for one minute of flickering and compared it with

one minute during which there was no flickering. As can be

seen in Figure 17c which presents the SNR as a function of

the ambient light (in lux) calculated in the 18 experiments,

the SNR that was created from the intercepted bitrate signal

from the LED strip experiment improves as a function of

the ambient darkness. In contrast, the flickering smart film

improves as a function of the ambient light. From this set of

experiments, we concluded that by using both an LED strip

and smart film, the influence of the watermarker can be felt

at all hours of day and night.

XI. SYSTEM EVALUATION

In this section, we present the final component of our

proposed method for detecting privacy invasion attacks: a

classification algorithm that uses watermark detection in order

to determine whether a given FPV transmission is being used

to video stream a victim/target. We evaluate the performance

of the proposed privacy invasion attack detection method for

two use cases: when the target is a private house (as was the

case in [5], [7]) and when the target is a subject driving in

his/her car (as was the case in [3]).

Algorithm 4 compares the ratio between the magnitude

around the flickering frequency after the periodic physical

Algorithm 4 Detecting Whether a POI is Being Streamed

1: procedure ISTARGETFILMED?(FPVCHANNEL,
2: FREQUENCY,STARTINGTIME)
3: bitrate [] = extractBitrateSignal(FpvChannel)
4: filtered [] = bandpassFilter(frequency,bitrate)
5: before [] = subArray(bitrate,0,startingTime)
6: after [] = subArray(bitrate,startingTime,N)
7: N = length(bitrate)
8: noiseMagnitude = FFT(before,30)[frequency]
9: signalMagnitude = FFT(after,30)[frequency]

10: SNR = signalMagnitude/noiseMagnitude
11: return (SNR >= threshold)

stimulus was launched (the signal) to the baseline magnitude

around the same frequency before the periodic physical stim-

ulus was launched (the baseline/noise). Algorithm 4 is applied

after the Watermarker method has been called. The algorithm

receives a suspicious FPV transmission (FpvChannel) and two

parameters regarding the periodic physical stimulus: (1) its

startingTime (EPOC time): the time that the physical stimulus

was launched, and (2) frequency of operation. A bitrate signal

is extracted from the intercepted FpvChannel (line 3). A

bandpass filter is applied (line 4) to the bitrate signal around

the operated frequency. The filtered signal is divided into

two signals: before (line 5) and after (line 6) the periodic

physical stimulus was launched. The magnitude around the

operated frequency before the periodic physical stimulus was

launched is given to noiseMagnitude (line 8), and accordingly,

the magnitude around frequency after the periodic physical

stimulus was launched is given to noiseMagnitude (line 9).

Finally, the FpvChannel is classified as being used to stream

the victim if the SNR is greater than a threshold (line 11).

1) Experimental Setup: In order to evaluate the perfor-

mance of our method, we conducted two sets of experiments.

The first set demonstrates how smart film attached to a window

can be used as a means of detecting a privacy invasion attack

conducted against a private house from a neighboring property

(simulating privacy invasion attacks previously published in

the media [7], [5]). Figure 18a presents the experimental setup

in which the target is the victim’s living room which is

being video streamed by a malicious drone operator (nosey

subject) who uses a DJI Mavic Pro (configured to video

stream at 30 FPS and 720p) from his/her property (framed
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Fig. 18. (a) The attacker’s location, Smart film installed on the living room
window, and (b) A spectrogram of the intercepted bitrate signal from a drone
that was used by a malicious operator to spy on his/her neighbor (smart film
was used to flicker twice).

in red), at a distance of around 30 meters from the victim’s
window. We consider smart film (film that changes its state

from transparent to mat and vice versa) that has been installed

on the victim’s window and connected to an RF controller as

a Watermarker. We consider a laptop (Dell Latitude) with an

integrated NIC (used as a radio receiver) that is located in the

victim’s home and controls the smart film (i.e., can flicker it

from mat to transparent at a given frequency) using a radio

transmitter (we used a HackRF One, a software-defined radio)

as an interceptor. The experiments (which can be viewed on

an uploaded video1) show how a nosey subject (malicious
drone operator) uses a drone to film his/her own yard (a

legitimate use of a drone), and later uses the same drone,

positioned within his/her own airspace, to peek at his/her

neighbor (illegitimate use of a drone) by focusing on the

neighbor’s living room window. In this set of experiments, the

drone was located on the property (and within the airspace)

of the malicious drone operator (framed in red), 30 meters

away from the neighbor’s living room. The smart film is used

as a flickering object that is operated at a frequency of 1.3

Hz. The spectrogram of the intercepted bitrate array from the

entire experiment, with a bandpass filter around the 2.6 Hz

frequency, is presented in Figure 18b.

The second set of experiments demonstrates how a siren

installed on the top of a car can be used as a means of detecting

a privacy invasion attack conducted against a subject while

he/she is driving in his/her car (simulating the privacy invasion

attack that was conducted against a cheating spouse in [3]).

Figure 19a presents the experimental setup. We consider a

target (the victim’s moving car) that is being video streamed

by a malicious drone operator who uses a DJI Spark
(configured to video stream at 30 FPS) to spy on the victim.

For the Watermarker we use a siren that is an LED strip

1 https://youtu.be/4icQwducz68

Fig. 19. (a) The point at which the siren was turned on, The route taken
by the victim as the victim was being video streamed by a drone, and (b) A
spectrogram of the intercepted bitrate signal from a drone that was used by
a malicious operator to spy on a person driving a car (a siren was turned on
after 20 seconds of driving).

connected to an Arudino Uno microcontroller (used to flicker

the siren at a given frequency). We utilize a laptop (Dell

Latitude) with an integrated NIC (used as a radio receiver)

that is located in the victim’s car and can trigger the siren

as an interceptor. The experiments (see the uploaded video2)

show how a victim that is being followed by a nosey malicious
drone operator who uses the drone to video stream the victim
while driving (the victim’s route is presented in Figure 19a).

After 20 seconds of driving, the laptop triggers a green siren

that is operated at a frequency of 3.9 Hz. The spectrogram of

the intercepted bitrate array (intercepted by the laptop) from

the entire experiment with a bandpass filter around the 7.8 Hz

frequency is presented in Figure 19.

2) Results: Based on the intercepted bitrate arrays that were

obtained from the two experiments, we extracted magnitudes

around the watermarked frequencies before and after the

physical stimulus was started for durations of 1-5 seconds.

The results are presented in Figure 20a. As can be seen in

the figure, two seconds of the physical stimulus are sufficient

for increasing the signal’s magnitude (after the physical stim-

ulus began) over the baseline magnitude (before the physical

stimulus began). In addition to the experiments that simulated

illegitimate uses of a drone, we conducted experiments that

simulate legitimate drone use as follows. In the private house

experiment, we conducted an additional set of experiments in

which the neighbor used his/her drone to film his/her own

garden (legitimate use of a drone). In the car experiment, we

conducted an additional set of experiments in which the drone

was used to film its operator (legitimate use of a drone).

We consider a privacy invasion attack detection system a

system that can detect every privacy invasion attack. In order to

accomplish this, we tuned the threshold variable from line 11

of Algorithm 4 to the minimum SNR calculated from the set of

2 https://youtu.be/9PVaDpMsyQE
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Fig. 20. (a) Extracted magnitudes around the flickering frequency as a function of the duration, (b) False positive rate obtained by applying Algorithm 1
for a legitimate purpose in the private house experiment, and (c) False positive rate obtained by applying Algorithm 1 for a legitimate purpose in the car
experiment.

experiments that we conducted previously on the illegitimate

use of a drone. By setting the parameter’s threshold at

the minimal SNR value observed by triggering a physical

stimulus, we force the detection of each privacy invasion attack

that occurs. In order to test the false alarms associated with

this, we used the set of experiments that simulated legitimate

drone use. We divided the intercepted bitrate array from the

experiments that we conducted previously on the legitimate

use of a drone into a duration of 10 seconds. We applied

Algorithm 1 on the intercepted signals with the baseline and

signal magnitudes that were extracted from various durations

(15 seconds for each). The FPR results of the private house

experiment are presented in Figure 20b, and the FPR results of

the car experiment are presented in Figure 20c. As can be seen

from the results, the FPR rate goes below the value of 0.1 very

quickly: within 2-3 seconds of flickering in the car experiment

and within two seconds in the private house experiment. Based

on these results, we concluded that a privacy invasion attack

detection system that detects every privacy invasion attack can

be tuned so that it leads to a minimal amount of false alarms.

XII. COUNTERMEASURES

In this section, we discuss countermeasure methods that can

be used by the drone’s operator to evade detection resulting

from the bursty bitrate that is caused by our carefully crafted

physical stimulus. The most effective way to evade detection

is by eliminating video compression, i.e., transmitting the

raw video stream from the drone to its operator (transmitting

just I-frames). However, none of the commercial drones sold

today support the functionality of switching the transmitted

video stream to a constant bit rate instead of a variable

bitrate. This is likely due to the fact that providing a high-

quality resolution video stream to the drone’s operator is

important in order to enable the operator to safely maneuver

the drone and avoid collision, and a high resolution video

stream requires compression. In addition, since the 1990s,

applying compression to a video stream prior to transmission

has been mandatory, and it is supported by all next generation

video encoders; therefore, the variable bit rate side effect is

not about to disappear anytime soon.

Another option for evading detection involves using a drone

equipped with two video cameras. The first video camera is

used for maneuvering the drone by transmitting the raw video

at a constant bitrate (CBR) at a very low resolution without

applying any compression. This camera is not focused on the

target, in order to prevent it from capturing the flickering

object. The second video camera is used to spy on the target

and stores the video stream on the SD card at a high resolution

using compression. While this method might be effective

for static objects (e.g., the window of a building), its main

disadvantage is that it is not effective with a moving target

(e.g., a passing car), since the video stream presented to the

drone’s operator is transmitted from a video camera that does

not capture the moving target. The abovementioned reasons

also explain why evading detection by occasionally disabling

the video channel from the drone’s operator when using a

single camera won’t be an effective countermeasure.

XIII. LIMITATIONS & FUTURE WORK

Drones manufactures use various protocols other than Wi-

Fi for FPV transmission. DJI, for example, uses DSSS and

FHSS modulations with its own protocol for FPV transmission

[74]. Some additional knowledge regarding the modulation is

required in order to apply our method and create a bitrate array

from intercepted traffic, i.e., demodulating the signal from the

physical layer (radio) to the data link layer (binary). In the case

of DSSS, the chip sequence is required in order to demodulate

the radio transmission to data, otherwise our method can not be

applied. In future work, it would be interesting to implement

a technique that was suggested at DEF CON 25 [75] and

extracts chip sequence from DSSS transmission. In addition,

our work can be extended by adding a threshold for a maximal

amount of time for reasonable snooping behavior (defined by

the victim) that will ensure that the system only issues alerts

for video capturing that exceeds the threshold; this will allow

reasonable maneuvering near the target.
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XIV. APPENDIX - STAGES OF VIDEO COMPRESSION

ALGORITHMS

A. Intra-Coding Process (Creating I-Frames)

Intra-coding contains the following stages [76], [34]:

B. Inter-Coding Process (Creating B and P-Frames)

The process of generating a delta frame is similar to

the intra-coding process, with minor changes. Between the

quantization stage and the entropy coding stage the following

stages are added:

1) Reference block matching - A similar block in another

frame is identified.

2) Motion vector extraction - The difference between the

two blocks is extracted by calculating the prediction

error. This is the data that is used to describe the delta

frame (prediction error from another frame).

XV. APPENDIX - INTERCEPTION & CREATING BITRATE

SIGNAL SCRIPT

Listing 1 presents the bash script that implements the

process of interception (stages 1-3 in Section V).

1# ! / b i n / bash
2# s t a r t m o n i t o r mode
3airmon−ng check k i l l
4airmon−ng s t a r t wlan0

5# Capture p a c k e t s o f s p e c i f i c ne twork
6airodump−ng −−b s s i d $1 −−w r i t e c a p t u r e

. pcap wlan0mon

7read −p " P r e s s any key t o e x i t m o n i t o r

mode . . . " −n1 −s

8# e x i t m o n i t o r mode
9airmon−ng s t o p wlan0mon

10 s e r v i c e network−manager s t a r t

11 r f k i l l unb lock a l l

Listing 1. Applying interception script.

The bash script presented in Listing 1 received the BSSID
as the argument and creates a PCAP file that contains packets

captured from the BSSID’s network.

Listing 2 presents the bash script that implements the bitrate

signal interception process (stages 4-5 in Section V).

1# ! / b i n / bash
2 p r e f i x =12

3 s u f f i x =1

4 i n t e r v a l =0.041666666667

5 t s h a r k −q −z ’ io , s t a t , ’ " $ i n t e r v a l " −r

" $1 " > " $1 " . t x t −2

6 l i n e s =$ ( wc − l < " $1 " . t x t )

7 l i n e _ 2 _ r e m o v e =" $ ( ( l i n e s − p r e f i x ) ) "

8echo $ l i n e _ 2 _ r e m o v e

9echo $ l i n e s

10 t a i l −− l i n e s = $ l i n e _ 2 _ r e m o v e " $1 " . t x t >

tmp . t x t

11 l i n e s =$ ( wc − l < tmp . t x t )

12 l i n e _ 2 _ r e m o v e =" $ ( ( l i n e s − s e f i x ) ) "

13head −− l i n e s = $ l i n e _ 2 _ r e m o v e tmp . t x t >

tmp2 . t x t

14 c u t −f 3 −d ’ | ’ tmp2 . t x t > tmp3 . t x t

15 c u t −f 4 −d ’ | ’ tmp2 . t x t > tmp4 . t x t

16 c a t tmp3 . t x t > p a c k e t s . t x t | t r −d " \

t \ n \ r "

17 c a t tmp4 . t x t > b y t e s . t x t | t r −d " \ t \

n \ r "

18echo ’ p a c k e t s ’ | c a t − p a c k e t s . t x t >

temp && mv temp p a c k e t s . t x t

19echo ’ b y t e s ’ | c a t − b y t e s . t x t > temp

&& mv temp b y t e s . t x t

20 p a s t e −d " , " p a c k e t s . t x t b y t e s . t x t >>

" $1 " . csv

21rm p a c k e t s . t x t b y t e s . t x t " $1 " . t x t tmp4

. t x t tmp3 . t x t tmp2 . t x t tmp . t x t

22 p a s t e −d " , " ∗ csv >> a l l . t x t

23rm ∗ . c sv
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TABLE VI
CLASSIFICATION RESULTS BASED ON VARIOUS INTERCEPTION PERIODS

Actual
Interception

Period
1 second 2 seconds 3 seconds 4 seconds 5 seconds

Predicted/Actual
Moving IoT Device

Drone Others Drone Others Drone Others Drone Others Drone Others

Predict
Drone 173 31 185 23 193 12 200 5 200 3

Other Moving
IoT Devices

27 169 15 177 7 188 0 195 0 197

24 t r −d " \ t " < a l l . t x t > a g g r e g a t i o n .

t x t

25rm a l l . t x t

Listing 2. Interception and creating bitrate signal script.

The script presented in Listing 2 receives the path to the

PCAP as the argument and creates a bitrate signal by aggre-

gating all of the packets according to an interval parameter.

XVI. APPENDIX - HIDING THE PHYSICAL STIMULUS

EXTENSION

One of the methods that we considered takes advantage of

the limited capturing speed of the human eye (48-60 Hz) by

creating a stimulus that is too brief to be detected by the human

eye. This method is popular in advertising where it is used in

order to affect the viewer’s subconscious using visual cues that

appear so briefly (for just a few milliseconds) that people don’t

perceive them [77], [78]. However, most drones use an FPV

channel that supports 25-30 FPS. Hence, even if a drone’s

optical sensor captures a brief stimulus, the change will be

presented to the drone’s operator in his/her controller for 33-

40 milliseconds, revealing the physical stimulus and thereby

disqualifying this method.

XVII. APPENDIX - CONFUSION MATRICES FROM

CLASSIFYING FPV CHANNEL EXPERIMENT

Table VI presents confusion matrices resulting from the

application of Algorithm 2 with various interception windows

on the following moving IoT devices: drone, smartwatch,

smartphone, and robotic vacuum cleaner.

XVIII. APPENDIX - LOCATING DRONE EXPERIMENT
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